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1. Introduction

The quadratic matrix A of order n should be given as:

— —— o
A=ra, a,...a, V=r af
Ty Qgp - -« Qgp ay
%
— anl a‘n?. A a’rm i . an i
where
. —
af =[a; ap - - . ay]
Suppose that
det (A) == 0

thus A is not singular or, what is equivalent, the rank of A is

o(A)=n

and so it has an invert A™, for which

ATA=AAI=E,

where E_ is the unit matrix of order n.
01= [el € . . . el

E.=ri1o9 . ..
01 .0

00 . . .1

where e; is the column unit vector with n elements. the i-th element being 1,

the others 0.

1*
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Be X the reciprocal mairix to be determined where column vectors are
vectors X; with n elements (i =1, 2, ... n).

The problem can be drawn up as follows: The unique solution of the in-
homogeneous linear matrix equation

AX=E, (1.1)

is to be determined. The existence of a unique solution is assured by the pre-
suppositions det (A) == 0, and o (A) = n.

This problem can be reworded for solving homogeneous linear system of
equations as well by introducing certain hypermatrices.

Let us introduce the following hypermatrices:

B=[A-E],

a hypermatrix consisting of n rows and 2n columns, with two adjacent
blocks being quadratic matrices A and E, of order n;

Z:{X7

v |

is a hypermatrix of 2n rows and n columns with quadratic matrices X and ¥
of order n as the two superimposed blocks.
By their means (1.1) can be written as:

BZ=90 (1.2)
or more explicitly:

[A—EJ[X]=0
Y |

that is

AX—Y=0. (1.3)

By comparing (1.1) and (1.3) it is seen that a solution for the homogene-
ous linear equation system (2.1), with n linearly independent column vectors
of 2n elements consumed in Z, of the following structure:

Z=rX1=7X% X, . . . X,

E, e, €, . . . e,

is sought for.
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The column vectors of Z that is the column vectors

Zl:[XlJ
€;

and the row vectors

bf = [ai'? — € ]
of the matrix
—_—— — & e
B=rbit1=raj : —ef
ko ajf : —ef
# * . £3
- bn _ L 2n €y

are orthogonal:
Namely, according to (1.2)

bfZ,=0 1=12 ... n

2. An interesting property of idempotent matrices

Idempotent is a quadratic matrix P of order n satisfying the equation

If P is of rank r that is
o(P)=r

and P is given in the form of a possible minimal sum of diads

p— B o - 7k
P= >uvj =luu, ... u] o = UV
k=1 o
3
L Vr

where the columns of U are linearly independent column vectors of n elements
and the rows of V* are linearly independent row vectors with n elements, then,
according to a well-known theorem (see e.g. page 3 in [1]), the column vectors
u, and the row vectors vi form together a biorthogonal system:

V’fuj=5,j: i,j=1,2,...,r
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where

5y = 0, for 1%

h 1, fori=j.

There exists again a well-known theorem for idempotent matrices of
this property (see e.g. pp. 40—42 in [2]).

Letm <{nand P, P,, ..., P, be a sequence of quadratic matrices of
order n such that

m
NP, —E,

i=1
and
P;P;=0 fori=<j
then
1. P} = P, for each i, i.e., each element of the sequence is an idempotent
matrix:
2. fo

b
IIS)
o~
o
S
i
2
Ll
)

of
Pi= Nuyvi=U; Vf

VR
S
I

0

the sum of the element ranks in the sequence equals n;
3. the set of the column and row vectors in the diads determined for all
i forms a complete biorthogonal system of dimension n, i.e.

[ for i =j and k =1 simultaneously
0 for either i==f or k=1

where

o
!
jo
M
o
1=}

,j=1,2, ..., m

o
|
[}
o
(i~

3. A new algorithm for matrix inversion

Based on the theorems drawn up in the preceding item, the following al-
gorithm is proposed for solving the problem (1.2) in item 1. {The advantage of
the algorithm suggested by the author consists in at least halving the number

of necessary multiplications as compared to other known algorithms of basis
factorization.)
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o
=

First of all. let us replace B by the following hypermatrix of order

C=[A -Ej=rB]

¢ being the i-th row vector.

For 1<i<n

these row vectors are linearly independent by definition. All the other row
vectors are identically 0, causing the rank of € to equal n. An arbitrary column
vector of the unknown matrix Z is the vector z with 2n elements,

The equations in the equation system to be solved are

cfZ=0 i=1,2,...n.

To solve this equation system means to find all the linearly independent
column vectors z orthogonal to the row vectors e¢f. The algorithm to this aim
consists of the following steps:

Step 1: Be the i;-th element (i; <{ n) of the row vector ¢} non-zero (such
an 1, exists by definition). hence

* —t
cie,==0.

Then

P e, ¢f
e

i
cl ei1

(here and further on the column unit vectors e, have 2n elements) is an idem-
potent matrix each row vector of which is a product of ¢} by a scalar:

% % %
p2— i (cTen)ef  eyef P
= . e =P
(cfe,)? er €
Thus »
P‘l = E'Zn - Pl

is an idempotent matrix
P = E,,— 2P, +P{=E,, — P, =P,
with linearly independent (i.e. non-zero) columns orthogonal to ¢f:

% £ * el'1c>1l= ® E
FP,=cf —cf 21— =c¢f—cf=0.
cf ey
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Step 2: On the other hand, there exists an i, (obvivusly not greater
than n) such that

Thus
P,e. ciP.
P3 —— Pg - 2 Mip v A0
ciPye,
is an idempotent matrix
P.e. ciP P.e, (ciP,e;, )ciP
P%ZP%“‘ZPQ _.1-32 2_§_>*7‘.’. 12(2 212) 2 *+2 :P3
ciP,e, (c5 Pye;,)?

with linearly independent (i.e. non-zero) column vectors orthogonal to both
¢t and c}:

) . P,e. eXP
bfPy = ¢f Py —cf — 222 =0
Co 2 e,o
namely
efP, =0

b3 %
(FPoei) ¥ Py _ up _ exp, — 0
T == Gy Gy By = UL
c;. Pzeiz

;P

S
=
3]
I
<]
(X

[£24

Step k: Be P, determined in the previous step such that

5
k= PI\'
and

¢GP.=c¢iP. = ... =ci_;P, =0, but

¢iPL=<0
so there exists an i,(< n) for which

ciP e, 0.
Then
&
_ P.e,ci P,
P, = P, — oSkl
€ PI{ €1

is an idempotent matrix:

P.e, ciP,
Pr, =P;— 2P/:—‘;Ik—"“k* +
ciPre;,
* *
Pie,(ciP.e,)ci P,

+ =P, +
(¢t Pyey)? e
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with linearly independent (i.e. non-zero) column vectors equally orthogonal
toe3, ..., ep_; and ef:
(ci Pyey) cf Py

[

:CT.- Py =cfP, — =ciP, — P, = 0.

Finally, for k = n the linearly independent (i.e. non-zero) column vectors of the
idempotent matrix P,.; got in the n-th step are just the solution vectors Z
sought for.

The construction of the algorithm is such that the last n columns of
matrix P,.; form the hypermatrix:

where X = A™"
that was to be determined.
4. The use of the algorithm in a concrete numerical example

Be the matrix to be inverted:

A =

B =L =
-l O =D

Transform it into a matrix of order 2n = 8;

C=r 1 0 0 1!/—=1 0 0 071=rc
2-1-2 0, 0-1 0 0 ¢t

—~1 0 1 0: 0 0—1 0 e

—2 1 0—-1: 0 0 0-1 c*

0 0 0 0: 0 0 0 O o+

0 0 0 0, 0 0 0 0 0*

0 0 0 0, 0 O 0 O 0*

0 0 0 0° 0 0 0 0.4 o

Furthermore, let the unit matrix of order 8 be

1
E=le e,e e, es;e;e.e]
Since

% _
cie, =1
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therefore

Lo}
=
=
=)
—
_
—
o =t
o
o =]
]
. o [S—
© -]
— ) H !
v ° Hnoocooioo oo
1
i L §
-
R i
=3
I
*nVL_ el
*
el_pq
ﬁ
=
l
ot
-

-

B

= [0—1

P.;

=
2

Since ¢;

2:2—1 0 0;

therefore

[0-1—-2-2i2—-10 0]:

0~
—1

-

0
0

0
0

0

0_s

.

9

(]

N1

ol

L
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Since

P, =[0011/—10 —10]:

ciPyey =1

therefore

10 -10]

1

[0010,

0
—2
1
0
0
0
0
0

L.

0 --1

=P, —

#
Pie,ct P,
ciPje,

1

0

0

0

0 —1 —2

i

=r

Since

,=[0001!

e, Pe =1

—2 —1 —2 —17:

ciP

therefore

%
1

__Piec, P,
ciP,e,

P,—P,-

0
—1
1

P, —r—17[0001!-2 —1 —2 —1]

I l

—_ S ilo o O
A _ “

NGl 0O OO
T

H o O - oD
[ I

%012“1000

_

U R
0000“0000
|
oo ocloo oo
|
OOOO_MOOOO
|
CoODOoIO DO
L J
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So the inverse matrix sought for is the upper right block of order 4 of

P
ATM=T_1 -1 -2 —1
0 —-1 -2 0
-1 -1 -1 —1
2 1 2 1
Summary

A method is presented to lead in a finite number of iterations for any given non-singu-
lar n-square matrix to the unknown system of linearly independent column vectors, which,
together with the linearly independent row vectors of the matrix, form a biorthogonal system.
The above algorithm applies a well-known property of suitably constructed projector matrices
the sum of which is the unit matrix.
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