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In paper [7] the basic set 4 was introduced, in the present paper the
Laplace transformation is defined for the elements of 4, and this is employed
for the solution of differential equations involving distributions. The basic set 4
consists of the finite formal linear combinations of ordinary, sectionally smooth
(infinitely many times differentiable), bounded, complex-valued functions with
one real variable, and of delta elements of the form a6®(x — ¢), where a is an
arbitrary complex, ¢ an arbitrary real number, and k = 0,1, 2, ... An element
from A of this kind is e.g.

plx) + ay d(x — ¢) + a, 09 (x — c),

where p(x) is the corresponding ordinary function. For the elements of basic
set A algebraic and infinitesimal operations were defined, by means of which
the solutions of such ordinary linear differential equations involving distribu-
tions and of systems of equations were produced, where the disturbing function
and the corresponding column vector consist of the elements of set 4.

Let us now consider the linear ordinary differential equation with
constant coefficients involving distributions

P (D)y = flx) 1)
where f(x)€ 4 and
BD)y=D"4a, D"+ . .+ a, Dt oa,.

The solution of differential equation (1) can be produced in case of x >0
also by the help of the Laplace transformation. This method of solution is in
most practical cases even more simple than the classical method. Here a
natural requirement would be the existence of the Laplace transforms of the
ordinary functions in set 4, while the Laplace transforms of the delta elements
are to be defined separately, taking into consideration the operation rules
valid in structure 4.
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Accordingly, the Laplace transforms of the delta elements. considering
the multiplication rule and the integral definition, will he

ol — )2 | 0w — ¢) e dx = [To(x —c) e F dx = 075, 0> 0

Similarly
.\3[6(1) (x — c)] = se7,
and in general

f[é(k) (x — c)] = sk ets, (2)

where = 0.1.2. ... and ¢ > 0.
Thus by performing the Laplace transformation both sides of the dif-
ferential equation involving distributions (1) we obtain for the transforms:

(s" L e e e A a(,)Y(s) = F(s)+ (s" 1+
T )y (0) (T L ey P (0 ) L
c (5 @) 3P0 ) (0 ).
Hence:
F(s) + 6oy ()

B XE

where G, _,(s) is the polynomial of (n — 1)th order, and P,(s) that of nth order
of the differential operator s. The Laplace transforms of the delta elements
arising in f are included in F. It is easy to see that if the derivative of the
highest order of the delta clements is 8 and if k = n — 1, then the funetion
¥{(x) is sectionally continuous, if k = n — 2, then y(x) is continuous. In general,
if k = n — I, then the functions y, Dy, . .. D'"%y will be continuous. Further-
more, if

1. k <n, then y(x) is an ordinary function,
2, k = n, then y(x) D d(x).
3. k=n -+ r, then y(x) D 6" (x).

The great practical advantage of the solution by Laplace transformation
is that the solution is not to be joined at the section boundaries on account
of discontinuities in the disturbing member f and of the delta elements, like
in the classical solution, since the Laplace transform already includes the
joining conditions.

Eg 1. (D+ Ly = H(x) + a(x — 1),
initial condition: y(0-) = 0.
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The Laplace transform of function y(x) is

] ~—3
- €

Y(s) =

1

S .
s+ 1 s s—1"s+1
Upon performing the retransformation,

¥(x) = (1 — e YH(x) — ¢ *""H(x — 1).

Here k = 0, n =1, thatis k = n — 1. accordingly the solution function
is discontinuous,

A1) — y{1—) = 1.
2. (D?* = 3D + 2)y = 10x L 25(x — 3),
initial conditions:

y(0+) = —

-

5 bel 207 v(0L) =5 — et deT

Similarly as in Example 1,

Y(s) =
10 5 - :
—-S:—-‘,-le‘“ (=75 +e =27 s L3 (—T.5 L et — 27 L5 — el 4 de?
s2 + 3s 4+ 2
5 -z -1 902
_5 s . e o 2e 19 1 . 1
52 s s+ 1 s+2 s+ 1 s 2

ylx) = (5x — 7.5 4 €1 — 27272 H(x) -+ 2(e7*+3 — ¢72¥+6) H(x — 3).

Let us consider now differential equation (1) in case where the disturbing
term f{x) is of the form

r(@) + bod(x) + . .. + b6¥(x),

where r(x) is a sectionally smooth and bounded function, accordingly f(x)€A4;
the b; values (i = 1, ..., k) are real or complex constants.
Let the given constants

yO0 =), ¥ =), ... . yV(0—) (1a)

be named the starting values.
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At point 0 itself, no initial conditions can be given, since there the function
v or some of its derivatives are discontinuous, if b; ¢ 0 for at least one 7 value.
Write the solution of differential equation (1) as the sum of two functions

Y=+ Y.

Accordingly let us decompose differential equation (1) to the following two
differential equations:

Pr(D) Y= T(’\‘) (3)
P(D)yrr = bo0(x) + ... + by 0% (x) (4)

The starting values pertaining to differential equations (3) and (4) can be
given as follows:

(0=) = 31 (04) =31(0) =y(0—) . ... .3V (0—) = y¥ (04) =
= yPD(0) = ¥ (0—) (3a)
Y (0—) = ... ¥ (0—) =0 (4a)

Define now function y;; by the equality
=¥ H(x) ©)

where H(x) is the Heaviside unit step function. Hereafter write the expression
for P,(D)y;,. using the operation rules of the structure 4 [T]:

Dy (x) = H(x) Dy; + yi(x) 8(x) = H(x) Dy, (x) + ¥,(0) o(x)

D2 ypy(x) = H(x)D? y (x) -+ y47(0) 6(x) + y,(0) 63)(x)

Dry,,() = Hix) Dy(w) + 32(0) 6a) + 347-2(0) 89(x) +
L (0) 87 (x)
Hence:
P, (D)y;, = Pyo(D) yi(x) H(x) + (379 (0) + a,, 32 (0) + ... +
+ ay1(0)) 8(x) + (51772 (0) + @y p79 (0) + ..+ a,5,(0)) 0D(x) + ... +
+ (51(0) + ap_yx:(0)) 6772 (x) + 5,(0) 6"V (x) . (6)
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According to (3) P,(D)y;H(x) = r(x)H(x). According to definition (5)
vi(x) = vi(x). if x >0 and
yn(0=) =yP0=) = ... =y;," P (—)=0.

Thus, these values are not identical with the values assumed for 0--. These
latter values are determined by the disturbing term in differential equation
(6) involving distributions.

Examine hereafter the differential equation involving distributions

Pr(Dyy = boo(x) + ... 4 b 0% () (7)

which relates to y;;. By considering conditions (1a)
yiu(0—=)=y}0—)=... =50 —)=0. (7a)

A function y;;, can be defined here which is identical with y;; for x> 0 and
satisfies the homogeneous differential equation

P, (D)J‘]ILZ:O (8)

where the initial conditions are given by differential equation (7) involving
distributions and yy;, is continuous for all values of x.

Upon considering the above differential equation (7) involving distributions
can be written in the form

Pn (D) Y= (‘V(PIZD (O) _:" ‘1-,1—1}’3"127) (0) _{' s ":‘ ay ¥ (O)) 5(;13) -+
=B (x(”"" 0) + an—y ¥17Y (0) + ... + @y 377, (0)) 6@ (x) +
+ .. (3(11}u (0) + Qn1Yr11u ( )) 6('1 2 (x) T ¥ (0) 6(n D ( ) (9)

If in differential equation (6) involving distributions k = n—1, that is b,,_,
== 0, and according to (9) y1;4(0) = b,_1, then ¥, is discontinuous at x = 0. If
k = n—2, then y;;is continuous, but Dy,;is already discontinuous at x = 0.
In general, if k= n—r, then y;;, Dy;p..., De—2 11 are continuous, but
Dr-lyu is discontinuous. By the help of the given coefficients b; (i = 0,1, ... k)

the initial values
Yiiu (O) s y(ll}u (0) LRI 3’(1"151) (0)
can be determined, since the distribution

By d() 4 . . . 4 by 6 ()

can be expressed in a single way (see {4]).
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The solution of differential equations (8) and (9) with the given con-
ditions is identical for x > 0.

Let us now return to the original differential equation (1) and try to
determine the solution for x >> 0, if the starting values

y0—), 0 =), ..., ¥ (0 —) (1a)

are given. Define the function

¥y (x) = 35, (%) + y11 (%)

whieh is equal to the function y(x) in case of x >0 and for which the dif-
ferential equation involving distributions

P, (D)y,=r (%) + (b + D0 —) +oa, R0 =) =+
+ a; (0 ) 8(x) + (by + y2(0 =) + ap (O =) +. .. F

+ ay5(0 =) 6D (%) +. . .+ (bpep + ¥V (0 =) + @0y (0 —)) 9077 (%) +
+ (ba—s + (0 —)) 6 (r) (10)

can be written, where r (x) = r(x)H(x).
For (10) the two-sided Laplace transformation can be easily employed,

namely
efo(x)] = [ b(x)e¥dx =1
S[6M(x)] = f 8 () e=5% dx = (—1)F (e=%) { Sk
and if
y1(®)] = Yy(s)
then

()] = s y(#)] = sY(s) »
since y,(x) = y(x)H(x), further

y(x) =y (x) H(x) + y(0) &(x)

and
Ly V()] = Ly(x) H(x)] + ¥ (0) = s&[y(x) H(x)] — ¥(0) + ¥(0) = s€y,(x)].

In general

LB )] = s*Lyy(%)] = s*Yy(s) .




APPLICATION OF THE LAPLACE TRANSFORMATION G-

Thus by performing the Laplace transformation of the differential equation
(10) with distributions

Y;(s)=- 1( — (F(8) + (bo + 520 —) +... 4+ a;¥(0 —)) -+ (b, +

n

+5P0 =)+ a0 =) s o (b (0 —)) ST
From this, by inverse transformation
yilx) = LYy (s)]
Let us now consider the following example:
(D* = 3D + 2)y = 28(x) + 36™(x)
¥(0—) =1, y9(0—) = 2.

Upon rewriting the equation we obtain for the function y;(x) the differential
equation involving distributions

(D2 43D + 2y, = (2 + 2+ 3)8(x) + (3 + 1)8V(x).

By Laplace transformation

1”1(S)=32?T4s‘= j 1

By retransforming
¥il) = 367 4 o7
The solution corresponding to the homogeneous differential equation

(D* + 3D + 2)y; = 0

and calculated by the starting value

y(0—=)=1, P00 —)=2
will be
Yin = de7F — 3e7,

The step caused by the disturbing term at point 0+ is

$10+)—5,0+)=3 and PO +) —»R0O0 +)=—7.
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Consider now this same example without Laplace transformation, by the
direct determination of the distribution solution. The previously given start-
ing values y(0—) = 1 and yP(0—) = 2 can be regarded here also as the final
state of the solution considered in the section — =< << x << 0. Let us now write
the equation in the form

(D* + 3D -+ 2)y = D*(2xH(x) + 3H(x))

from which

(D + 3D + 2)v = (2x + 3)H(x) and y = D

1. Regard first the case x < 0. For this the above differential equation has
the form

(D* = 3D + 2)r = 0

and from this

Taking the final state into consideration we find that

v(0—)=¢;+c¢,=1 and vW0—)=—c; — 2¢c, = 2.

Namely for the case x < 0 we have v = y. By calculating the two constants
from the above equations, the solution for x < 0 is

q,—2x%

y = 4e™* — 3e

2. Regard hereafter the case x > 0. For this the differential equation is found
to be

from which

Constants k, and k, are now determined in such a way that functions v and

" should be continuous at point 0, hence

ki+k =1 and —Fk — 2k, =1,

thus for x >0
v =3¢ — 2e7 L x,

3. Now consider the complete range — oo < x < oc, for which

ve=d4e ¥ -3¢ L (—e™¥ L g™ L x) H(x)
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and from this

y=4e ™ =37 L (—e™¥ L 4e7)H(x).

Summary

In the paper Laplace transformation is defined for the elements of basic set A. and

this is employed for the solution of ordinary constant coefficient linear differential equations
where the elements of 4 are figuring in the disturbing term. The solution process will thus be
more simple than the classical one. The solution is determined for x > 0 also in that case where
the finite formal linear combination of 6()(x), (k= 0,1,..., (n — 1)), is similarly figuring
in the disturbing term and the starting values are given at x = (0—).
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