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There are aheady known some papers dealing ·with the calculation of 
hydrodynamic blade cascades. In this paper an additional method for com
puting should be expounded by a developing of GRUB ER'S method,* according 
to which the calculation is elaborated in the case of a steady channel-, .. -idth 
and an incompressible fluid. In this paper, by introducing a stream function, 
we shall present a solution of the case of a compressible fluid and a variable 
width. Briefly: the method follows the usual way hy dividing the running 
wheel into elementary ones. The main movement equations on a mid-stream 
surface in the elementary wheel are written down by assuming this surface 
as being generated by rotation. By this usual assumption we obtain a good 
approximation. The problem as originally set up has three dimensions and 
its solution is rather complicated; again, by the above assumption, the problem 
is reduced to two dimensions. The fluid friction is not taken into consideration, 
and the solution is based on iteration. 

Symbols 

T. It variables of the cylindrical co-ordinates: 
s meridional line of the mid-stream surface 

B width of the elementary wheel 
o densi ty of the fluid . 
;. exponent of the fluid'" isentropic change of ~ta te 
CJJ angular velocity of the running wheel 
It circumferential speed 
c absolute velocity 

U' relative flow veiocitv 
x. y independent yariabl~s in the projection plane 

S number of blades of the running wheel 
t blade pitch in the projection pl~ne 

'P stream-function 
T[ blade circulation 
t' distribution function of circulation 

I. j. k vectorial units in a Cartesian system of co-ordinates 
111 mass flowing in the time unit referred to an elementary wheel 

" Presented at the Dresden Conference, June 1967. 
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Subscripts 

o state "in the tank" 
1,2 entry state, exit state 
s, direction s, or, referring to the mid-flow surface 
x, y direction x or y, within the projection plane, 
p, sc pressure side, suction side 

I. The movement equations 

According to Fig. 1, the relationship s=s(r), or inversely r=r(s) holds true. 

lja. The continuity equation on the surface of revolution. 

Since no change of the fluid mass takes place in the running wheel 
during the flow, the continuity equation runs as follows (with the denotations 
used in Fig. 2): 

Fig. 2 

[Brdi1t{lsi?]S+dS - [Brd&wsf?]s + [Bdsw"Q]Hdt' - [BdswvQ] = 0 

In order to make calculation easier, width and density should be made 
dimensionless; this is done by diving the width, by the entry-width Bl' and 
the density by the so-called tank state density eo -\"iz. dividing the equation 
by the product Bleo' 
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After carrying out the division and the necessary operations, we obtain: 

~ (r~ws) +~ (.~w~) =0 
8s El eo 8B El eo 

lib. Eddying equation on the surface of revolution 

The absolute flow is free from eddies: 

rot c = 0 

Again, the absolute velocity in the vectorial sum of the circumferential 
speed and the relative velocity: 

rot c = rot (u + w) = 0 
or 

rotw = 2w 
since rot u = 2w, where w is the angular velocity of the running wheel. 

In compliance with STOKES' theorem, we have: 

[It·sds},:. + [w"rdB}s+dS - [WSds]tHd" -lws rd8]s =:-.2(1) ~: dBrds (1) 

where dr/ds = sin x (Fig. 1) 

y 

dy 

x 

Fig. 3 

By carrying out the operation and after due simplification we obtain: 

8 8 
- (w"r) - -ws 
8s 88 

dr 
- 2w--r 

ds 
(2) 

The next step is to make a transfiguration in which angles and proportions 
do not change, making the flow problem planimetric. This conform transfigu
ration is characterized by the relationship: 

x = x(s) 

y = y(B) 

in other words, x and y depend only on s, and B, respectively. Such a transfigu
ration was carried out already in some former papers (e. g. [1), [2)). 
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With reference to Fig. 3, this transfiguration is given by the equations: 

from which: 

d 
_ Nt ds 

x---
2:z: r(s) 

dy = Nt df} 
2:-r 

x - lVt J's ds 
. - 2:7. 0 r(s) 

Nt [&]' y--- ! 

• - 2;;r 0 

Now we introduce the stream function as follows: 

olP BI] -- = r---1C o 

of} Bl Qo -

aV! BI] - -- = ---H', 
oS Bl Qo ! 

(3a) 

(3h) 

(3e) 

As can be seen, equations (3c) are in full conformity with equation (1) 
and equation (2) can he transformed hy the corresponding use of equations 
(3a), (3b), (3c). 

lie. Equation of turbulence In the projection plane 

According to the rule of indirect differentiation, we ohtain from cquation 
[2]. 

a~~ ( 
1 Bl Qfl. I' 8lP d'~l dx _ ~ ('. Bl Qo 

BI] 8x ds I ds ay. BI] I' 

dy) 
8y df} dO = 

dr = - 2r()) 
ds 

After having carried out the operations of differentiation, duc substi
tutions and modifications, we ohtain 

a2 lP I --, 
8x2 grad (In B~:o ) grad lP + B~~o) ( ~~:' r 2(1) sin Y. 

(4) 

11. Calculation of .JlP 

\Ve have to bear in mind that eqnation (4) represents the exact mathe
matical definition of the problem, since no kind of neglection has been made 
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as yet. In the following, this strictness should be abandoned, because the above 
partial differential equation cannot be solved in a closed form, since boundary 
conditions are too much complicated. The iterati've method shall be applied, 

assuming that BIQoiBg does not change hut in the direction of x: 

d ( 
Bl Qo ) ara ---

e BQ 
~(~)1 
8x BQ I 

and that the function lp(X, .1') represents a third degree parabola in the y direc
tion. 

The parabola is expressed as follows: 

-'~--==f~)- -'- a(x) [(Y - ;(X) r - 0.25 J 

b{x) l~(Xl.) U-Y =;(xJ_ r 0.25J 

where a(x), and b(x) are yet unknown functions of the independent yariable x; 
f(x) represents the equation of the camber line of the channel between two 
adjacent blades, and V) is a constant that will be determined later on. 

From what is exposed ahoye, we obtain 

By introducing the denotation 

y - f -
-"-- =1] 

t 

we shall find the function a(x) with the restriction, that the equation (4) 
should be satisfied only at the points 

and _I'; 0"-~= -0.298 
3 
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In this way we have 

!.J"P .. r, = "PI - T -171 - - + aiJi - .L;;) -
.~ {2a I 6b - f" " [--<l 0 "'"] 

. , t2 t2 t 

4 '- (F) - a 171 --;- . l (F)2 - (f" )] I 2a l- - iJ1 - T 
t t 

+ b" tjI [tji - 0.25] + 6btj1 (~' n (5a) 

and 

J1p ;;: =1p {2a - ~ tj - -L a" [tj~ 0.25] 4a'171 I. ft' ') -+ 
- ',' 1 (2 t 2 1 t I 1 

2a [( f; r + 171 (f;' ) - b" 11 [17i - 0.25] - 6b171 (~' n (5b) 

For the final calculation of the function a (x) we shall develop the expres

sion (J1p +il, + .d1p _il)/21p1 as follows: 

.d1p+7'jl + J1p_7'j, 

21pl 

1 
[2a(1 + j'Z) - r t - 0.166 a" t] 

from where the differential equation is obtained: 

(6) 

With equal divisions h, the derivative can be substituted by a difference 
quotient as an approximation: 

By substituting this in (6), we obtain: 

2 [(! + f") : 0.166 H-n l.JP '\p, dp_,. t' + r , + 

+ 0.166 (+f (ai-1 - (li+1)} (7) 
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The partial differential equation (4) can be solved only when the troubling 
function on the right side is calculated first. This can be done as follows: 

The relationship is known as being true: 

W 
,_, 1 Nt 
iW : = --=-- i grad 1p I ~ 

BQ ':'7CT 
(8) 

BlQo 

ill which 

grad 1p = f a1p + J 
ax ay 

on the basis of equation (3a). 
The first step of iteration is based on the assumption that the blade 

cascade is infinitely dense, blades are infinitely thin, and consequently all 
the stream lines coincide. The basic idea of infinitely thin blades is in common 
use for an approximative calculation of turbomachines; it is applied by the 
authors [1], [4] . Now, the relatiye velocity is expressed by means of the blade 
form and by lPl as a characteristic of the flowing mass according to Fig. 4. 
As can be seen: 

f'= 

and thus 

Fig. 4 

dy 
dx 

Gx = -- Gyf:" 

where the subscript = refers to the idea of a stream line belonging to a system 
having an infinite number of blades. Since for such a system the formulae 
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and 

hold true, we obtain for the relative velocity 

1 1fJl 
BQ 

Bl Qo 

.J!l f'= 
t 

Nt 

2;rr 
(9) 

As is known, the quotient 2/eo is a function of velocity [1], if the inflow 
velocity comprises a component GIll' this quotient is expressed a~ follows: 

%-1 
(lOa) 

2 

Fig. 5 

Without the said component, the following formula should he used: 

1 

{ 1 
% ; 1 U :lo r -( :: rJt -I (lOb) 

where a o denotes the so-called "tank state" sonic speed. 
Now, the ratio Q! eo shall be expressed on the basis of formula (9) 

g 1 1 1 -.Jl1-I -+ f:3' Nt (lOc) 
fin an IV t 2;rr 

ao Bl 

in which the relative velocity IV is made dimensionless (being divided hy aD). 

Obviously, Q/Qo should comply ,,-ith hoth the formula (IOc) and either 
(lOa) or (lOb). Taking it as an independent variahle, while ll/ao and r are consid
ered as parameters, the value Q! Qo can be determined as the point of inter
section of two corresponding curves (Fig. 5). 
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To this end, it is necessary to describe the quantities Bj Bl and f:" as 
functions of r. For the function f;", the distribution of circulation in the case 
of an infinite number of blades should be determined. By applying STOKES 

theorem Oll the surface of revolution for the area as shown in Fig. 6, the for
mula is obtained: 

20) -- -- ds = - --1(J, ds dr 2nl" 8 [2:7r ] 
ds]V 8s N t,'" 

(lla) 

Fig, 6 

By transforming it as a function of the variable x in the projection plan'>, 
we have: 

;!" (x) dx - 2(1) - -_- tdx = - 'If'l_l_-_) f= dx , . dr t/27[r)~ 8 [ B 0, I] 
ds Nt 8x B'} 

(llh) 

for which the relationship 

and 

]V 

has been used. 
~ow, integrate the latter equation between the limites x(O) and x(s} 

(x) -

- B(X(O~~(X(O)) f~ (x(O))] 
(12a) 

where 
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and 
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f: (X(O») = w" (0) 
Ws (0) 

For the present problem the appropriate form of the function }'*(x) will 
be chosen and thus the function n(x) can be determined. Again, the values 
108(0) and ws(O) are known as characteristics of the inflow. Now, when y*(x) 
is defined, the value e/ eo f'o" viz. the values e/ eo and f;" can be separately 
calculated by using equation (IOc), because the second term at the left side 
of equation (I2a) and the expression BleoIB(x)e(x) are known quantities. 
Thus, from (I2a) we obtain: 

f~ (x) = - - I (x) - --_ - r- x) - r- x 0) -'-I B {r 2nCrJ [0 ( O( ( )] , 
7jJl Bl TV 

, BI Qo f' ( (O»} 
-;- 7jJl B(x(O) Q(x(O)) = x 

(I2b) 

By putting this into (IO-c) we can write 

Q I I 1 1fJI Nt 
-=---------- X 

Qo ao ~ B t 2nr 
ao Bl (13) 

X 1 1 B IT. () 2n(1) (0 O(O»)'J r • Bl eo f' ( (O»)} 
"PI BI : x - ~ r--r- T 7jJl B(x(O»)e(x(O» = x . 

We shall express lPl for the case of an infinite number of blades: 

and 

we can write: 
1v! 

(14) 

The expression of !PI does not change for the case of a finite number of 
blades. 
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Now, the relationship (13) can be transformed as the explicit expression 
of w/ao; thus this can be plotted in Fig. 5. 

With the known value of (l/ (lo the expression 

grad (In B1gO
) = ~ [In (BIQO )]i 

Bg 8x BQ 

can be calculated, because the function (BI B1) is kno,~'n in any case, either the 
blade cascades are projected or existing ones are to be checked. 

Thus, by accepting the above assumption, the troubling function on 
the right side of equation (4) can be determined as a function being dependent 
only on the unique independent variable x: 

z(x) = - ~[ln (BIQO )l~ ~ 
8x Bg, 8x ' BI go 

--_ - 2(1) SIn x 
( 

2nr )2 . 
Nt , 

where 

81p = _ ~f~ 
8x t 

as aheady stated. 
Since the troubling term in equation (4) is considered as a function that 

depends only on the variable x, the values of L11p are assumed as not depending 
on y; and so we can write: 

Now, the values of z(x) calculated on the basis of an infinite number of blades 
should be substituted into the formula (7): 

[ ( 

l-Lj':! 

a, ~ 2 O,16~ I ~ r 
For an approximative calculation it is important to assess the probable 

error, to precise the formula of a possible correction. So we should find the 
relationship between the functions a(x) and y*(x). In compliance with the 
blade circulation we have: 

= [~(~~) - 1 (~_) ](1 -+- 1'2) ds = 
r 8f) se r 8f} p Bg 

= [('~l - (~) ] ( BI Qo )' (1 + 1'2) dx = ((x) dx, 
8y se Cl) p Bg 

3 Periodica Polytcchnica )1. 12/4. 
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where 

y(x) = _B-=-=.d?-=----.o r l'~) -l{~)] (1 + 1'2) 
B I] _ 8y se ay ) p 

(16) 

is valid on the basis of 

-- = 1jJl - + a(x) 
( 

a1jJ )' { 1 
ay se t 

b(x) 0~5} 
and 

- = 1jJl - - a(x) + b(x)-( 
81p ) { 1 0.5 } 
8y fJ t t 

Consequen tly: 

(17) 

Starting by assuming an infinite number of blades (i.e. f' = f;") the function 
y(x) will differ from the starting function y*(x). Thus, the value of f' should 
differ from the value off;". In order to find the measure of modification, the 
relationship between the blade shape and y*(x) for an infinite number of 
blades should be examined. By using the equation (lIb) we have: 

y* (x) = 2w -_- tSllllX + 1jJl f= - ~ + ~ f= , ( 2;rr ) 2. r: I a BoB 0 11 1 
Nt _ 8x BI] BI] 

(lIc) 

As can be seen, the variations of y*(x) are related tothe variation off'"" elen 
and f':". Taking all these variations into consideration would make the correc
tion of the blade camber line too complicated. So a possible neglection will 
be applied by assuming that a small variation of y*(x) does not bear on the 
values of f;" and of a/8x BIQO! Be. In this way, the approximation 

(18) 

should be accepted as the relationship between a small variation of the dis
tribution of calculation and the variation of f':o in the case of an infinite number 
of blades. 

For obvious reasons 'we can assume, in the case of a finite number of 
hlades, a similar relationship hetween the variation of y(x) and the variation 
of f"; namely, in the case of a finite numher of hlades, the formula 

(19) 
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serves to express the necessary correction of the value f". 
Again, for oy(x) we can write: 

B <5 a(x) 
<5y(x) = y* (x) - _1_0 2lPl-- (1 + f'2) 

BQ t 
(20) 

By substituting the result obtained from (20) in (19), the value of" can be cal
culated, and the channel profile line can be corrected. The approximation is 
repeated as many times as is necessary to make of" disappear. 

In order to determine the cascade of blade, first the values according to 
(12b) are applied; after a(x) is determined, the distribution y(x) is calculated 
on the basis (17), and with these the values of of" can be determined. 

The subsequent steps of calculation are: 
1 - Calculation of frequency distribution e/eoby using equations (lOa), 

(lOb), and (13), resp., on the basis of a function of distribution 
suitably chosen. 

2 - Determination of the value of f'c" on the basis of the frequency 
distribution as given by formula (12b). 

3 - Calculation of the values z(X)t2/lPl' and f"t on the basis of kno·wn 
values of e/ eo and f::O; calculation of a(x) by using formula (15). 

4 Determination of the circulation distribution by means of the 
relationship (17). 

5 - Determination of ay(x) by means of formula (20). 
6 - Determination of af" by the formula (19); calculation of af' from af". 
7 - Correction of the values f"(x) and f'(x). 
By these 7 steps the first iteration is completed. The second iteration 

starts with the 3rd step, by keeping the value [z(X)t2/lPl] unchanged. When the 
iteration is carried out, b(x) is calculated from a(x) by using the formula 

Lh/\7i, - L'l'1p-7i, = 0 
2'1pl 

and consequently: 

In the case of but a small number of blades, the deviation caused by the 
assumption a/ay Q/eo = 0 is larger, and the correction according to (19) is no 
more effective. So another type of a correcting formula should be applied. 

As is known, the velocity distribution and the statical pressure distri
bution along the direction y can be considered as a rather straight line [3]. 
On this basis the follmdng assumption seems to be justified: 

3* 
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~J . ~J . cos Pactual = ~ 1 .~] . cos Pn' (22) 
ao actual,mean Qo actual,mean a o In Qo Il 

where the subscript n denotes the values obtained after the nth iteration of the 
correcting formula (19), and we have 

Again, 

The assumption 

is justified. 
Therefore, 

W-J 1 {It'J -~; = 2 ~ p :JJ 
W] HI] 
a!) . actual,mean = ~ '" 

W ] • cos Pactual = ~ l
J 

cos P" 
alJ actual,mean ao n 

Only, the quantity cos Pactual IS not known as yet. Since 

1 
cos{3= ~==::::==: 

1 

II +f'2 

we obtain, from formulae (23) and (24): 

W] l''---PryU; llf !,,? - 11 + In- == - < 1 + Jactual 
ao x a o .1l 

and also 

1 

! I IV 1 }2 
, _ '. ~ x I '2 

factual - I ~J J (1 I fn ) - 1 

all Tl 

(23) 

(24) 

(25a) 

By taking this value of f~ctual and using formula (17), a(x) can be deter
mined by keeping y*(x) unchanged. Then the new values of b(x) are calculated 
from formula (21). Using the obtained values of a(x) and b(x) we can use the 
two equations "\t-hich precede formula (17), and thus we obtain the new values 

of 

( 
81p ) ( 81p) -- and -- . 
8y se 8y. p • 

and also 
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the value of 

This is now the value wjao]n+1' 

As a second step of approximation, we calculate: 

f~+2 == (25h) 

_' _8 __ 

0,8 
, 

----
Pig:; 

Starting from this with a new series of iterations as described aboye. ,,-e 
continue iterating as long as the quotient 

hecomes equal to 1 (v.-:ith k = 1,2,3 ... ). 
As seen from what has been expounded above, the first step of this 

second series of iterations starts with values of w!ao]n and j/, obtained from 

formula (19). 
As our last argumentation, let us compare the numerical results of our 

method, dealing with a running wheel of radial flow, with the results as ohtain
ed by the method of singularities [4]. (Fig. 7) 
The numerical data are: 

D., -- = 1.6; (D = 2r) 
Dl 

N= 16 
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-O,6-aft -42 0.0 0.2 alt a5 as 1.0 1,2 tit t6 J 

-0.2 

-aft ~L 
f------==------l 

-1,8 

- 2.0 
v 

- 22 

-2.1, 

- 2,6 
f'rx} _ 2,8 

--- Result or this method 

---- - Result or .the method orihe singularfties' 

Fig. 8 

2c? 
'lfid=~= 1.2 

U2 

C2r 0 rp=-= .3 
Uz 

lW* = U
2 =0.7 

ao 

y* (x) = 'lfid
T

2
U

Z ye;) 
NL 

where 

v(~) = [2220 (~_ 0.2)3 _ 1.111] h(~) _ 2220 [(~ _ 0.2)3 h(~ - 0.2) + 
'16 16 

+ (~- 0.8)3 h (~- 0.8)] + [2~!0 (~- 0.8)3 - 1.111 J h(~ - I) 

and 

L= Nt In_T2 
271: TI 

Notably, .; = 0 corresponds to the value 

and 

Nt 
Xl = --lnTI 

271: 

.; = 1 corresponds to the value X z = Ntj2:rlnT z 
and the functions h are step-wise functions of the unit-step. 

The diagram in Fig. 8, is a comparison of the results of both methods. 
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Summary 

This method for calculation of a hydrodynamical cascade of blades is suitable to project 
the blade-system of turbomachines having a great number of relatively thin blades. 
The task is to determine the camber-line of a running wheel in the meridional section, when 
pressure, flowing quantity and the recommended number of blades are given. The problem, 
having originally three dimensions, is reduced - by dividing the wheel and by means of a 
conform transfiguration - to a planimetric question. The approximative solution is carried 
out by the introduction of a stream-function, through iterations. In the case of a relatively great 
number of very thin blades, this method proves to be quicker than the known method of cal
culating the singularities. 
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