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There are already known some papers dealing with the calculation of
hvdrodynamic blade cascades. In this paper an additional method for com-
puting should be expounded by a developing of GRUBER’s method,* according
to which the calculation is elaborated in the case of a steady channel-width
and an incompressible fluid. In this paper, by introducing a stream function,
we shall present a solution of the case of a compressible fluid and a variable
width. Briefly: the method follows the usual way by dividing the running
wheel into elementary ones. The main movement equations on a mid-stream
surface in the elementary wheel are written down by assuming this surface
as being generated by rotation. By this usual assumption we obtain a good
approximation. The problem as originally set up has three dimensions and
its solution is rather complicated; again, by the above assumption, the problem
is reduced to two dimensions. The fluid friction is not taken into consideration,
and the solution is based on iteration.

Symbols

r. it variables of the cylindrical co-ordinates:
meridional line of the mid-stream surface
B width of the elementary wheel

0

%

@

density of the fluid
¢ exponent of the fluid’s isentropic change of state

w angular velocity of the running wheel
u circumferential speed
¢ absolute velocity
w relative flow veloeity
x. » independent variables in the projection plane
N number of blades of the running wheel
t blade pitch in the projection plane

¥ stream-funection

I'; blade circulation

distribution funection of circulation

K- vectorial units in a Cartesian system of co-ordinates

.1[ mass flowing in the time unit referred to an elementary wheel

7

* Presented at the Dresden Conference, June 1967.
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Subscripts

0  state “in the tank”

1,2 entry state, exit state

s, direction s, or, referring to the mid-flow surface
x,y direction x or y, within the projection plane,
P, sc pressure side, suction side

I. The movement equations

According to Fig. 1. the relationship s=s(r), or inversely r=r(s) holds 1rue.

%’; 4
Fig. 1

o,
&
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1la. The continuity equation on the surface of revolution.

Since no change of the fluid mass takes place in the running wheel
during the flow, the continuity equation runs as follows (with the denotations
used in Fig. 2):

[Brdd w,0]ssqs — [Brdd w, o] + [Bds wy 0]y4.40 — [Bdsw, 0] = 0

In order to make calculation easier, width and density should be made
dimensionless; this is done by diving the width, by the entry-width B, and
the density by the so-called tank state density p, viz. dividing the equation
by the product Bjg,,.
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After carrying out the division and the necessary operations, we obtain:

_6_ (r Bo ws) +i ( Be wo) =0
9s B, 0, 39 | B;o,

1/b. Eddying equation on the surface of revolution
The absolute flow is free from eddies:
rot ¢ =0
Again, the absolute velocity in the vectorial sum of the circumferential
speed and the relative veloeity:
rot¢ =rot( +w) =0
or
rotw = — 2

since rot % = 2@, where @ is the angular velocity of the running wheel.
In compliance with STokEs’ theorem, we have:
, dr
[wsds]y + (10, 7d0]s 45 — [we ds]spgo — w5 1d3 ]y = — 20 N dirds (1)
/s
where drids = sin « (Fig. 1)

-

ax

By carrying out the operation and after due simplification we obtain:
8 3 dr

— (wyr) — — 1wy = — 20 —7 (2)
s ad ds

The next step is to make a transfiguration in which angles and proportions
do not change, making the flow problem planimetric. This conform transfigu-
ration is characterized by the relationship:

x = x(s)

y =y

in other words, x and ¥ depend only on s, and 9, respectively. Such a transfigu-
ration was carried out already in some former papers (e. g. [1], [2]).




352 TRAN TAN DAC

With reference to Fig. 3, this transfiguration is given by the equations:

N
A
21 7(s
. (3a)
Nt
dy == ——di}
? 27
from which:
Nt 5 ds
X = > —_—
27 Jor(s) (3b)
Nt .
f— ﬁ )
b, 9 [216
Now we introduce the stream function as follows:
_l - r BQ 1w,
39 B, o, (3¢)
o Be w
Os Big,

As can be seen, equations (3¢) are in full conformity with equation (1)
and equation (2) can be transformed by the corresponding use of equations

(3a). (3b), (3¢).
Ijc. Equation of turbulence in the projection plane

According to the rule of indirect differentiation, we obtain from equation

[2].

9 B, g, rﬂ dx'] dx 8 (Bygy, 1 By dy"_t_JL_
Bx Bo 3x ds | ds 8y | Bo r B8y d9! d9
:—21‘0)——‘zL
s

After having carried out the operations of differentiation, due substi-
tutions and modifications, we obtain

3y Py

4+ —i = Ay = — grad {In——?l—go—
B

o
grad -+ ] 2 sin =

3x? ay? 0 Nt |
(4)

(4 <

Bo ] Qar
B 0, ) (

IL. Calculation of -y

We have to bear in mind that equation (4) represents the exact mathe-
matical definition of the problem, since no kind of neglection has been made
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as yet. In the following, this strictness should be abandoned, hecause the above
partial differential equation cannot be solved in a closed form, since boundary
conditions are too much complicated. The iterative method shall be applied.
assuming that B op,/Bp does not change but in the direction of x:

orad ( BIQO) — 8 B, 0, ]I‘
i Bo 8x | Bo |

and that the function yp(x, v) represents a third degree parabola in the y direc-
tion.
The parabola is expressed as follows:

= {0,5 I BT HL:ILL
3

t

T 0.25J T

v —f(x) ) U;_.‘;:tf_(“'t ] _ 0,25]
| ]

~ b(x) {-ﬂf )
t

where a(x), and b(x) are yet unknown functions of the independent variable «;
f(x) represents the equation of the camber line of the channel hetween two
adjacent blades, and p is a constant that will be determined later on. -

4”'”fJ" ~ 0.25] A, b’{ 6 (;":;i) "f' r_

From what is exposed above, we obtain

P _

e fz",(;_ttiJ f
Y ; ] t
—0.25}_ ...zbf[go,'

_ Lfl 3 l{i] - 0.25}}} | (5)

By introducing the denotation

y—f

"
t
7

t t

o~
g

we shall find the function a(x) with the restriction. that the equation (4)
should be satisfied only at the points
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In this way we have

M= o = L w0251
et
+—b"ﬁ1[ﬁ%——<»25]4—6bﬁl{f;)2] )

and
Ayuax::ua{ e e R LD ql|‘f'] +

y ] L {fT] — b7 [ — 0.25] — 6b7, ( ft ’ ]} | (5b)

t -

—§—2a[

For the final calculation of the function a (x) we shall develop the expres-
sion (dy 5 + dy_;)/2y; as follows:

el St = o ,
) = [2a(L+ %) —f"1—0.166a" ]

from where the differential equation is obtained:

Jw = - th_m

210+ a —0.1662a" = 9‘%’
=Tl

+fre (6)

With equal divisions h, the derivative can be substituted by a difference
quotient as an approximation:

" i <
a == ‘“]‘; (@i4y T @iy — 2a;)
2

By substitating this in (6). we obtain:

Ay .5+ dys, .
i1 1 tz ”t i
]] { 2y IR

)Qwﬂ+mﬂﬂ (7)
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The partial differential equation (4) can be solved only when the troubling
function on the right side is calculated first. This can be done as follows:
The relationship is known as being true:

= 1 | Nt
w = [} = —Bg grad p | - (8)
B, o,
in which
grad Y= _1_8—'1/) _T'..]‘___a_lf,_
Bx Ay

on the basis of equation (3a).

The first step of iteration is based on the assumption that the blade
cascade is infinitely dense, blades are infinitely thin, and consequently all
the stream lines coincide, The basic idea of infinitely thin blades is in common
use for an approximative calculation of turbomachines; it is applied by the
authors [1], [4]. Now, the relative velocity is expressed by means of the blade
form and by p, as a characteristic of the flowing mass according to Fig. 4.

As can be seen:

~ L

[
s
de entry

‘ blay
‘ o
[}
Q
3
Q
<

Fig. 4
, dy Gy
f\ac —_ = — -
dx G,
and thus
G = — Gyf'm

where the subscript <o refers to the idea of a stream line belonging to a system
having an infinite number of blades. Since for such a system the formulae
L]

Gy =grady).], = L
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and

Ge=grady)o o= — 1 fL

hold true, we obtain for the relative velocity

1 Yy T Nt
N ¢ W 4 TN 2 9
Bo t 11 5 2ar ®)
B, 9,

As is known, the quotient g/p, is a function of velocity [1]. if the inflow
velocity comprises a component C;,, this quotient is expressed as follows.

i

* Efgﬁl_]}”j (10a)

>
g

N\

NN\

NN
NN
> \\

LN
NN

AN
\\\\\\\
\
.

Without the said component, the following formula should be used:

2y xzd LJ'* L” #-l (101)
O‘J 2 aO aO

where a, denotes the so-called ‘““tank state’ sonic speed.
Now. the ratic p/p, shall be expressed on the basis of formula (9)

e L L Loy M (10c)
o @, M B 2zt
ag B,

in which the relative velocity w is made dimensionless (being divided by a).

Obviously, p/o, should comply with both the formula (10¢) and either
(10a) or (10b). Taking it as an independent variable, while ufa,and r are consid-
ered as parameters, the value g/g, can be determined as the point of inter-

section of two corresponding curves (Fig. 3).
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To this end, it is necessary to describe the quantities B/B, and f. as
functions of r. For the function fi,, the distribution of circulation in the case
of an infinite number of blades should be determined. By applying STOKEs
theorem on the surface of revolution for the area as shown in Fig. 6, the for-
mula is obtained:

dl’y — 20 —
ds N 3s

dr 2ar 3 [2.71'

wt,’c,} ds (11a)

By transforming it as a function of the variable x in the projection plane,
we have:

{9 12 5
v (x)dx — 20 dr [ :f' ) tdx = — [zpl
B

ds

Béf’" f;] dx (11b)

for which the relationship

and
w, .. (2! B, 0,
i 2ar Bo
N )

has been used.
Now, integrate the latter equation between the limites x(0) and x(s)

210 . "
Pi (37(5)) — “:/:t\;) [7'2 (1) — rl(r(O))] =y, [?(.%f; (l) _

Bo
— = - (x(0 12a)
B(x(0)) o(x(0)) f= (= ))] (2e)

where
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Iy (x(s)) = vr:y* (x) ds
and
; x(0}) = Wy (0>
2 () = 20

For the present problem the appropriate form of the function p¥(x) will
be chosen and thus the function I'j(x) can be determined. Again, the values
w3(0) and ws(0) are known as characteristics of the inflow. Now, when y*(x)
is defined, the value pfp, fi viz. the values g/p, and fi can be separately
calculated by using equation (10c), because the second term at the left side
of equation (12a) and the expression B;gy/B(x)o(x) are known quantities.
Thus, from (12a) we obtain:

, o 1 B x_ZTZO) 2 () — s N
frl == B {n () = =[P () = r5(=(0))] <
" Bioy g0 (x(o»} (12b)
B(x(0) o(x(0))

By putting this into (10—c¢) we can write

vy, Nt

1 _—
Oy a, W B t 2ar
B, (13)

« L/‘ ) L{_@_QLE_ ]\], (x) — 27w (rg_ TZ(O)). L B, o, 1o (T(O)) .

B(x(O)) Q(x(O))

We shall express y, for the case of an infinite number of blades:

and

[ﬂ _ (B8] 4y _ v Nt
- = 49 t 2ar
we can write: .
27
po— g, 2 M (14)
B; o, N Bio, N

The expression of p, does not change for the case of a finite number of
blades.
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Now, the relationship (13) can be transformed as the explieit expression
of wfa,; thus this can be plotted in Fig. 5.
With the known value of /g, the expression

grad(lnM zi[ln _Bﬂj ;
Bo Bx Bo

can be calculated, because the function (B/B,)is known in any case, either the
blade cascades are projected or existing ones are to be checked.

Thus, by accepting the above assumption, the troubling function on
the right side of equation (4) can be determined as a function being dependent
only on the unique independent variable x:

2ar |2
z(x):__.__a_ In M ._a_w_,__qlz‘:)_ "'LT 20 sin 2
dx Bo dx Bio, | Nt |
where
Sy _ _ b
Bx t

as alreédy stated.

- Since the troubling term in equation (4) is considered as a function that
depends only on the variable x, the values of Ay are assumed as not depending
on ¥; and so we can write:

A w-.":"il —.r_ AW“%)

5 = z(x)

Now, the values of z(x) calculated on the basis of an infinite number of blades
should be substituted into the formula (7):

2

t=

T R A |
a;=1{2 _it_.+1) 1.’[ ” | | )

TRE e T i T i (15)
0,166 —] l 0.166l— J
3 h

For an approximative calculation it is important to assess the probable
error, to precise the formula of a possible correction. So we should find the
relationship between the functions a(x) and *(x). In compliance with the
blade circulation we have:

ds =

dl'y = (wy, — wp) dl = (wy s — wy )

cos’ S

L2 L2 Jue gy B
r{ad), r {38d],] Bo

I

3 Periodica Polytechnica M. 12/4.
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where

yww=B”°H3H“—f%ﬂJu+f% (16)

is valid on the basis of

[or] =i+ e e =2

By Jse t t
and
By 1 0.5
| Jz%}—~w@+mw——}
By t t
Consequently:

() — D1 BQ “(x’ (1417 (17)

Starting by assuming an infinite number of blades (i.e. " = f.) the function
y(x) will differ from the starting function y*(x). Thus, the value of f* should
differ from the value of f4. In order to find the measure of modification, the
relationship between the blade shape and y*(x) for an infinite number of
blades should be examined. By using the equation (11b) we have:

2ar |2 3 B,o B,o
tsin o - A 1 R Bt 11 1le
g NI A s

7 =20
As can be seen, the variations of y*(x) are related to the variation of fi.. 0fo,
and f=.. Taking all these variations into consideration would make the correc-
tion of the blade camberline too complicated. So a possible neglection will
be applied by assuming that a small variation of y*(x) does not bear on the
values of f. and of 3/8x B p,/Bp. In this way, the approximation

" (x) ey 62 il 18)
Bo
should be accepted as the relationship between a small variation of the dis-
tribution of calculation and the variation of fZ in the case of an infinite number
of blades.
For obvious reasons we can assume, in the case of a finite number of
blades, a similar relationship between the variation of v(x) and the variation
of f”; namely, in the case of a finite number of blades, the formula

Bo

o7 = — 5y(x) (19)

Y By,
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serves to express the necessary correction of the value f”.
Again, for oy(x) we can write:

) =y (1) = D22 2, 2D (1 (20)

=

By substituting the result obtained from (20) in (19), the value §f” can be cal-
culated, and the channel profile line can be corrected. The approximation is
repeated as many times as is necessary to make of" disappear.

In order to determine the cascade of blade, first the values according to

(12b) are applied; after a(x) is determined, the distribution y(x) is calculated
on the basis (17), and with these the values of §f” can be determined.

The subsequent steps of caleulation are:

1 — Calculation of frequency distribution ¢/p,by using equations (10a),
(10b), and (13), resp., on the basis of a funetion of distribution
suitably chosen.

2 — Determination of the value of f. on the basis of the frequency
distribution as given by formula (12b).

3 — Calculation of the values z(x)t*/y,, and f”t on the basis of known
values of g/p, and fZ; calculation of a(x) by using formula (15).

4 — Determination of the circulation distribution by means of the
relationship (17).

5 — Determination of 8y(x) by means of formula (20).

6 — Determination of 8f” by the formula (19); calculation of 8f' from 9f".

7 — Correction of the values f"(x) and f'(x).

By these 7 steps the first iteration is completed. The second iteration

starts with the 3rd step, by keeping the value [z(x}t*/p,] unchanged. When the
iteration is carried out, b(x) is calculated from a(x) by using the formula

Ayz— s _,
2y,
and consequently:

24a’ ft + 12af"

lfifoeraa] ] E

In the case of but a small number of blades, the deviation caused by the
assumption 8/9y 0fp, = 0 is larger, and the correction according to (19)is no
more effective. So another type of a correcting formula should be applied.

As is known, the velocity distribution and the statical pressure distri-
bution along the direction y can he considered as a rather straight line [3].
On this basis the following assumption seems to be justified:
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w 0 w ) ) o
—'j o —] : cos ﬂactual = "__l —“] ~cosf,., (22‘)
"

@, lactual,mean 0, |actualmean a, Jn %o

where the subscript n denotes the values obtained after the n™" iteration of the
correcting formula (19), and we have

Again,
w 1w
L =22 (23)
Ay Lctual,mean a, :L
The assumption
4 ] 0
O ——
Qg Jactual mean Oy In
is justified.
Therefore,
w w
+ Cos ﬂact’ual = cos ﬂn (24‘)
a, Jactual mean : ay |n

Only, the quantity cos factual is not known as yet. Since

Tregp 11177

=]

. we obtain, from formulae (23) and (24):

w - 75 w 7o
—] 1 1 +fn— = —] V]» “{”faEtual

ay a,

and also

2

w ‘! l..
a = ’ 19 D=
o= g - (25)
al.) Jn }
By taking this value of fictuar and using formula (17), e(x) can be deter-
mined by keeping 9*(x) unchanged. Then the new values of b(x) are calculated

from formula (21). Using the obtained values of a(x) and b(x) we can use the
two equations which precede formula (17), and thus we obtain the new values

of
.
(»a—w—) and L
8y /s 9y |

4 —_—
factual -

, and also
p
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w 1[(10 ‘ [w]]
== =
ay 2 Qg | s¢ ay ) p.

This is now the value wfag),.;.

the value of

As a second step of approximation, we calculate:

’w] 2
a, |

foa= |/ 2=t A Lf2) —1 (25b)
]

Starting from this with a new series of iterations as deseribed above, we
continue iterating as long as the quotient

{ w ] w } }
ay in Ay ni-k

becomes equal to 1 (with k= 1,2,3...).

As seen from what has been expounded above, the first step of this
second series of iterations starts with values of w/a,], and f), obtained from
formula (19).

As our last argumentation, let us compare the numerical results of our
method, dealing with a running wheel of radial flow, with the results as obtain-
ed by the method of singularities [4]. (Fig. 7)

The numerical data are:
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~06-05-02 00 02 0% 06 06 10 12 14 16 F

-02

Result of this method

————— Result of .the method of the singularities”

Fig. 8
2c,
Pig =2 = 1.2
Uy
= Cor =0.3
uz
M* =" 07
a,
: YigTals -~
P¥(x) =22y (¢
(x) NL 7€)

where

2220

—~

E—0.2)8 — 1.111] h(&) — [(§ — 0.2)3 h(s — 0.2) +

+ (£—0.83h(&— 0.8)] -+ [Ei-‘—z—(—)— (&£ — 0.8)3 — 1.111] h(¢§ — 1)
and
L = Nt ln-ﬁ-
2n ry

Notably, £ = 0 corresponds to the value

Nt
X = Inr
27

and
§ = 1 corresponds to the value x, = Nt/2zlnr,
and the functions h are step-wise functions of the unit-step.
The diagram in Fig. 8, is a comparison of the results of both methods.
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Summary

This method for calculation of a hydrodynamical cascade of blades is suitable to project
the blade-system of turbomachines having a great number of relatively thin blades.
The task is to determine the camber-line of a running wheel in the meridional section, when
pressure, flowing quantity and the recommended number of blades are given. The problem,
having originally three dimensions, is reduced — by dividing the wheel and by means of a
conform transfiguration — to a planimetric question. The approximative solution is carried
out by the introduction of a stream-function, through iterations. In the case of a relatively great
number of very thin blades, this methed proves to be quicker than the known method of cal-
culating the singularities.
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