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1. Origins of the dynamiec load

Requirements for aircraft design specify flying conditions for designing
each part of the aircraft (wing, fuselage etc.). Earlier, and even now, the so
specified service loads were applied to an aircraft assumed rigid: and, if the
active forces were not in equilibrium. the balance was restored by inertia
forces. This means that the load was considered to be static (or better pseudo-
static, in view of the inertia forces).

An aircraft, however, is an elastic structure. If rapidly applied external
forces are acting on such a structure, the mass particles of the structure will
get into vibration, in addition to the translation and rotation, i.e. rigid body
motions of the structure. The inertia forces from this vibration will result in
dynamic load, the magnitude of which will depend upon the relation of the
vibration characteristics of the strueture (eigenfrequencies, mode shapes) and
the time history of the external forces.

With aircraft wings, particularly in earlier times, it was unnecessary to
take into consideration the dynamic load, owing to its small value. When,
however, the safety factor was reduced gradually from the original value of
2 to 1.8 and then to 1.5 (accompanied by a relative decrease of the aireraft
rigidity), and, at the same time, more and more slender wings were applied,
for instance, on transport aircrafts, to increase the range, the importance of
dynamic load has grown markedly.

The impact on the ground in landing and the gust in flight produce an
extremely rapidly (within a few tenths of the second) increasing impulse load
of considerable dynamic effect, whereas manoeuvre flight, for instance, can be
taken as a slow process, producing only “static™ load.

The slender wing of the big transport aircrafts, with rear-mounted engines
(at the end of the fuselage) receiving its ultimate load mainly from the gust
should be examined by all means for dynamic load from the gust; while the
multi-engined, slender-winged bomber or transport aircrafts, as well as the
fighter type aircrafts with wingtip tank, or tandem landing gear (attached to
the fuselage) will meet danger first of all in the dynamic load from landing.
With sailplanes both types of load are considerable because of their much
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greater wing aspect ratio — compared to other airerafts — and their landing
wheel attached to the fuselage.

The following investigation of dynamic wing loads will be restricted to
straight (other than swept back) wings; and only the flexural vibration of the
wing will be considered, taken as a linear vibration. The wing being flexible, it
forms a dynamic system of infinite number of degrees of freedom; its general
flexural vibration can be produced from the superposition of the individual
eigenvibrations. In each eigenvibration the wing can be considered as a system
with one degree of freedom; therefore, as an introduetion, the dynamic load
on a system with one degree of freedom will be shortly summarized.

7t
104+ — ——

M
Pit)= Py FIt]

T
i
i
i

(LT rrs /( s

ez
O—-——X———-—b-

Fig, 1. Dynamic load on a one degree of freedom system

The displacement of mass M of a system with one degree of freedom,
(Fig. 1) due to force P(t) = P, F(t) at time ¢ with initial conditions: x(0) = 0
and x(0) = 0, will be given by the known formula [1]:

1
Pmax .
= 22 | B(7) sine (t — ) dT.
x ij (7) sin (¢ — 7)
(1]

For a “static” load P, F(t), the displacement (for the same ¢ value)
would be:
Lgp == CPmax F(t) .

The inertia force producing the dynamic load can be expressed as:

Xst

D(t) = ﬁ:’c‘—_ = Pmax E(t)a

where

)=« fF(r) sino(t — 7)dv — F(3). (1)

Spring design requires the highest value of the overall load: T(¢)=
= P(t) -+ D().
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As to the aircraft wing, its general flexural vibration isgiven, asmentioned,
by the superposition of the eigenvibrations. Since the wing load is symmetrical
as a rule, only the symmetrical eigenvibrations must be taken into consider-
ation.

The amplitude change of the ith eigenvibration along the wing span
can be written as:

¥ilz) = n,(s) - H;

where 7,(z) is the mode shape normalized for unit amplitude of the wing section
in the symmetry plane, the so-called root section, while H; is the factor expressing
the real displacement of the root section.

72

Fig. 2. Normalized mode shape of the first eigenvibration

Owing to the equilibrium of the inertia forces during the vibration of
the wing, the aircraft represents afree system, i.e. its centre of gravity remains
fixed in space, so that:

15 /2

}‘ ~m(z) yi(z)dz=0= :2 m(z)n(z)dz (1=1,2,3...), )

-8 /2

where m(z) is the specific mass (referred to unit length) along the wing span

Fig. 2 shows the normalized mode shape of the first eigenvibration.

The transient stresses of the wing caused by the impact force are examined
by the method of Wirrtams [2]. According to this method the stresses on the
rigid wing are calculated segregately and to these, the dynamic stresses arising
from the vibrations will be added. The quickly convergent method of Wirriams
gives a better result than most of the other methods do. if, as in the present
case, the investigation can be restricted to some of the lowest eigenvibrations
[3, 4].

The time dependent distributed load on the rigid wing can be written
in the form:

P(zv t) = P(z) F(t)v

since generally (and always in landing) it varies with time in the same way
along the span of the wing,i.e. it is independent of the motion of the wing
sections.
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p(z) is the maximum distributed load from the pseudo-static force
system, which can be written as

deax Pmax
z) = ——— — —=m(z) .
p(z) o o (2)

Here Plﬂﬂx
is the distributed impact force); M is the mass of the aircraft (hence the second
term is the distributed mass force). Earlier. the wing was designed for

is the maximum of the resultant impact force (thus dP,,,./d=

stresses from this system of forces and from the initial system of forces in
equilibrium (where the weight of the aircraft is equal to the lift) usually in
stationary flight (level flight or gliding flight) preceding the attack of the
impact force. (Further on we shall not deal with this latter system of forces.)

For investigating the dynamic load on the flexible wing the load p(z)
should be resolved into the sum of loads distributed similarly to the inertia
force load in the eigenvibrations of the wing, since eigenvibrations can only be
excited by loads similar in distribution to the inertia force distribution of the
examined eigenvibration. Thus

where

q;(z) = m(z) o y,(z) = m(z) o«f () H;.

2; is the circular frequency of the ith eigenvibration. Comparing the
two above expressions of p(z):

dlmax lmax
— 2 — ————mz) = miz <oc‘*’?]iz Hi. 3
dz M () ()_f—ll () ()

For determining H; let Eq. (3) be multiplied by 7;(s), and integrated
along the wing span. Then, with regard to the principle of motion of mass-
center and the orthogonality of eigenvibrations, the following relation holds:

+5/2 +s)2
dP,..
( __d":ak =) dz = o2 H; { m(z)yi(z)dz,
s N 32
hence:
ap
T2 y.(z)ds
j T (2
H[ — “S/- __§I17 (4)

[ m(z)e)ds

—52
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The ith eigenvibration is excited by the component g;(z) only; the distributed
dynamie load, by analogy to the system with one degree of freedom, will be:

22RO =0 600,

¥

where

t
£ty =o; { F(z)sino(t — 7)dv — F(t). (5)

‘o
The resultant time dependent distributed load on the flexible wing will be:

prlet) = p(E) FO) + Sa(2) &) =
= (6)

dF, X Pma\; g 0
= {% _ T.. m(;)] F(t) + m(z) 2 ain; (5) Hy £(2)

i=1

(superposed the initial equilibrium system of forces).

For a load analysis — according to (6) — the vibration data (eigenfre-
guencies, mode shapes), i.e. the actual construction of the wing must be
known. This means that the calculation can be made only for the completely
designed wing. This really used to be the case, the wing designed and con-
structed for static loads was subsequently examined for dynamic loads and,
carrying out the emerging structural modifications, the calculation was re-
peated, sometimes in several stages.

2. Vibration characteristics of the “standard” wing

The resulting considerable computation work can much be reduced, keep-
ing in mind that mass and second moment of area distribution of the aircraft
wings (without major concentrated masses, e.g. engines) show a certain regular-
ity. It can be assumed at a fair approximation that the specific mass is pro-
portional to the square of the cord ratio, while the second moment of area to
its fourth power (taking ¢, = const., these suppositions are rather obvious).
For the most frequent trapezeid wing with taper ratio i /A, = [ it can be written
(Fig. 3a):

h=h,[1— (1 — 53]
m=m, (-h—ho—): my [1 — (1 — &)z -
J=L{%f=hu-umgai
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where h,, m, and J, are the data of the root section, and z = 2z/s.

In practice, the following procedure can be applied. Once and for all we
determine the first two or three lowest eigenfrequencies and the pertaining
normalized mode shapes of the standard wing (Fig. 3b), in a symmetrical free
vibration for some practical values of taper ratio { and mass ratio ¢ (see Fig.
4b). Then in a given case the root section of the wing is designed for both the
shear force and flexural moment due to static load. The sheet thickness is
governed by the value of the similarly known torque acting in the root section.

Lz
Jp =1t E=1

Fig. 3. Characteristics of the wing and “standard wing”

Thus the m, and J, values* of the wing are obtained. Now, if the wing is
considered to have standard wing characteristics, its eigenfrequencies and mode
shapes can be determined from the known data of the standard wing by
interpolation and simple calculation. Hereafter, the dynamic load can be
estimated, from which the maximum values of both the “dynamic” root
bending moment and the shear force varying with time can be obtained. The
root section will then be redesigned for the maximum stress obtained as above,
leading to the values m; and J,. The procedure converges rapidly and after
one or two steps the final maximum distributed load of the wing sections is
arrived at, for which the detailed structural design of the wing will be made.
Finally, the ready designed wing will be put under full dynamic analysis, now
with due consideration of the actual mass and second moment of area distribu-
tion. The preliminary approximation excludes the necessity of further structural
modifications (or, only to a very small extent, if any).

The first two eigenfrequencies and normalized mode shapes of the stan-
dard wing were determined, after programming for the computer, by a matrix-
iteration procedure, its steps being summed up shortly in the following.

* Since p(z) depends on m(z), the design has to be made by iteration; formulae (7) are
quite suitable. These details of “static’ design do not belong to the subject matter of the
present paper.
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Specific mass and second moment of area distribution of the standard
wing are:
m=[1— (1——-@')5]21

. 8
=[- @ —oz) o

~
l

The half-wing can be replaced by eight concentrated masses. According
to Fig. 4a:

f[lm(l_ap] dz  (i=1,2,...,8). (9)

Nl

#, fi /75

Fig. 4. Replacement of the wing by concentrated masses

The influence coefficients which can be inserted in the symmetrical
square matrix A will be calculated as follows:

e [(E=DE—E) i1
Q;j f [1—(1—C)z]4 dz ( g]v o J 1,9,...,8). (10)

The calculation by iteration of the first symmetrical, free eigenvibration
can be started from the following matrix equation (Fig. 5):

Y — yr =% AMy = % DOy, (11)

where &, is the first dimensionless circular frequency, M is the diagonal matrix
of the masses replacing the half-wing (Fig. 4b), and D© is the so-called dynamic

Fig. 5. Symbols for the calculation by iteration of the first eigenvibration

T
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matrix. y; must be eliminated from Eq. (11), to render it suitable for iteration:
this can be done according to the principle of mass-center. It ean be shown that

8
S
Yr= — 1i——ﬁ—fj— : (12)
where
A= 3@, M, 1,
and -

— 5
M={(1-+¢) DM,
=1
(i.e., the mass of the half aircraft).
Thus the new matrix equation which can be directly iterated takes the follow-

ing form:
y —_— d"' D(l)‘{' (13)
where
- ’i o i ;I _
a;; »U — .ITT— @y My — D_i L. Oy U — —R__I__.
_ D S i
O =| @M, — 2 @M, — =% . G M- =2
DB = M =t M . M (14}
S — A, — A
“51*’[1“‘?‘% age M, — ,’_‘i co agg Mg —_/‘;

The column-matrix obtained on the left-hand side will be normalized in
every step of the iteration for the unit displacement of the mass M. In the
course of the iteration steps y will converge to the mode shape of the first
cigenvibration normalized to the same place (7"), while the normalizing
factors will converge to 1/z3,1.e. to the inverse of the dimensionless firstcircular
frequency-square.

For the calculation of the second eigenvibration the matrix sweeping out
the first eigenvibration will take the following shape (as, besides ensuring the
orthegonality of the two eigenvibrations, the principle of motion of mass-

centre — i.e. the orthogonality to the rigid body-translation — must also be
satisfied):
o MOP—nP) _ MEO—P) M0 —aP)
M (0 —P) My —1P) ML (P —nP)
SW =i 0 1 0 e 0 . (15)
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Thus the matrix equation converging by iteration to the second free
eigenvibration will be:

y = & DWSWy = 73 DOy, (16}

Finally, the mode shapes 7\ and #® were transnormalized for the unit
displacement of the root section in order to establish accordance with the
feregoing:

7 = ——L-n‘” resp. 7@ = INEY (17)
'y P

With an aircraft wing of standard wing character, featured by 5/2, m,,

J, and E, the circular frequency can be obtained (for identical { and ¢ values)

in the following way:

P T N (18)

my(s/2)!

while the normalized mode shapes remain unchanged.

The calculations were programmed for the Computer Type MINSK — 22
of the Research Institute of Automation of the Hungarian Academy of Seci-
ences* for the taper ratio values: {=0,25;0,35 and 0,45; and the mass ratio
values: @ = 1; 2 and 3. A block scheme of the programme is shown in Fig. 6;
the results are summarized in Tables I, II and III.

When examining an aircraft, in caleulating the mass ratio ¢, the fuel
stored up in the wing must also be suitably considered beside the structural
weight of the wing (its distribution is approximately proportional to the square
of the cord ratio, as the wings nowadays are filled with fuel almost throughout
their length); while the structural weight of the fuselage must be increased by
the weight of the crew, payload (passengers, luggage etc.), the empennage sur-
face and the weight of the rear-mounted engines, if any.

3. The dynamic load arising from landing

If an aireraft strikes the ground by its two main undercarriages at a
certain vertical velocity, an impact force affects the undercarriages, and its
changes with time can be estimated from the resilient characteristics of the
undercarriage [5], while it can be considered as independent from the elastic
properties of the aircraft itself [6]. These calculations are not dealt with here,

* The programme was made by Mr. J. Gedeon, Mech. Engineer, scientific collaborator
of the Department for Aeronautics, to whom I here express my sincere gratitude. Acknowl-
edgements are dueto the Research Institute of Automation, where the programme was run.
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Table I

Matrix of the influence cocfficients. Normalized mode shapes and eigenfrequencies. Taper ratio: { = 0,25
F0.00009  0.00035  0.00061  0.00087  0.00113  0.00139  0.00165  0.00191-
10.00035  0.00256  0.00525  0.00795  0.01065  0.01334  0.01604  0.01873
0.00061  0.00525  0.01329  0.02207 . 0.03086 - 0.03964  0.04843  0.05721
0.00087  0.00795  0.02207  0.04155  0.06225  0.08295  0.10366  0.12436
A == |0.00113  0.01065  0.03086  0.06225  0.10262  0.14514 018767  0.23020
0.00130  0.01334  0.03064  0.08295  0.14514  0.22362  0.30625  0.38888
0.00165  0.01604  0.04843  0.10366  0.18767  0.30625  0.45771  0.61826
L0.00191  0.01873  0.05721  0.12436  0.23020  0.38888  0.61826  0.92516.

z 0 1/16 3/16 5/16 /16 9/16 11/16 13/16 15/16 ;
T 0a1365| 0.09241 | 0.07336 | 0.05652 |  0.04187 | 0.02942 |  0.01917 |  0.01111
Tp=10 5] 1.00000| 096544 0.66239 | —0.01549 | —1.14833 | —2.81304 | —5.06489 | —7.89983 | —11.18112 | 6.36837
Mpf2 = 043750 97 | 1.00000| 0.86913 | —0.17537 | —2.05061 | —4.12233 | —5.19856 | —3.59055 |  2.34876 | 12.75080 | 19.7939
— 2 | 1.00000| 0.94643 | 0.48123 | —0.54827 | —2.95196 | —4.73413 | —8.06741 | —12.23057 | —17.05042 | 6.16276
Mr/2 = 0.87500 7 | 1.00000 | 0.80341 | —0.89873 | —3.85548 | —7.01529 | —8.46483 | —5.56166 |  4.21740 | 21.00283 | 19.2931
p=30 207 1.00000] 0.92754| 0.30089 | —1.07937 | —3.35358 | —6.65418 | —11.07190 |—16.58677 | —22.93485 | 6.06623
Mp/2 = 1.31250 5, | 1.00000| 0.72582| —1.62004 | —5.65415 | —9.90052 | —11.72580 | -—7.53196 |  6.08503 | 29.25851 | 19.0773
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Table IT

Matrix of the influence cocfficients. Normalized mode shapes and ecigenfrequencies. Taper ratio: { = 0.35
1 & I

F0.00008  0.00034  0.00060  0.00086  0.00112  0.00138  0.00163  0.00189-

0.00034  0.00250  0.00512  0.00774  0.01036  0.01297  0.01559  0.01821

0.00060  0.00512  0.01277  0.02108  0.02939  0.03770  0.04601  0.05432

0.00086  0.00774  0.02108  0.03901  0.05794  0.07687  0.09580  0.11473

A = |0.00112  0.01036  0.02939  0.05794  0.09352  0.13068  0.16784  0.20500

0.00138  0.01207  0.03770  0.07687  0.13068  0.19583  0.26362  0.33141

0.00163  0.01559  0.04601  0.09580  0.16784  0.26362  0.37890  0.49896

L0.00189  0.01821  0.05432  0.11473  0.20500  0.33141  0.49896  0.70312_)
o 0 11716 316 5/16 716 9716 11/16 13/16 15/16 &
M; - 0.11512| 0.09646 | 0.07944 | 0.06408 |  0.05037 |  0.03831 |  0.02790 |  0.01914
p=10 2 1 1.00000] 0.96732| 0.68650 | 0.07582 | ~0.91158 | —2.30839 | —4.11763 | —6.28970 | —8.69717 | 5.82598
M /2 = 0.49083 5, | 100000 0.86071 | —0.23986 | — 211216 | —4.03043 | —4.85049 | —3.24536 |  1.68551 |  9.45265 | 20.3341
p = 2.0 7 | 1.00000| 0.94946 | 0.51898 |--0.40783 | —1.89282 | —3.97717 | -6.65954 | - 9.86414 | —13.40573 | 5.60868
Mp/2 = 098167 7 | 1.00000 | 0.76902 | - 1.01819 [ —3.98840 |- 6.92693 | —7.99576 | - 5.11651 3.07788 | 15.76048 | 19.7711
o 80 | 1.00000| 0.93170| 0.35227 | 0.88983 | —2.87210 | ——5.64480 | - 9.20270 | --13.44397 | —18.12510 | 5.50812
Mpf2 = 14725 9 | 1.00000 | 0.76853 | —1.80637 | 5.90282 | —9.80268 | — 1122451 | —7.04341 | 450304 | 22.24330 | 19.5574
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Table 1

Matrix of the influence coefficients. Normalized mode shapes and cigenfrequencies. Taper ratio: { == 0.45

F0.00008  0.00034  0.00060  0.00085  0.00111  0.00136  0.00162  0.00188"

0.00034  0.00245  0.00499  0.00757  0.01008  0.01263  0.01517  0.01771

0.00060  0.00499  0.01228  0.02016  0.02804  0.03592  0.04380  0.05168

0.00085  0.00754  0.02016  0.03676  0.05418  0.07159  0.08901  0.10643

A - |0.00111  0.01008  0.02804  0.05418  0.08590  0.11881  0.15172  0.18463

0.00136  0.01263  0.03592  0.07159  0.11881  0.17418  0.23131  0.28844

0.00162  0.01517  0.04380  0.08001  0.15172  0.23131  0.32324  0.41792

L0.00188 001771  0.05168  0.10643  0.18463  0.28844  0.41792  0.56704.
P 0 116, | 3/16 5/16 716 9/16 11/16 13/16 15/16 &
M; 0.11660 | 0.10060 | 0.08577 | 0.07213 |  0.05967 |  0.04839 |  0.03820 |  0.02038
p =10 2 | 1.00000| 0.96831| 0:70148 | 0.13716 | -0.74693 | —1.95509 | — 3.46357 | —-5.21064 | —7.00424 | 5.42424
WEp/2 = 0.55083 7@ | 1.00000| 0.86361 | —0.31408 | 2.19667 | 3.98718 | —~4.50497 | 297482 | 132420 |  7.60813 | 20.9392
o= 2.0 27 171.00000| 0.95109| 0.54263 | —0.31313 | —1.64253 |  3.14623 | - 5.68531 | —8.26769 | —11.04544 | 5.19433
Mpf2 == 110167 5 | 1.00000| 0.77024 | —1.15002 | —4.17017 | —6.92943 | —7.67725 | —4.77183 |  2.45490 | 12.85481 | 20.3373
9= 3.0 27 1.00000| 0.93397|  0.38458 | —0.76182 | -2.53625 | —4.93620 | —7.90788 | —11.32883 | ~15.00481 | 5.08918
M7/2 == 1.65250 297 | 1.00000| 0.67970 | —2.00247 | —6.14381 | —9.87628 | —10.76847 | —6.57670 3.58861 | 18.12410 | 20.0877
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but for the sake of an approximate investigation the time history of the impact
force is supposed to be sinusoidal:

P(t) =Pmax'F(t) = Pax sin ; t, (19)

where T is the total time of the first in- and out closure of the shock strut.

It has also been shown theoretically and experimentally [7] that in the
problem of landing the aerodynamic damping can be disregarded, since it
affects but slightly the maximum value of the impact force with the first
closure. The same study concludes that it is entirely satisfactory to consider

7

v

/
inertial forces P,
in vibration 5

Fig. 7. Dynamic load on the wing in landing

the first three eigenvibrations for practical (design) purposes. (In this paper,
for preliminary design, the first two eigenvibrations have been found suf-
ficient.)

In the case of landing, the numerator of H; [from (4)], obviously takes
the form (Fig. 7):

P_..
Tni(z) dz=2 ";ax 77i(zf)e (20)

i.e. it is nothing else but the (foreign) work done by the maximum impact
force on the mode shape normalized for the unit displacement of the root
section.

From this statement a significant conclusion can be drawn, hardly ever
mentioned in the special literature. An overwhelming proportion of the dynamiec
load arises from the first eigenvibration. Now, if the undercarriage isattached
to the wing at the nodal point of this mode shape (for 7,(z;) = 0), the first
eigenvibration does not add to the dynamic load, and thus it will be con-
siderably lessened. (Roughly approximating the first mode shape by a quad-
ratic parabola, and calculating the moment of inertia of the aircraft about its
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longitudinal axis x from the mass elements of the wing only, it is easy to show
that the radius of gyration i, will be the proper location for attaching the
undercarriage.)

In each cross-section of the wing the time-dependent shear force (positive
upward) and flexural moment (positive when the bottom surface of the wing
is in tension) can be written, according to Eqs. (4), (5) and (6), in the following
form:

52

0(z,1) = Prax [_. F Ié;) J m'(z) dz 4+ Op(z t)j! if 2>z (21a)
and i
, 52
Qfz,1) = B [— —F—]‘—(/IQJ m'(z) dz + F—z(t)— +0Op(z, t)] if <z, (21Db)
where

(%) flz m'(z) () dz . ]
; lai J F(z) sine, (¢ — 1) dr — F(t)] (21¢)

Qp(z1) = :

ey s/2 ”
2 mE)pEds Lo
0
or,
Mz, ) = n[ —/(Tﬁ 1 } m' () dz dz + Mpfz, t)} if z>z  (22a)
) 3;2 5/2
and
F(t 3 | FQ
Mz, 1 :Pmax[ /1(1) m'(3) d= d 5) (5 — ) +
) 2 2 -
: (22b)
- Mp(z, t)] if z<z
where
B . 1:lz) ‘: m/(z) 1,(z) dz d= ;
Mp (z,8) = ‘21‘ 5/55"/23/2 [m,- OS F(r)sina; (t — 1) dt — F(t)]
= 2 ( m(z) n¥z) d=

m’(z) is the specific mass of the wing.
Integration within the square bracketsin (21¢) and (22¢) according to the
time dependence of the impact force as shown in (20), yields:




244 E. RACZ

t t
[ F(r)sine; (t —7)dr = { sin—;— Tsing (t — 7)dr =

0 0
Wl . . 7T
sm ot — % sin - §
g T T -
= " . (23)
T D
.

Formula (23) is valid only for the interval : <L T, but in practice, the
conditions usually work out so that the dynamic shear force and the flexural
moment reach their maxima within this range.

3

Fig. 8, Dynamic load on an aircraft with undercarriage attached to the fuselage

Let the above suggested method for preliminary wing design be employed
for an aircraft, whose undercarriage is attached to the fuselage: 7;(z;) = 7;(0) =
= 1.0 (Fig. 8). Such are, for example, the sailplanes. Assuming the ultimate
load on the wing to be due to ““dynamic’ landing the following procedure can
be applied. First, the root section is designed for the ultimate static load
(arising e.g. from gusts or pull out), according to the Design Requirements.
Thus the J, and m, values are obtained. Knowing the natural frequencies and
mode shapes of the standard wing, m, can be substituted into (21) and (22),
and thus the flexural moment acting in the root section of the wing considered
of standard characteristics is obtained (the same procedure goes for the shear
force; it is not dealt with here). Py written in the usual form P,y = nG =
== ngM (n being the load factor in landing), we get:

8
s s .oom 8 =
‘Mo(t)zng—‘)—{w my—— sin t Mz -

2 2 T S
8
o’ N M,z sinoyt — oy sin — ¢
i i=1 .
— e o — sin-x £t} -+
2| Mr | &5 oo | 7 T
5T > MqP ;A
= i=1 -
8
S Mz - sin oy £ — o, sin v t
=1 .a
4t 5 oty 5 —sin - t . (24)
Mr | < M ) L
Vo TR 2
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where xz; and =, can be calculated according to formula (19).
Let us denote:

8 8 __
2 > Mg’z > M7z
v EE f=1 =1
A::.ﬂf,«zi,Blz— /TT’ g ,B2:- /",—fl 3
i=1 Mr v AT (1)2 M o AT 2
5T > My 5 + My
ES i=1 s i=1

T, . T
——sm oy b — %, sin—1

.o
E{f) = p; — sin ? t,
G
T2
T, .7
SN %o £ — %, 810 —— 1
N
F:)_(f) m— 7['2 —- 8in —a:— i.
T
Thus:
My(t) = — ng —— {1 —‘} my sin % t ﬂ;{ [B, Fy(t) - B,F,(0)]1... (25)

The values of 4, B, and B, from the numerical data in Tables I through III.

are summarized in Table IV.

Table IV
: P A B, B,
1.0 . 0.09668 | 0.03286
025 2.9 0.14185 0.06783  0.02130
3.0 0.05202 | 0.01571
10 0.11897 | 0.03336
035 2.0 0.17343 | 0.07989 | 0.02137
3.0 L 0.06112 | 0.01554
1.0 0.13191  0.03297
045 2.0 0.21000 0.09172 | 0.02084
3.0 0.07003 | 0.01517

The simplest way to obtain the maximum of M () in time is to plot the
expression (25) (Fig. 9). Therefrom, the initial data of the next step in the

iteration can easily be obtained:
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— _ My () max
Ji=JoBu=Jo M,

where Mg is the root moment from the ultimate static load.

B rapidly converges to its final value: ﬂ;, If the distribution of the
flexural moment derived from the static load is multiplied by fi; (that is,
shear force distribution multiplied by 3§), the final structural design of the
wing can be accomplished. '

It must be noted that the dynamic load is significant not only in the
root section hut also in the sections along the wingtip, while it is smaller in

i
[
|
]
]

7'.

Fig. 9. Time history of the “‘dynamic’ flexural moment of the root section

the sections about the nodal point of the first mode shape. The factor iy will,
however, have a favourable effect on the stress distribution at the wingtip as
well, the latter being generally overdimensioned.

The wing thus shaped must finally undergo a detailed dynamic examina-
tion according to the above considerations, but in this case with due regard to
the actual m(z) and J(z) distributions; but there is good reason to hope that, as a
result of the approximation described above, there will be no need for a major
structural re-shaping,

Summary

Earlier, the airplane wings had been designed as rigid constructions subject to:
“static’ loads: acting forces and balancing inertia forces. Upon an abrupt load increase (gusts,
landing impacts), however, the wings begin to vibrate, and arising inertia forces produce a
dynamie overload. To reduce the involved tedious computation work in estimating the dynamic
load in landing, notion of the *“standard” wing has been introduced, for which the mass distri~-
bution and the second moment of area are proportional to the square and to the fourth power
of the chord ratio, respectively. For the preliminary design of the wing a quickly converging:
method has been presented, based on the use of predetermined vibration data (eigenfrequen--
cies, flexural mode shapes) of the standard wing.
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