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Symhols 

'refers to model. 
"indicates the prototype or another model. Quantities without a mperscript 
apply to any member of the turbine family. 
Point on the efficiency diagram, Fig. 1 
Effective lift and urag coefficient of the blade section. respectiwly 
Runner (tip) diamete~ , 
N et energy per unit mass, E = gH 
Function, Eqll. (13) 
Peripheral force coefficient, Equ. (33) 
Function, Equ. (19) 
Kormal value of acceleration due to gravity. m/s2 

Ket head across the turbine. m ~ . ' 
Geometric suction head ab~ve tailwater. m 
Cavitation parameter, k = Pr - p,,/0.5 QV~ 
Constant. K = 6.28/60 sec/min 
Reference point height aboye runner leveL where a pressure Pr prevails 
Hydraulic torque, mkp. For the prototype: the sum of shaft torque and bear­
ing friction, for the model: torque measured by the double-bearing brake 
Unit torque, Jl11 = JrHD3 
Exponents, Equs (24).(26), (23), (29) 
Runner speed, rpm 
Unit runner speed, nu = nDH-o .. 5 

A yalue introduced upon the suggestion by OSTERWALDER, in the exponent 
of the H17TTo:\' formulae, Equs (4.) and (38) 
Specific speed, nq = nQo.5H-o.", n5 = nPO,oH-I.',; 
Pressure in the reference point selected at the blades, kp/l1l~ 
Saturated vapour pressure, kp!m" 
Absolute pressure at the suction side, kp!m2. Atmospheric pressure for the 
prototype, anu reduced pressure for the model 
Power output of turbine, HP 
Reynolds number of the turbine, Re = Df2gH/1' 
Volumetric flow. m 3 's 
Dnit flow, Q11 = QD-" H- 0·5 

Flow at optimum efficiency 
Blade rotation Yelocity, m/s, Fig. 2 
Absolute fluid velocity, m!s 
Relative velocitv of fluid to blade, m's. Fig:. 2 
Assessable friction loss fraction (i.e. that' applicable to scale effect calculations) 
Friction loss fraction of the runner 
Discharge coefficient, x = Q/Q* 
Air-content of fluid 
Angle between relative yelocity and the plane of rotation 
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Dimensionless quantity or that derived therefrom 
Specific weight of fluid, kp/m3 

Dimensionless loss through the turbine, b = 1 - 1) 

Hydraulic loss of the runner 
Hydraulic efficiency, I) = KJJn/QH;) 
Fluid density, kps2jm! 

J!!!...-Hs-~ 
Thoma cavitation number, a = --'---=---'-­

Kinematic viscosity of fluid. 

Introduction 

In the research, design, and operational practice of reaction turbines. 
the determination of corresponding points on the efficiency diagrams of 
different machines is often necessary. For example, when the efficiency and 
cayitation parameters measured 'with the model are scaled up to the prototype, 
corresponding points must be determined on the efficiency diagrams of both 
the prototype and model concerned (Fig. 1). Corresponding points must be 
calculated, furthermore, when the diagrams of measured yalues for the model 
and prototype are ayailable, and the scale effect is to be determined by compar­
ing these diagrams. 

In the determination of corresponding points, such operating conditions 
of the turbines tested are sought for, where, within the turbines flows are 
dynamically similar. In most cases, howeyer, the geometric similarity of the 
flow boundaries does not include roughness and clearance formation, the 
Reynolds numbers of the flows inyolyed also differ and, consequently, the 
turbines tested do not exhibit such operational conditions where the dyuamic 
similarity would he completely satisfied. It can he, therefore, only approxi­
mate which means, in turn, that there are several methods available for the 
calculation of corresponding points, in accordance with the different principles 
followed in approximation. 

In efficiency scaling up, the corresponding points can be characterized 
by the following equations, on the hasis of IEC recommendations [1]: 

J!Iethod No I: n~l = nil, Q~l = Qil (1) 
Some authors suggest the same equations for stepping up the cavitation 

parameter as well [2]. Another method is suggested, however, for both effi­
ciency and cavitation conyersions by NECHLEBA [3, 4·, 5], CRISTAKOV [6], or 
Sl\IIRl\"OV [5], also referred to by HUTTOl\" [7]: 

}'I ethod No I I,' (2) 

SZABO [9] adopts this method with the slight modification of taking into 
consideration in the expression Qn the volumetric efficiency as well which 
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is, obviously, of importance in case of Francis turbines. VAZEILLE [8] suggested 
rather generalized equation for the calculation of Qll' Equs (lh and (2)2 
being only special cases of it. The calculation of corresponding points can be 
performed by further various methods but the majority of professionals 
employs one of the two techniques described above. 

The existence of several methods presents, occasionally, a difficult 
problem of selection. The present paper will discuss, therefore, ,\'hich method 
should be preferred for efficiency and cavitation parameter step up or for 
comparing model and prototype diagrams. In order to restrict the scope of 
investigation only Kaplan turbines will be dealt with although it is quite 

Q;; 

n'11 

Fig. 1. Schematic diagram of model (') and prototype () turbine efficiency. Points correspond­
ing to A" are according to method I: Ai, and according to method II: A'll 

obvious that a number of our statements will generally apply to reaction 
turbines as such. 

The different methods adaptable for the calculation of corresponding 
points lead to results of only slight differences and, therefore, if the operational 
parameters of the machines have to be known only approximately, thcse 
differences may be neglected. If, however, exact calculations arc needed, the 
differences between the individual methods may be of considerable signifi­
cance, as emphasized by NECHLEBA [5]. Let us study, for example, methods 
No I and No II in case of efficiency stepping up. For this purpose, let us 
examine point A" of Fig. 1 where the efficiency is to be determined. Assume 
that the efficiency scaling up is performed by using the OSTERWALDER formula 
based on the HUTTON theory: 

1 - 1]" b" 
---'--- = -- = 1 
1- r/ 6' 

,[ ( Re' )1!11*] V 1- --
Re" 

(3) 

where the V and n* values can be determined according to [10]. According 
to method No I, the point corresponding to A" is Ai while, according to method 
No II, it is AI!' The efficiency measured at points Ai and Ai!' respectively, 
is usually not the same and, consequently, using these two methods will lead 
to different results for the efficiency value at point A". As an example, Fig. 2 
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presents the efficiency values of a tuhular turbine after the data hy OSTER­
WALDER. Around the point of hest efficiency, the outcomes of the two differ­
ent methods show an insignificant difference only, in each case. This may 
be the reason "why the problem of corresponding points did not deserve suffi­
cient attention earlier. Further away from the optimum, however, the differ­
ence may be of an order of magnitude corresponding to the scale effect of 
efficiency. 

In the step up of cavitation parameters, the two methods lead to differ­
ent results again hecause the cayitation numbers measured at points A~ 

g~ 

"7 
92r-~--7-----~--~~~~~--"~--+-~ 

86r-~--+-~---r--r---+--~~--,,·~--~~ 

Fig. 2. Efficiency curves of a tubular turbine, based on the data of Ref [10]. The efficiency 
of the prototype turbine was calculated from that of the Illodel turbine (a) by using Eq. (3) 

and method I, (b), and then with method II, (c) 

and A'II, respectively, are generally different. Comparing the difference to 
the scale effect reflected hy the cavitation parameters calculated, for instance, 
by using the following NEcHLEBA scale effect formula [4]: 

a" 

a' 
(4) 

it may he concluded that the difference is In the order of magnitude of the 
scale effect again, even around the point of best efficiency. Generally, there­
fore, it may be stated that particular attention must he paid to the correct 
selection of the method adopted for the calculation of corresponding points in 
each case wh~re the specified accuracy of the calculation requires to take into 
account the scale effects. 

It follows that, when using a given scale effect formula, the calculation 
of corresponding points must always employ the same method which had been 
used for the determination of the scale effect formula concerned. Thus, for 
example, the HUTTO~ efficiency scale formulae have usually method No I 
associated [I], whereas the NEcHLEBA cavitation scale formula is generally 
connected to method No II [4 J. When using a given scale effect formula, there­
fore, the problem of selecting the method to be adopted can be settled un­
equivocally. 
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Thus the actual problem comists of deciding "which methods should 
be employed for the determination of corresponding points in the further 
development of scale effect formulae as well as in the research thereon. 

In deciding ·which of methods I and II should be adopted, assistance 
may be obtained by knowing what principles would be manifested through 
their respective employment from the viewpoint of approximating the dynamic 
similarity of the flows within the turbines. 

Let us consider two turbines which satisfy the geometric similarity require­
ments given in the lEe recommendations [1]. The operating conditions 
represented by corresponding points on the efficiency diagrams are called 
hence "corresponding operating conditions". Whichever method is used for 
the calculation of corresponding points, in order to ensure geometric similarity 
as far as possible, the runner blade angle should be the same for both turbines 
under corresponding operating conditions. Using the definitive equations of 
n11 Q11 and rJ it is easy to show for the corresponding operating conditions 
determined hy method No I and No II that the following Eqs hold good, 
respectively 

Method No I: 

Q" Q' 
D"2 D'2 H" H' 

n" D" n'D' (nil D"f (n'D')2 
(5) 

Method No II: 

Q" Q' 

D"l D'2 }OI" cH' 

nil D" 11.' D' (nil D")'!. (n'D')2 
(6) 

The methods can be characterized on the basis of these Eqs as follows: 
Although the dynamic similarity cannot be complete, due to the differences 
in Reynolds number, relative roughness, etc., the same ratios of the average 
characteristics of flows giyen ahove may be ensured for both turbines, at least. 
Quantities QID2 and nD are of a yelocity dimension, QID2 is proportional to 
the axial component of the average velocity of the liquid flowing across the 
runner, and nD to the peripheral yelocities. The first equation required by 
both methods for the determination of corresponding operating conditions 
provides for the equality of these velocity proportions, "which can he corre­
lated to the velocity triangles representing the average flow conditions of the 
runner hlades [5, 12], see Fig. 3. The requirement may be interpreted so as 
to ensure the equality of the base to height ratios in these triangles. The differ­
ence between the t .. wo methods is manifested in the second requirements. 
According to method No I, H is proportional to the square of velocity QID2 
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or nD, whereas, according to method No II, NI is proportional to the square 
of the same yelocities. The importance of these proportions can be readily 
realized in the special case when they are replaced by equalities. Let us study, 
therefore, the case when 

D" = D', n" = n' (7) 

apply to the turbines operating under corresponding operating conditions. 
These conditions are encountered also in practice when, for example, 

the effect of Reynolds number variations is tested with the same model turbine, 
but using fluids of different viseosities [10]. Again the scale effect due to rela­
tive roughness yariations can be tested by making certain surfaces of the model 
turbine rougher, and conducting efficiency measurements with the same 
turbine, by using the same yelocity. 

With Eqs (7) satisfied, the laws of proportionality will be reduced to 

equalities: 

Method No I: Q" = Q', H"=H' (8) 

Method No II: Q" = Q', NI" = 1\11' (9) 

Thus, in this special ease, the two methods can be characterized by the fact 
that, in spite of the scale effects, both require equal flows and, in addition, 
method I requires head equality whereas method II the equality of moments. 
If, owing to the scale effects, the efficiencies are unequal due to the scale 
effects then, since the equality of the other variables is ensured, in case of 
method No I the moments, and in case of method No II the heads will be 
different. 

With these considerations known, it can be often decided which method 
leads to the better approximation of dynamically similar flows. Let us study, 
for example, the scale effect due to the variations in the relative roughness 
of the draft tube, with the other turbine parameters kept unchanged. Accord­
ing to the usual approximation in hydraulics, the flows in the individual parts 
of the machine are considered as independent. If, consequently, the reaction 
of the draft tube flow conditions on the flow around the runner is neglected 
then, assuming equal diameter, speed, and discharge, the identical flow con­
ditions at the runner under corresponding operating conditions are ensured 
by the equality of the moments, while the draft tube efficiency variations will 
be manifested by the change in the head. These features are characteristic of 
method II thus, in testing this yery scale effect, method No II can be proposed. 

With the relative roughness of the guide vanes and spiral casing varied, 
similar considerations lead to method II again. With, however, thc roughness 
of the runner blades modified, it would be reasonable to assume that the 
variations were reflected mainly by the moments, and only to a limited extent 
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by the head, whereby method No I might represent a better approxima­
tion. 

A complex situation is encountered, if the Reynolds number of the turbine 
varies since, in this case, the flow will vary in each part of the machine. It is 
reasonable to assume that, with the diameter, speed and flow being constant, 
upon the effect of Reynolds number variations, the shear stress over the 
runner blades will change as reflected by the moments, whereas the variation 
of the hydraulic losses will he manifested in the head. Consequently, in this 
case a third method which takes into consideration both head and torque 
changes will be required. 

The importance of scale effects due to the variation of the Reynolds 
number is reflected by its being taken into consideration in most scale effect 
formulae whereas the effect of, for example, the relative roughness is generally 

neglected. 
This paper has been written in attempt to provide a method adaptable 

in cases characterized hy the variation of the Reynolds number for the calcu­
lation of corresponding points. The definitions of the fundamental concepts 
in scale effect calculations, the general forms of scale effect formulae, and some 
simple assumptions are used to derive even more special formulae leading, 
finally, to the expressions of method No HI suitable for the practical applica­
tion. The numerical values are estimated using the H UTTOl'< loss analysis 
including the test results of FAucol'<l'<ET [5] and the results published hy 
OSTERWALDER [10]. 

Scale effects 

The theory of scale effect on water turhines is hased on some traditional 
aspects and fundamental laws involving also their definition [12], [13]. 
Some of these will be reviewed here briefly hecause of their close connection 
to the concept of corresponding points. 

From industrial aspects, one of the most important discoveries in the 
theory of hydraulic machines was the determination of the laws of hydraulic 
similarity whereupon the characteristics nIl' Qn were then introduced. During 
the initial stage of development, the n ll - Q11 - 17 diagrams were considered 
as applicahle to the entire family of the geometrically similar turbines, and 
to all head. At this stage of approximation, the corresponding operating con­
ditions of similar turhines may by characterized by the fact that all the 
dimensionless variahles ohtained from the main characteristics of operating 
conditions, that is, from variahles D, '1, n, Q, NI, E, for example 

Q KnlVf 

QEQ 

Q nQo.; 

nD3' EO.,; 
(10) 
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are constant, while the head and the diameter vary [12]. \Vith the equation 
E = gH taken into consideration the row designed as (10) reveals all the 1111' 

Qw 1\111' ... variables as multiplied by the different powers of the accelera­
tion due to gravity. The characteristics which can be obtained from dimen­
sionless quantities hy multiplication by universal constants having dimensions 
are hence called "characteristics derived from dimensionless quantities". 
The law referred to ahove apply to the derived characteristics as well, wherehy, 
expressing it with the characteristics used in practice, the corresponding operat­
ing conditions are characterized in this stage of approximation hy 

1111 = const., Qll = const., -,vIn = const., '17 = const, ... (11) 

The recognition that the efficiency of larger turhines is generally higher 
has led to efficiency scaling up. In this stage of approximation, the 71u - Qll-17 
diagrams apply only to cases of a given diameter and head, and for another 
head or diameter they must he scaled up. Efficiency changes, however, necessa­
rily result in variations of the other characteristic quantities as "well. The 
following relation holds, for example: 

(12) 

where J( is constant, and therefore, the efficiency variation will lead to a simul­

taneous change in at least one of the quantities 7111' Qu and JIn' 
Papcrs concerning scale effects often present such a definition of the 

scale effects on efficiency 'where the prohlem reprcsented hy the variation of 
the latter characteristics is left unsolved. From practical aspects, these defini­
tions may he regarded as deficient since, as dcmonstrated ahove, the efficiency 
of the prototype cannot he calculated unequivocally without the determination 
of the 71U and Qu variations. "When defining scale effects, it is reasonable 
therefore to consider all characteristics. 

As the hasis of the scale effect theory on water turbines, the laws express­
ing the constancy of the dimemionless quantities deriyed from the main 
characteristics of the operating conditions as well as the invariability of the 
quantities deriyed therefrom by multiplication of constants with dimensions 
are accepted here. The scale effects are the deyiations from these laws which 
means that the variation of any such characteristic value represents a scale 
effect. The numerical expressions of the scale effects are called scale formulae, 
thus Eq. (2) are the formulae of the I1U and Qn scale effects. 

By such an interpretation of the scale effects, the calculation of cone­
sronding points requires two scale formulae. For example, 'v"hen using the 
1lu - Q11 - 17 diagrams, the 1lu and Qll scale effect formulae are needed. 
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In order to calculate the efficiency of the prototype turbine unequivocally, 
three scale formulae: those of 1111' Q11 and 1] are required. It is easy to show 
that the dimensionless characteristics derived from the main characteristics 
of the operating condition as well as those derived therefrom can all be expre8sed 
in function of 1111' Q11 and 17, for example 1\1111 from Eq. (12). Consequently, 
the scale effect formulae of all the quantities in cluestion can be determined 

from those of 11 11, Qll' and 17. 
The series of dimensionless characteristics can be completed with othcr 

variables as well. Including the Thoma cavitation number (0-) here, the funda­
mental law of the cavitation scale effect theory -will be the equation expressing 
the invariability of sigma, in conformity with the above definition. This is 
the well-kno'wn law of similarity introduced by THo'.\LL The cavitation scale 
effects are actually the variations of sigma as interpreted, among others, by 
HOLL and W-ISLICE:\""("S [13]. Simultaneously to the efficiency variations, 
sigma will also reflect a scale effect according to NECHLEBA [4]. For unequi­
vocal cavitation scaling up, the scale effect formulae of 1111' Qll' and 8igma are 
required. 

In our investigations, the scale effects were interpreted only for dim en­
sionles8 characteristics, and for thosc derived therefrom. This is quite suitable 
for pratical purposes 8iuce the quantities with dimensions can be calculated 
from their dimensionless ratios. 

The concept of scale effccts covers, furthermore, the determination of 
the reasons they might be attributed to. Originally, the term scale effect was 
used to indicate the effects due to the variation of the characteristic length 
of the machine. Later on, ho\\-eve1', the meaning of this expression was modi­
fied. Scale effects may he due to any variation of the flo,,' conditions within 
the turbine, Yihich is usually characterized by a dimensionless factor. The 
permissible differences from geometrical similarity between prototype and 
model, as far as the shape of the flow houndaries, their surface roughne8s, and 
the size of the clearances are concerned, are determined by IEC specifications 
[1]. Geometric similarity is understood here as that within these limitations. 
In addition, the most important dimensionles8 characteristics typical of the 
flow conditions are the Reynolds numher, and, for cavitation step up the 
Froude number and the air content. Accordingly, variations in the turbine 
head and fluid quality (viscosity, air content) cause scale effects even if the 
geometric scale does not vary [13]. 

General scale formulae 

Let us consider a turbine family which consists of geometrically similar 
turbines, and an optional quantity .J, the scale effect of which will be inves-
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tigated. It may be for example 1], or one of the characteristic cavitation numbers. 
Then the general scale formula for .:1 is: 

/1" F' (/11 ' Q'. R " R' ", ) LJ = A LJ ,nu, u' e, e,e ,e, ... (13 ) 

'where LI" and Ll' regard t·wo members of the turbine family, respectively. 
The variables nib Qi1 are introduced in function FA to offer an opportunity 
for the calculation of the scale effects in different ways at different points of 
the nil - Qil - 1')' diagram, and the variables Re, e, ... , represent the Reynolds 
number, ;relative roughness, and all the factors characteristic of the variation 
of flow conditions in the members of the turbine family. As an example, 
Eq. (3) multiplied by b' may be referred to, representing a scale formula for 0, 
depending on nIl, Qil? since V is a function of Qi1. 

On the same line of reasoning, the general scale formulae for the calcu­
lation of the corresponding points are of the following form: 

" F (' Q'. R " R' ", ) nu = n nu, 11 , e, e, e , e , ... 

Q" F (' Q'. R " R' ", ) 11 = Q nIl' 11' e, e, e , e , ... (14) 

For a complete scaling up of LI, all the three functions FJ, F Il , F Q are 
to be kno·wn. 

For simplicity the scaling up of .:1', nil' Qi1 pertaining to the turbine 
characterized by Re', e', ... , resulted in LI", n~h Q~l for the turbine of Re", 
e", ... will be indicated by the symbol LI', nil' Qi1 -+ Ll", n;l, Q~l. Only special 
functions are suitable for scaling up, since some logical requirements should 
be satisfied as follows: 

(i) If the flow conditions are the same for both turbines, that is: Re" = 

R '" / h ,I" A'" 'Q" Q' = e, e = e, ... , t en LJ = LJ , nIl = nu, 11 = n. 
(ii) In case of two turbines considered, if scaling up one to the other 

and the latter to the original gives the quantities 

Re', e', ... Re", e", 

then 
, CQ')* Q' n11 , 11 = 11· 

(iii) Wnen. three turbines are examined with the following stepping up 
calculations: 

then 

Re', el, ... Re",e", ... Re lll
, e"', ... 

Ll" , -+ LJ ,n11 , 11 -+ LI , n11 , 11 

{ 

.1"" Q" Am", Qm 

/ ,nU ,Q11 ;..(Ll"')*,(n:iD*,(Q;l)* 

(;flll)* _ ;t/If (n"')* _ III (Q"')* _ Q'" 
LJ -LJ, 11 -nn' 11 - 11 
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By analogy to the equivalencies frequently used in mathematics the 
above relations could be referred to as the scaling up of J and the calculation 
of the corresponding points are: (i) reflexive, (ii) symmetrical, (iii) transitive. 

These requirements could be expressed by the functions Fd , Fn and FQ 
for example the transitivity means for Fm that 

F n (n~l' Q~; Re"', Re', . .. ) -:- F n (Fn (n~l' Q~; Re'", Re'; . .. ), 

F ( ' Q' R" R ' ). R "' R " ) Q nn' 11 ; e, e,..., e, e, ... (15) 

and similar relations hold for F Q and F d too. 
Using functional equations such as Eq. (15), or the relationships gh'en 

above, all scale formulae could be checked with respect to the requirements 
(i), (ii) and (iii). It is easy to show that the basic equations of method :;\0 I 
and No II satisfy all of these requirements. However, one of the most popular 
efficiency scale formulae, that of HUTTOl'dor the best efficiency, recommend­
ed by the lEe too [1]: 

- = 0.3 + 0.7 --
15" ( Re' )0.2 
15' Re" 

(16) 

fails symmetry and transltrnty. The lack of symmetry is not inconvenient 
in practice, since always the results measured under the smaller Reynolds 
number are scaled up to the turbine of the higher Reynolds number. Missing 
the transitivity, however, has essential consequences. Let us consider, for 
example, two model turbines 'with the Reynolds numbers Re', Re", respec­
tively, for which Re"/Re' = 10 and by using Eq. (16) b"/b' = 0.741, and a 
prototype of the Reynolds number Reil!, Re"'/Re" = 10, Re'"IRe' = 100. 
Applying Eq. (16) tv,-:ice 

(6'")* = 15' 0.3 ~ (~)0'21 0., . 
Reil' 

0.57815' 

15'" /)"·0.741 = ;y. 0.74P = 0.548 /)' 

Since the values obtained are different, the efficiency of prototype depends on the 
Reynolds number of the model used for the basis of scaling up calculations. With the intention 
to eliminate this uncertainty a transformation of the HUTTON formula could be applied. 
For every turbine family a model will be pointed out, the values Re*. e* • ... characterizing 
the flow conditions in it are called the "normal" parameters. Every full-scale efficiency "ill 
be calculated from the data of the model of these normal parameters with the formula 

_15_ = 0.3 + 0.7 ( Re* )0,2 
15* Re 

(17) 
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It could be reasonable to use the same values for Re" as had been applied ordinarily for the 
model tests on which the formula is based. For a couple of turbines this gives: 

0.3 0.7 [Re* ) (I.~ 1 0.7 (Re* r~ 
b" Re" , 0.3 Re" 

(18) -

0.7 ( ~:: r2 

~'.: (~:': rz 0' 0.3 1 

This scale formula, derived from the HrTTox one, is similar to that introduced by 
:'IcDoxALD [5]. It satisfies 'reflexivity, symmetry, and transitivity. As revealed by the nume;­
ieal values given above, the difference between the full-scale efficiencies calculated from the 
test results of' different model turbines by the HrTTox formula is not significant, consequently, 
the difference between the results offered b',- the HrTTox formula and the latter one is in 
most case negligible. For practical calculati~ns the original HrTTox formula is better. For 
theoretical considerations, however, Eq. (18) seems to be more suitable. 

"\\'ith normal value:;: fixed, the general forms of the scale formulae can 
be simplified. Calculating thc values of .d, 1111' Qll from the test results of the 

normal model turbine at the point nil' Q~\ given on its diagram, the normal 
parameters, being constants, can he omitted from Eq. (13) and (14). Thus 

L1 =f,j(nii, Q{i;Re, e, ... ), 

nil = fr, (~~, QJ; Re, e .... ) , (19) 

Qll fQ (71{~, QJ: Re, e, ... ) . 

At a given point 11i;, Qi;, the values of .d, llIl' Qll are the functions of 
the variables, Re, e, ... only, in accordance 'with the general scale formula 
given by CO:UOLET [11]. In case of different turbine families, the models of 
'which are not geometrically similar, functions j.1' j,,, fQ may be naturally 
different. 

Scale effects due to Reynolds numher changes 

If nothing hut the Reynolds numher of the turbine varies, that is, if 
the other scale effects arc neglected, and the hasic formulae of the efficiency 
scaling up are considercd at a point nii, Qil given in the efficiency diagram 
of the normal model turbine, then all variahles hut thc Reynolds number 
may be omitted from the general scale formulae (Eq. (19»: 

1111 =f" (Re), Qll=fo(Re), 1=fYj(Re). (20) 

Function f'l will not bc dealt with here but regarded as known SlIlce it may 
he calculated, for example, from Eq. (17). It ,,-ill only be assumed that function 
f1) is increasing with Reynolds numher increasing. This applies to all efficien­
cies obtained from the kno'wn efficiency scale formulae. It follows that there 
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exists an inverse function of J'i and, consequently, nu and Qll can be expressed 
as the functions of 17: 

Applying these functions to a couple of turbines 

gn (1]"). 

gn (I}') 
Q~ 

Q~ 

gQ (1)") 

gQ (1]') 

(21 ) 

(22) 

These equations reveal the general form of the basic equations of methods 
I and H. Our reasoning thus verified that, if nothing but the Reynolds number 
variation is reckoned with, then the basic formulae suitable for the calculation 
of corresponding points can always be written in function of 1]. 

The function in Eq. (22) can be simplified by approximation. Let us 
assume that functions gn and gQ can be expanded into a power series: 

11 , _ dgn (' " ') r nu - nu - -;z;;- 17 - 1] I'" , . .. (23) 

Scale effects are usually small. For this reason, the square and higher powers 
of (Ti" -1]') can be neglected in first approximation. They are already omitted 
in Eq. (23). Introducing the quantities 

dgn 1]' dgQ 1( 
1nn == -- -,- , 11lQ 

d17 nu d1] Q~l 
(24) 

will lead to the following form of Eq. (~') . ........ . 

" I 1)" - 17 I Q" Q' 1]" - 1]' nu - nu 
= 111 n 

11 - 11 
=111Q , 

1]' Q~l 17' nu 
(25) 

These represent the first approximations of the following po,.,,-er functions: 

(26) 

The derivation of these equations does not involve any hydraulic assumptions 
and, therefore, they may be considered as the general formulae of the calcula­
tion of corresponding points in case of Reynolds number variations. The for­
mulae of method I are the special cases of Eq. (26): 111n = 0, 111Q = 0, while 
the formulae of method Hare 111" = 0.5 and 111Q = 0.5. In the general formula, 

4 Periodica Polytechnica ~! 13/1. 
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mn and mQ may differ for the various turbine families, and depend on at 
which point of the n{l - Q{l - r)' diagram was the corresponding point deter­
mined. Thus for the efficiency scaling up at a given point, in case of a given 
turbine family, the f~ formula and two constants (mn, mQ) are required. 

Calculation of the exponents mll and mQ for Kaplan turbines 

For convenience the m ll and mQ exponents are calculated for Kaplan 
turbines in the special case corresponding to Eq. (7) when two turbines of 
identical diameter and speed are examined, with only their Reynolds numbers 
being different. From practical aspects, this may be considered as operating 
the same turbine with, however, different viscosity fluid like, for example, 
in the OSTERlYALDER experiments [10]. 

It is the first assumption for the corresponding operating conditions, that 

Q" = Q' (27) 

Methods I and II have also applied this assumption. Here, however, 
neither head nor torque equality is required but another hydraulic assumption 
will be specified imtead. First, hO'wever, the consequences of Eq. (27) are 
discussed. On the basis of Eq. (7): Q~lIQ~l = n~l/T!~l and, therefrom, it is ob­
tained for the expon~nts in Eq. (26) that 

(28) 

wherefrom, in turn, the formulae adaptable for the calculation of correspond­
ing points are: 

= (~': r Q~l = ( :.': )m 
Qu '7 

(29) 

Exponent m is in close connection with the head and torque variations. Taking 
into consideration that diameter, speed, and flow are identical for both tur­
bines, the follo,~ing equations apply to the first aproximation: 

1 H" H' r/' - r( 1\11" - 11I' 

M' 

H"-H' 

2 H' 

and using Eq. (25): 

H"-H' 

H' 
= (- 2m) -'---'­

II' 

H' 

AI" - 111' 17" - 1( 
---- = (1 - 2m) -'---"--

111' 1]' 

(30) 

(31) 
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According to Eq. (30)2' the relative efficiency variation consists of two parts: 
the relative changes of head and of torque. Their ratio is shown by Eq. (31): 
a part of 2m is due to head variation, and a part of (1-2 m) can be attributed 
to torque changes. This actually, illustrates the meaning of exponent m. 

It will be noted here that a further simple hydraulic assumption and Eq. (25) permit 
the determination of some bounds for exponent m. In the various hydraulic structures (pipes, 
elbows, etc.), reduction of the Reynolds number at the same average flow rate usually has 
two consequences: (i) the flow losses and, (ii) the shear stresses on the flow boundaries ,~ill 

·increase. Assuming that this law applies to the corresponding operating conditions of the 
turbines, then, with the Reynolds number reduced, (i) the head required for the production of 
the same volumetric flow would be higher and, (ii) due to the increased shear stresses acting 
on the blades, the torque would he lower. It follows that I) will similarly decrease and, thereby, 
the above equations render for the exponent m that 

0;;;;; m;;;;; 0.5 

Thus methods Xo I (m = 0) and II (m = 0 . .5) represent the two extreme cases. 

!3 R:v" 
Fig. 3. Runner blade velocity diagram from Ref [5] 

For the determination of exponent m another hydraulic assumption can 
be adapted. For this purpose, the runner blade velocity diagram of HUTTO:X'S 

'well-known paper [5] must be referred to which represents the average con­
ditions on the blading (Fig. 3). No'w the incidence angle of the relative velocity 
is assumed to be the same for the two turbines under the corresponding 
operating conditions: 

{J" = fJ' = {J (32) 

It is the basic idea of this assumption that in the blade cascade theory the 
average velocity corresponds to that at "infinity", whereby this condition 
provides for an identical direction for the velocity of "representative blade 
cascade" of the t·wo turbines at infinity. 

The assumption according to (32) may be characterized by its providing, 
together 'with our previous assumptions involving equal diameter, speed, and 
volumetric flow values, for congruent average runner velocity triangles. 

Now the torque variation will be estimated on the basis of our hitherto 
assumptions. According to Fig. 3, the peripheral force coefficient for either 
of the two turbines IS: 

(33) 

4* 
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and, therefore, 

~~~ - CL) sin [3- (CD - C~) cos /3 

C~ sin /J C~ cos f3 
(34) 

Variation of the Reynolde number has, in the flow around the profiles under 
invariable incidence angle conditions, a number of different consequences: 
variations of the boundary layer thickness lead to changes in thp average 
rate of the flow yelocity outside the boundary layer and, at the trailing edges 
of the profileE, the theoretical rear stagnation point will be displaced [12]. 
Although these effects ought to he anal yzed in detail, in scale effect calculations 
they are usually neglected [5, 10], and the flow outside the houndary layer 
is consideTf·d as invariable. In conformity to this assumption, 

(35) 

is accepted. Factor CD can be expressed, according to the analy:ois hy H UTTON 
[5], with the runner losses bI/: 

(36) 

whereby the torque change will he: 

J1" - J1' cos fJ 
C~ sin f3 C~ cos p 

(37) 

Loss variations, on the other hand, can he calculated from the follo"ling 
equations: 

/)" = 1- V[l - (l~)+'-l 
/)' Re" 

(38) 

/)'R-/)R 
/)" /)' 

(39) 

Eq. (38) haye a value of n* = 5 in HUTToN's paper [5]. Here, they have been 
given a general form as suggested by OSTERWALDER [10]. Eq. (39) reveals 
that n* had been excluded from the calculation and, therefore, the derivation 
applies to any arbitrary n* value. Comparing Eqs (31) and (37), then substitut­
ing the expression of Eq. (39), the value of m will be: 
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m (40) 

The quantItIes of Eq. (34) are given by HUTTO:'l' in the function x = Q'/Q;'. 
where Q~ pertains to the optimum efficiency (Ref [5], Figs 5, 6, and 7). Thus, 
by assuming that the value of cos ,3 = 0.96, exponent m can be determined 
for an average efficiency curve calculated from Fig. 5 in [5] also sho"wn here 
in Fig. 4. The values thus obtained are presented in Fig. 4. In addition, this 
figure illustrates the values calculated from the test results obtained by 
Fauconnet (see the Discussion on [5]) and from the test data published by 

71% 9°1-"~ ---.. _-- --_ .. ---, 
80 - -- .... _-- --_ .... - - .. -----rr 

, '-m = 0,5, i1e;r;od No f! 
'Tl 

nu 
.. , 0,15 x, Nelhod NoI!l. 

Hulton .. Fauconnel i1l=o',B 
0,3 - Hutton .. Fauconnel i1l=0'9 

Q21--' 0,1, 
0, ~~~ ---------

! ! 

0, 0,,5 

= 0,; Method No 1. 

x =Q;,/Q;I' 
1.5 2 2,5 

Fig. 4. The model efficieneie, a,..~umed for the calculation of m, according to [5], and the value 
of exponent 1ll in function of the discharge ratio 

OSTERWALDER [10], Fig. 6. The character of the curves thus plotted is iden­
tical. Their differences may be attributed to the fact that these authors tested 
different turbine families. A mean value can be obtained by making use of 
the straight line plottcd in the same figure, whereby the values of exponent 
m can be estimated for any Kaplan turbine family. Accordingly, the fundamen­
tal formulae of the new method are: 

.. Method No Ill: 

=I~)m, 
try 

Q~l (~)m 
Q11 I) 

Q' (41) 
m = 0.15x, x 

Q~ 

Some numerical values deserve mention. At the point of best efficiency 
(x = 1), Eq. (41) renders m = 0.15 which means, according to Eqs (31), that 
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30 per cent of the efficiency variations are due to head variation, and 70 per 
cent to torque changes. In case of large discharge rates for x = 2 the opposite 
situation ,,,ill exist as now m = 0.3 and consequently, the respective percent­
ages of head and torque will be 60 and 40 per cent. 

Efficiency scale effect calculations 

In case of Kaplan turbines, when the efficiency scale effects are examined, 
the calculation of corresponding points for the solution of both scaling up and 
comparison problems is best performed, according to the above analysis, by 
using method No HI. Although the HUTTON efficiency scale formulae were 
employed earlier with method I, their employment may be suggested when 
ming method IH as well. It seems that the basic assumptions accepted for 
the derivation of these formulae [5, 10] approximate much closer the assump­
tions adopted in the derivation of method IH than the relationships in the 
application of method I. It should be noted, however, that in case of smaller 
discharge ratios the difference hetween the results obtained by any of the 
two methods, are negligible. 

In case of Francis turbines, if by the determination of corresponding 
operating conditions it is intended to follow the principles of the above analysis, 
that is, to consider the flow outside the boundary layer as invariable with the 
Reynolds number varied, and to take only the changes within the houndary 
layer into account, then the condition of the above analysis as specified hy 
Eg. (27) will already have to he doubted. Due to the variation of the boundary 
layer thickness, the flow outside it can be invariable within the narrow ducts 
of the runner only if the volumetric flow ·would also vary. Thus, in case of 
Francis turbines, all that is known about the calculation of corresponding 
points by this theory is its following Eq. (26). For the determination of the 
values of exponents mn and 11lQ, however, is no Hlitable loss analysis available. 

Cavitation scale effect calculation 

If the incipient cavitation number measured hy means of a model or 
that pertaining to efficiency breakdown are to be converted for the prototype 
turbine then, because of the Reynolds and Froude number variations and 
other factors such as the effect of air content, certain scale effects must be 
reckoned with. Let us examine first the cavitation scale effect due to Reynolds 
number variations. This can be calculated by using the NECHLEBA formula 
(Eq. (4)), applied together with method H. Cavitation scale effect calculations 
however, are based again on the assumption that the flow conditions outside 
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the boundary layer do not vary. For this reason, it is much better to use method 
HI for the calculation of corresponding points. Following NECHLEBA'S deri­
vation [4] reveals that he employed the equations of method No II only in 
the last step. Performing this with an arbitrary exponent m, the NECHLEBA 
formula will assume the follo"wing form: 

~_ = ( Q~l ) 2 = (!L....)2m 
a' Q~ rj' 

(42) 

This formula applies to Kaplan turbines, and should employ the m-value occa­
sionally selected for the calculation of corresponding points. 

Author has suggested two further scale effect formulae for stepping 
up the cavitation parameters of Kaplan turbines, similarly by making use 
of method No II [16]. As done with the NECHLEBA formula, these also can be 
modified for method No Ill. The formulae thus transformed are: 

a" + 1 = (a' 

_a_"_:_I_ = (_Q_~l )2 = (_1]_" )2m 
a' 1 Q~l 1]' 

1/'1 
V --(k' - kIf) _r_ 

2gH" 

( 43) 

(44) 

Eq. (43) applies to the scale effect due to Reynolds number variations, 
that is, it may be used for the same purpose as served hy the NECHLEBA 
formula. It is obtained by modifying one of the assumptions in the derivation 
of the NECHLEBA formula (16). It seems that in case of turbines with a lower 
head the employment of the latter formula is much more reasonable, partic­
ularly as it renders a higher sigma value for the prototype than that offered 
by Eq. (42) and, therefore, its application provides for a much higher safety. 

Eq. (44) is a general cavitation scale formula where the first member 
indicates the NECHLEBA scale effect due to the variation of the Reynolds 
number, the second one represents the correction given by the difference of 
the Froude numbers, and the third member reflects the other scale effects, 
such as the influence of the Reynolds number on bubble formation or the 
effect of air entrained by the water. The application of method III permits 
to treat the latter scale effects like those encountered with the blade cascades 
of constant incidence angle. That is why this member includes the cavitation 
coefficient k expressing the local cavitation flow conditions of the runner blade 
lattice as against the sigma cavitation number characteristic of the cavitation 
conditions of the machine proper. It deserves mention as an example that, 
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on the basis of the well-known scale effect formula by SH2IlUGLIAKOV, the 
influence of the air content on the (k' - k") factor can be estimated [14] 
as follows: 

k'-k"= 6 (]I~ ]lx
n

) 

-!-I-n~-~-r H' - H" (45) 

Thus, when stepping up the incipient cavitation number of hlade caVI­
tation, the adaptation of method III and of Eqs (44) as well as (45) can be 
suggested. When, on the other hand, converting the cavitation number charac­
teristic of the efficiency hreakdown, the effect of air content may be neglected 
according to YUSKOVIC [15] and, consequently, the approximation k' - k" = (} 

may be employed. An objective of cavitation scale effect research may be in 
the next future to find a more accurate approximation for the k' - k" value. 

Application for the calculation of scale effect on specific speed 

Problems concerning specific speed were discussed hy J ONES [16], 
BARR [17], BOREL [18], and others in various respects. As a corollary of above 
considerations scale formulae can be deduced for the specific speeds too. Using 
one of the three methods discussed in this paper for the determination of corre­
sponding points, it can be shown that the specific speed values of two turbines 
of the same family calculated at corresponding points satisfy the following 
relationships: 

nil 
-q-

n~ 
(46) 

(47) 

Thus method No I (m = 0) offers no scale effect on nq, but it does on ns. 
Using the other methods, however, scale effects on both nq and ns are to be 
reckoned ",ith. 

Summary 

Scaling up the efficiency and cavitation parameters, or the comparison of their measured 
values is performed at the corresponding points of the prototype and model turbine efficiency 
diagrams. Of the several methods known for the calculation of corresponding points, two is 
discussed here. Method No I: nu and Qu are constants, method No Il: nu and Qu are pro­
portional to the square root of the efficiency. For the discussion of the scale effect due to Rey­
nolds number changes, however, a third method is required. Following the definition of the 
turbine scale effects, and the derivation of the general forms of scale effect formulae, those 
of method No III will be determined on the basis of the HUTTO!S loss analysis, and the test 
results obtained by FAucoN!SET and OSTERWALDER. 
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