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1. Introduction

In technical practice, often liquid films are applied to meet various
heat transmission problems, owing to the advantageous thermal and fluid
mechanical properties. Fields of application are. witheut aiming at com-
pleteness. wet cooling towers, industria]l and heat power jet condensers, film
evaporation, various chemical industrial installations, ete.

Despite this widespread application. the fluid and mechanical and ther-
mal properties of liquid films are rather seldom known at a sufficient accuracy.
Namely, the motion of the viscous fluid is described by the Navier— Stokes
differential equation that cannot be solved in its general form. The solution
is known for a few simplified hasic cases then, however, the model described
by the differential equation contains more neglect. If the model approximates
the real case, significant mathematical difficulties have to be faced.

Further difficulties appear if the flow is turbulent. Though with the
introduction of the conception of local mean velocity the Navier—Stokes
differential equation remains valid in form. the so-called turbulent viscosity.,

different from the common material characteristie ©

‘viscosity” may arise.
The former can only be exactly determined from the dimensions of velocity
distribution as a safe theory, yielding correct quantitative description of the
variation of turbulent viscosity.

The velocity distribution of circular pipe flows and flows between tweo
parallel walls is well known from the tests made by N1kvrapze [1], RErcsarDT
[2], thus in these cases safe results for turbulent viscosity have been obtained.
Unfortunately, at the calculation of velocity distribution in liquid films of
very small thickness (at most a few mm) serious technical difficulties appear.

The task is further complicated by the liquid film with a free surface,
permitting complicated interactions between the liquid film and the surround-
ing atmosphere. From fluid mechanical aspects one of the most significant
among them is the mechanical interaction between the film surface and the
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gas or vapour atmosphere resulting in the thickening or thinning of the liquid
film.

A separate chapter in studying of liquid films is the examination of waves
in the free film surface. Without entering into particulars on the wave effect,
let us refer to the relevant measurements by BRAUER [3], stating that the
wave structure changes several times as a function of the Reynolds number
of the liquid film.

Now we do not know functions for the velocity distribution in the liquid
film subject to the outlined interactions either in the laminar or the turbu-
lent region, as against flows in circular pipes or between two parallel walls
upon duly selecting dimensionless form.

The thermal and fluid mechanical problems of the liquid film have
first been dealt with by Nussevrr in 1916 [9]. giving the distribution of velocity
in liquid films for laminar flow with considerable neglect. In his later works.
however, completing his theory, laminar liquid films are only dealt with.
His equations describe the phenomena only qualitatively. and even later,
when the mechanical interaction on the free film surface is taken into con-
sideration.

Research accelerates from the beginning of the 1930-s and several
articles appear on the various kinds of interaction; the turbulent film, the
structure of waves on the free surface, etc. The problem is, however, compli-
cated, so even at present no perfect agreement between theory and practice
can be spoken of.

In the following experiments are described for the approximation of
velocity distribution in liquid films. In this theory, based on test results of
turbulence, no strict distinction is made between laminar and turbulent
regions. The modern turbulence tests — in the first place the ultramicroscopic
tests of FAGE and TowneEND, as well as the works of DEissLER showed that
even in the region of the so-called laminar flow, no laminar flow can be spoken
of in the classical sense of the word. Turbulence occurs in laminar flow, too,
only strongly dampened. Thus the turbulent boundary layer, which, on the
basis of PRANDTL’s work, ean be divided into three zones — laminar, buffer
and turbulent ones — can be regarded as equally turbulent, only the degree
of turbulence differs.

Accordingly the influence of the so-called turbulent viscosity in all
three sections must be taken into consideration. It has been stated above that
at present turbulent viscosity can only be safely determined from velocity
distribution values. In lack of such values turbulent viscosity is approximated
by the flow between two parallel walls. This approximation has proved to be
acceptable.
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2. The velocity distribution equation

The velocity distribution in liquid films, similarly to the flow in circular
pipes or between two parallel walls, can be divided into an nnformed and a
developed section. The velocity distribution in the unformed section strongly
depends on the method of development of the liquid film, thus, on several
parameters, In this zone the rate of the liquid film may increase or decrease,
the film thickness may vary, thus even in the most simple cases the velocity
distribution can only be plotted as a function of two variables, involving great
mathematical difficulties and owing to the many interactions the result will
contain more neglect than that of the developed velocity distribution. In the
following only the developed velocity distribution is dealt with.

The suppositions and neglections of the deduction:

1) the influence of the waves on the film surface is negligible;

2) the velocity distribution has developed;

3) the variation of field of gravity is negligible;

4) the mechanical interaction of the surrounding is replaced by interfacial
shear siress:

5) a Newtonian liquid is involved.

Be the surface supporting the liquid film a vertical, smooth, flat plate.
The datum line x of the co-ordinate system is in the plane of the plate, vertical.
pointing downward. The datum line y is one of the normals to the plane sur-
face. The origin is in a point of the flat plate from where the velocity distribu-
tion can be regarded as developed.

The Newtonian equation of the dynamic viscosity:

This is made valid for the turbulent flow:

= () 2 (@)
dy

where py turbulent dynamic viscosity;
w local mean velocity.
As the liquid does not accelerate (developed velocity distribution) and
the field of gravity can be taken as constant, the distribution of shear strength
in the liquid film is linear. Denote the value of shear stress along the wall
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by 1,, along the free surface by -+ 17; (signs indicating two opposite directions
of the vapour-to-liquid flow).
Shear stress distribution can be written as:

where § is the film thickness.
After substituting 4 = gv and y; = pe, eliminate 7, from the left side
of Eq. (4) and from the right side p. After arrangement:

. Ty

[ Yo 5
P e R IS
K-‘ To o dy 7, ©)

Put this equation in dimensionless form known from the theory of tur-

r—

. . . [T . .
bulent flow. Introducing friction velocity w* = ]r ~% . The dimensionless
- 0
o w . . . yw* -
velocity is u= ——. the dimensionless leng this. 7 = -, Thus, Eq. (5)
w y
will be:
T i e} du
(—_}-_J— 1]——-4-1:(1*——»—_ (6)
7, s v dny
. Fal Ty Tﬁ
Introducing g =1+ —:
g z
7 e ) du -
1—,'5‘—-—-(1+—~—~— (7)
s , v J dn
. . . . duw*
where s dimensionless film thickness 3
¥
€ turbulent kinematic viscosity.

The mechanical interaction between the liquid film and the surrounding
gas or vapour atmosphere let be denoted by 3 eq. For § = 1 the interaction
can be neglected, for § <7 1 the interaction makes the liquid film thinner (d.c.),
for § > 1 the liquid film is made thicker (a.c.).

On the basis of the work by Lix, Mourron, Purnam [6] the e/r value
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with the following three functions can be given to the flow between two
parallel walls:

' 3
for 0<n <35 then g/y = U ] (8)
14.5
5 < 1 << 20 then ¢/y = /5 — 0.959 (9)
| dup
. € 2 | dy
> 2 R e St A N
n 2= 20 then , { Tn !2 (10)
“;d?]’l!

The valid relationship in the first two intervals originate from the authors
mentioned, whilst the third is the result of the similarity hypothesis by Todor
Kirmin.

According to the tests by the authors mentioned the velocity distribution
in the flow in the turbulent core between two parallel walls, calculated on the
basis of the Karmén similarity hypothesis agrees well with the measured
values.

The x is the constant determined from the measurements. Its value can
be assumed as between 0.36 and 0.4. In further dealings it will be taken as 0.4.
Eq. (7) can be solved taking up the value of the /s quotient, — which is the
parameter in the problem - as well as of (8), (9) and (10) separately after
its substitution in (7).

The boundary condition of the problem: the liquid is a Newtonian
liquid (it adheres to the wall) thus on the wall the value of the velocity is zero
(y = 0). In dimensionless form:

for =20 then u=20.

The velocity distribution is built up of 3 functions according to (8), (9)
and (10). It appears reasonably from this that on the boundaries of the validity
regions the velocity distribution is continuous and unbroken.

This requirement at = 20 can be fulfilled forthwith as the differential
equation to be solved in the third section is of second order. However, it can-
not be fulfilled without a residual at 5 = 5. As in the first and second sections
the differential equations to be plotted are first order the continuity condition
can be fulfilled, but the unbrokenness is only in that case where the derivates
of (8) and (9) are equal at 5 = 5. Unfortunately this condition does not ma-
terialize. As the integration of the differential equation for the first and second
section can be carried out in closed form. the break at = 5 in (8) and (9) does
not mean a further mathematical problem.

RES
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3. The solution of the differential equation
of the veloeity distribution

The velocity distribution in the interval is given by the solution of the

differential equation
o - 3
1_(—"—)77=1+(’7Hi11. (11)
s 14.5 dn

The equation is of the divisable type.

After the introduction of the new wvariable x = —% dividing and
5
integrating:
i B
141452 1—14.5 —
i La2 2x —
uw=145 ’ In I+ %) -+ __° arctg ——— IJ—— c
1 —x+x? '3 [
12)

Making use of the boundary condition of the problem — the liquid ad-
heres to the wall — the equation of the velocity distribution in the region
0 < 5 <5, after a few alterations and replacements is

, . \ -
14145 (’—”-] s 1 145 {»—-] }”3_(—71:}
u=14,5 R P 14.5 L ) arctg 14.5
1 [ } I3 5 1
145  |14.5 14.5
(13)

The valid differential equation of velocity distribution in the interval
5 <L 5 < 20 is obtained after the substitution of (9) into (7):

c oo .
1—-‘)—r,=—’7—+0041}111‘~ (14)
LS 5 dn

u=>5 [1 +0.205 (ﬁuln (n + 0.205) — 5 (—3-) nte. (15)
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The condition is that at 1 = 5 the velocity distribution gives a continuous
curve. The substituting value of (13) at 5 = 3 is

w = 4.9474 — 12.2786 {LJ . (16)

v S /

The integrating constant can be determined by equalising (16) and the
substituting the value of (15) at 5 = 5. After arranging in the interval 5 <

g

< 1 < 20, the valid velocity distribution is as follows:

w=35 {1 £ 0.205 {iﬂln (7 - 0.205) - (f-) (11.0306 — 57) — 3.3006. (17)

s s

In the case of 13 > 20 the velocity distribution is obtained from (7) and (11)
which will take the following form:

io?

B fa"?y du

4 f—]y =}1+ 2 .

( s) 7 2l | dy (18)
dif?

In the starting point (7 = 20) of the curve described by (18) both the
substitution value and the gradient of the function was given. At 77 = 20 the
function (17) and its derivatives are identical with their substitutional values.
The value of the derivative of (17) at = 20 is

S

5. 19)

The differential equation (18) cannot be solved in closed form, thus
the velocity distribution in the region 5 >> 20 can only be given by a numerical
process. The Runge—Kutta process has been chosen for this purpose.

The requirement for the applicability of the Runge—Kutta process
(but for almost every numerical process), is that the solving function in the
tested interval fulfills the so-called Lipschitz condition. Therefore, although
physically such a solution can be expected except for the horizontal point of
tangency arising in the case of 5 > 1, a few more important function tests
have been performed.

s
‘},),—5
and this point is at the same time the singular point of the differential equation.

The tests showed that the function has a local maximum at 7 =
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The singular point is the junction of every summation curve. The sumation
s
curves looked at from the 7 = — line are specular (as the result of absolute

value) and cross at the singular point with identical tangents. In the tested
interval the function is comcave throughout from underneath and its value
is greater than zero.

As the singular point cannot be crossed with the above-mentioned proc-
ess, the following method was applied. The singular point could be approached
by the controlling of the step of the Runge—Kutta process, then the part
bevond the singular point was produced by reflection (using the symmetrical
properties of the function).

The otherwise rather tedious calculations were made in an ICT computer
in ICT-ALGOL at the Central Institute of Physical Research. The programming
was done by Ferenc Kolonits (Erfterv), who besides doing the programming
was also of great assistance in the function testing.

4. The determination of the Reynolds number of liquid film

The value of the Reynolds number of the film was also necessary for
the evaluation of the results. The definition of the Reynolds number for
liquid films is: Re = wp, - 8/v where w,, is the average velocity of the film and
d the thickness of the film. As w,,is the velocity distribution of the integrate
centre according to v, the integrating formula of the average making was sub-
stituted in the relationship of the Reynolds number:

Re =

=3 (20)

Jo o Y

Introducing the velocity distribution already known and the new variables
generally applied in the turbulent flows.
R
Re = 8 udn, (21)

0

Thus after the determination of the velocity distribution the value
of the Reynolds number can be obtained by a simple integration. This can be
easily carried out in a function given in grating points, by applying the Simp-
son formula.

5. Results of the calculation
On the basis of the calculations carried out on a few /s values in Fig. 1,

the velocity distribution is formulated in the dimensionless steps used in
the calculations [u = u(s)]. The velocity steps are linear, the longitudinal ones
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Fig. 1. Dimensionless velocity distribution in liquid film for a few 4 parameter values
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Fig. 2. Velocity distribution in Fig. 3. Veloeity distribution in
liguid film in a few cases of Rey- liquid films in a few cases of
nolds number for 8 = 0.8 Reynolds number
(f-z 0.01) for f = l(sﬁzo.m)
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are logarithmic. Fig. I can be used to good advantage for determining the
suitable velocity distribution. However, owing to the scales applied, the velo-
city distribution is shown distortedly. Therefore, in Figs 2, 3 and 4, in the
linear scales some velocity distribution has been formulated in the more

illustrative — “-—‘f('%—] dimensionless form on a few Re and f values on
Wiax
the basis of Fig. 1. In Fig. 5 the relationship between Reynolds number and
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Fig. 5. Relationship between Reynolds number and dimensionless film thickness in case of
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dimensionless film thickness has been plotted in the case of 5 = 1, thus when
the mechanical interaction between the film surface and the flowing gas or
vapour can be neglected. Both axis are logarithmice! It can well be seen from
Fig. 5 that the classical laminar and turbulent films are two clearly distinct
regions. However, these do not meet in one break point, but one curve con-
tinuously bends over into another.

In the literature numerous semi-empirical and clearly empirical con-
nections can be found on the relationship between film thickness and Rey-
nolds number, which show a large scatter. In the following the results of the
calculation are compared with some more reliable results.

On the basis of the Nusselt theory, if Re < 400 then the following
relationship is valid

2Y 1/3
5 — {3” ] - Reli3. (21)
g

Transforming Eq. (21) used in the calculations into dimensionless paces,
then plotting Fig. 5 of it is found that at the value Re < 100 the agreement
is perfect. At Re = 100 the two results begin to deviate. The result of the Nus-
selt theory gives a smaller film thickness than the values calculated by the
author. Alongside the growth of the Reynolds number the deviation increases,
and at Re = 400, which is the critical Revnolds number of the classical theory,
the deviation is already about 309,.

In case of Re >>400 one of the most reliable relationships originates
from BrAUER [3]. Its relationship is empirical:

(3p2 1/

o
5 !

3
5 = 0,302 - ReSAL, (22)

Also after the suitable transformation in Fig. 5, it can be said that the
coincidence between the two relationships in the region 600 < Re < 3000 is
suitable in the first approximation. The average deviation is about 209, and
the two relationships proceed approximately parallel.

The two results begin to markedly deviate at the value Re >> 3000,
but this can be expected, as it is the empirical result of the Brauer theory for-
mula up to Re = 2000.

The coincidence of the results is better than the theoretical results of
Dukrer and BErGELIN [8]. The average deviation is about 15%,. However,
DukrLEr and BERGELIN determined the relationship Re = f(d), too. The
results gave a greater film thickness in the case of Re >>400 than its theoret-
ical results. In the case of Re < 400 the dimensions coincided with the theory.
In the region 100 < Re <7 800 its dimensions coincide perfecily with the
values calculated by the author. The author did not obtain results from
measurements made in the Re > 800 region.



w
-]
o

A. HARMATHA

For Re <7 100 the test and theoretical results of DUKLER and BERGELIN
also coincide with the values calculable from the Nusselt theory.

PENNIE and BELANGER also tested the Re = f(6) function in the region
400 << Re < 3000. Their results gave an essentially larger film thickness than
did the calculation results of the author.

Fig. 5 can also be easily applied for practical calculations if the following
are taken into consideration. In the counter of the Reynolds number the
product w,, + § is the same as in aliquid film 1 m wide, the volume of the falling
liquid during unit time (a special volume rate), easy to be determined.

The dimensionless film, thickness was plotted on the horizontal axis

w*6 V Ty

#*

5= by definition. In the friction velocity relationship ™ =

0
the 1, = pgd substitution is permissible on the basis of the balance of forces,
in the case of 8 = 1. After simplifications

=189 (23)

(23) is a relationship between (4) and the dimensionless film thickness (s)
in meters.
The calculations made show that Fig. 5 can he used not only in the case

8 = 1, but in the whole interval 0.7 < 5 <{ 1.3. The practical error is within

the reading-off accuracy.

Summary

Owing to the interactions on the free film surface, the velocity distribution in liquid
films, cannot be described by one dimensionless function —. as can be done for circular pipe
flows — but with a set of curves, with the interaction as parameter. Neglecting the wave
effect on the film surface, using the turbulent viscosity relationship calculable from the velocity
distribution of flow between two parallel walls, the approximate velocity distribution of the
liquid film can be determined. The arising relationship between Reynolds number and film
thickness coincides well with the results of tests and is suitable for practical calculations. The
results of the turbulence tests suitably meet the “classical” laminar and turbulent regions
not as break points but as continuous curves. This is also supported by the measurements.
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