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The signal transmission in a pneumatic regulating system i" often carried 
out to a long distance through a narrow piping: thm, the questions we haye 
to put are: how thc frietion in the air fillcd piping acts as damping factor and 
how the form of the signal may be distorted. 

In this paper this problem will be dealt "with, for the case of the simplest 
initial signal having a sine form. Besides, frequency and amplitude are freely 
chosen ,\ithin ccrtain'limits. Anyhow it is necessary to haye a rather small . . 
amplitude compared with the unit. 

The objeet of our eonsideration is a long (on prineiple infinite) air-filled 
tube; on one end there is a piston moying in periodic motion e.g. A sin w t. 

Our task is to determine, on whiehever point of the tube, the displacement of 
a gas particle from the point of equilibrium: CP(x, t). Thus, cP (x, t) denotes the 
displacement of the particle with thc original position of x at the moment t. 

~ow, in describing the motion, the Lagrange method will be applied: 
this choice is advantageous, because the displacements in question, in relation 
to the point of equilibrium, are of the smallest range. In this system, cb and Cb 
denote the velocity and the acceleration: both bound by more complicated 
forms of expression, if the Eulcr method is applied. 

As is known, the differential equation relating to frictional motion, has 
the following form: 

., 
a-

___ 0 __ CPxx - CPtl - bo(l + CPx) CP, = 0 
(1 + CPJ"-':-l .... ' .. .. 

According to the above described case, the boundary conditions are: 
at the front-end of the tube, we assume a harmonic oscillation, haying a fre­
quency (I) and an amplitude A; 

cp (O,t) = A sin wt 

and according to further suppositions, due to the influence of friction, at an 
infinite distance, the motion eeases i.e. 

Hm CP(x, t) = 0 
x~", 

3* 
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Further, considering the process after a fairly long period of time, it 
disappears under the steady influence of the friction and the initial condition. 

The physical para meters in the differential equation and the boundary 
condition are: ao[mjsec] = 340, the sound velocity in the air; " = lA (con­
stant, dimensionless), pipe diameter 5 mm, and accordingly: bo = 16 [sec-l], 
if> [m], if>x (dimensionless), if>xx [m-l], DJ [sec-l], A = 0.05 [m]. 

With a if>x ha'\ing a value small enough, i.e. for waves having a rather 
flat form, the approximative form of the differential equation is: 

bo -') if>t = O. 
ao 

NB: It 'was GRUBER who drew' attention to this problem. 
The po,:;itiye parameter }, shall be introduced as follows: 

? A(~ 1) ~ 1. 

With this, the differential equation will be modified: 

1
1 - ;. if>.x 1 if> xx 
, A J 

The function if>(x,t) that satisfies both the differential equation and the bound­
ary condition. can be written according to our supposition as a progressive 
series of POWPfS of ?: 

. .:c 

""( ) ",,' • n tjj ( ) '01.' x, t = /' J. _ Tl x, t . 
~o 

With this, the differential equation can be written in this form: 

After rearrangement aceording to powers of }., the functions if>n are described 
by the following series of differential equations: 

(1) 

(n = 1,2, ... ) (la) 

where 

(n=0,1,2, ... ) 
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Obviously, the boundary condition can be separated: 

(n = 1,2, ... ) 

(n = 0,1,2, ... ). 
x-.. cc 

Let us try to establish the function CPo in the following form: 

From this, we obtain for U o the differential equation of ordinary type: 

Introducing the notation: 

we obtain 

• J a-

The solved equations are: 

a 

f3 =_1_ 
V2ao 

1 

ag 
. wbo ( 
L--= a ., a­o 

, (l)bo 2af3 = - -- . 
ag 

(!) 

!ima = -­
ao 

- w), l ' f3 - bo - 0093 -99411 Im - -- - . ~;). , , . 
(:)-:-0:::: 2ao 

For U o (x) we find the simple solution: 

ult:) = COl sin (a + i /3)x + CU2 cos (a -+- i (3) x 

and by considering the boundary condition we have: 

Cm = A, -iA 

i.e. uo(x) = - iAe(-P+iu)x . 

147 
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Table I 

" :-) -(1. ~p'-3a') 

50 0.295051 

100 0.001027 0.003056 

150 0.023496 
i 

1.323721 0.002300 i 0.006873 

200 0.023511 1.764887 0.004081 . 0.012216 

250 0.023517 0.735670 1.470776 0.023528 i 2.206015 0.006370 0.019085 

300 0.023521 0.882665 ; 0.023527 1.764872 0.023528 2.647218 0.009169 0.027481 
I 

350 0.023523 1.029684 i 0.023528 ! 2.058982 0.023529 3.088289 

400 0.023524., 1.176726 0.023528 2.353092 i 0.023529 3.529473 

0.012477 0.037404 

0.016293 0.048854 

450 0.02352:; . 1.323749 0.023528 2.647206 I 0.023529 3.970658 0.020618 0.061829 

500 0.023526 ' 1.470790 0.02:3528 ! 2.941328 0.023529 i ·1..411842 0.025453 0.076332 

Accordingly. the real portion of the differential equation (I) is: 

ffi .4 _ i1x • ( I ) 
'P't) = -"'Le SIn a x T wt . 

This solution satisfies both the differential equation (I) and the boundary 
condition (2). 

Based on the second differential equation (la) we write 

(3) 

and from the boundary condition (2): 

lim !J>l(;-r, t) = O. (3a) 
X-,-O:: 

By complementing 'with the perturbation member, we obtain the second 
differential equation: 

+ a(3p2 a2 ) sin 2(ax -+- cot)] . 

For the range w > 50 the above constant between brackets 

(P) I 
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-:f- (3p'- a') 
p' - 3a' 

P, - /3 /3, P 0.1 - 2a a~ - 3a. 

i 
0.001529 0.884,043 0.H3024 6.4061 335.832 0.000214 0.000237 0.002717' 0.004506 

0.012599 3.641253 0.883291 12.5795 338.923 0.000056 0.000066 0.001399 I 0.002488 

0.042751 8.236790 ; 1.324155 i 18.8032 339.519 0.000025 0.000030 0.000935: 0.001684 

0.101527 14.670676 1.765179 25.0400 339.728 0.000014 0.000016 0.000706 , 0.001231 

0.198465 22.942611 2.206257 31.2819 339.826 0.000009 0.000011 0.000563,0.000994 
I 

0.343108 33.052759 2.647367 37.5265 339.880 0.000006 0.000007 0.000458 0.000776 

0.545005 • 45.001883 3.088513 43.7731 ! 339.910 0.000004 0.000006 0.000385 0.000762 

0.813720 58.791305 3.529708 50.0217 339.926 0.000004 0.000005 0.000360 0.000706 

1.158712 74.415090 3.970830 56.2687 339.9'13 0.000003 0.000004 0.000292 0.000590 

1.589602 91.878960 4.411994 62.5171 339.953 0.000002. 0.000003 0.000252 0.000528 

IS negligible. This will easily be understood, after introducing the notation 

a 
- = k(o). 
f3 

Accordingly we can ,..-:rite: 

1) ?8 - 3 k 2 (J3 

k2) ?8 k3 fP 

where k (50) 6,4, and shows a monotone increase with (I) increasing. (Table 1) 
Re,v-riting the perturbation member in exponential form: 

where 

"'I = ia). 

When looking for a solution of the differential equation (3), the presumed 
form remains the same. Here the perturbation member is composed of two 
parts, and thus the assumed solution will take the form: 
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So, the function Un and U I2 are described by the differential equations: 

(4) 

With the general solution of these differential equations "we find the 
solution that "\\-ill satisfy both the boundary condition (3a) and the conditions 
expressed by 

U"j(O) lim uIj(x) = 0, (j = 1,2) 
x-~::::.: 

Let us introduce the notations: 

and 

we obtain: 

4m2 ., 
--- L2m 

ag aB 

V2 uI =--
ao (1

") bg 
(I) ! or -L 4 

y9" 1 r (I r b
2 

J" PI = a~ / (1).1 (1)2 + f - (I) • 

(4a) 

By considering the second part of the boundary condition (3a) we obtain 
as solutions for the homogeneous differential equations to (4): 

resp. 

The constants Cll and CI2 must be determined according to the condition that 
the solution of (3) should satisfy the first part of the boundary condition 
(3a). This can be achieved, if we put, for the general solution of the inhomo­
geneous differential equations the following conditions: 

Un (0) = 0 resp. Un (0) = O. 
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As the particular solutions of the inhomogeneous differential equations 
(4) the follo'V-ing functions are to be found: 

resp. 

where 

B- 1x -
U 12 i = 1 e 1 = Ulli 

- - r - a~ + L - ~ - a- . ""1 ,. I (3(3" » • I ((3> 3")] 
8 2(3 2a 

Thus, solutions of (4) satisfying the boundary conditions (4a) are: 

With these, the solution of the differential equation (3) IS: 

A { .,.[ 3(32 - a 2 

= 8 e--i1x --(3-- cos 2(ax wt) (32 - 3a2 J a sin 2(ax + wt) -

This solution satisfies both ·the differential equation (3) and the boundary 
condition (3a). 

According to (la), the differential equation to be soh-ed is: 

(5) 

and the pertaining bOlmdary condition: 

W2(0, t) = 0, lim W./x, t) = O. (5a) 
X-,·cc 

If we adhere to the above applied form of the function the perturbation 
member 

in the differential equation, (5) could be established in a most complicated 
form only; therefore, it is ady-isable to find a simplification in the formula of 
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the function (/)1' This is possible, 'when the members containing the coefficient 

132 - 3a
2 

are, in a range of OJ that surpasses a determined limit (e.g. OJ> 100) 
a 

neglected: this is the more justified, the higher value of (I) is. Furthermore, 
the approximative equalities ,31 ~ /J and a l ~ 2a will be, the more accurate as 
the value of OJ becomes higher and higher (Table 1). Of course, the value of :to 

must be kept ,\ithin certain limits. By omitting the negligible members 
we have: 

After having carried out the necessary calculating operations, the per­
turbation member of the differential equation (5) takes the form: 

where 

~:!.l -

6[a(3r3~ 

2[ ( ., I )") . • 3~( 0 , )")] a a- T P- + I jJ a- -+- P-

Z23 == 

3UJ - i a), 

(2/) - i a), 

- (3fi 

':':!.·1 -

:; e(" x- 13wt) 
..... 2-1 

i a) 

i 3a). 

The solution of the differential equation (5) ean be formed as the sum of 
the solution of the homogeneous differential equation and that of the inhomo­
geneous differential equation: 

When looking for a solution for the homogeneous equation, the same 
form as before can be maintained: 

rr. _ () 13wl I (.) -·13wl '¥zlz - U Z1 :to e T U Z1 x e ( 0) iwl I () -iill! u 2 :2 x e I U 2:!..X e . 

Consequently the functions U 2j and UZj (j 1,2) have to be determined_ 
namely, supposing that (/)2 satisfies the boundary condition (5a). 
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The solution of the homogeneous differential equation involves the 
following differential equation: 

and its conjugated pair, By introducing the notation: 

a'2 o 
(a., 'p )2 1 2 

'we obtain: 

a;; == .) w- b" ) t+w 

p., = 
3 

Combining these expressions 'with the aboTe'ca-lculated--quantities a, P 
and aI' /\ the foIlo'wing can he easily verified: 

and 

lima= 
(I) 

lim P = lim PI = lim pz 

2(1) 
l
' 3(0 
Ima2 = ---

w--x 

b 
_0_. = 0,023529411 , , , 
2ao 

For the range w > 100, the following approximations are valid: 

a2 ?-S 3a 

Further, it can easily be proved, that by applying the above accepted 
rule of formulation, we obtain: 

lim an = (I) 

n-"" 

and lim Pn = ~-
n--= 2au 
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whence 
an 7S (n + 1)0. and /lll?s (3, (n = 1,2, ... ) 

in a certain range co > Q (with the already assumed data Q = 100). 
We find the particular solution of inhomogeneous differential equation (5): 

A 3(30 0 
(jj . - _-' ___ - - 0.- (B e~"x+i3d --L B- e;"x-i3wt --L B e;"x-'-iwt 
~ ?l - ?1' "1' I .).) - 32 fJ - - --

where 

1 (30.2 
- (32 3(32 - 0.2 

\ I! " 3{P - 0.'2 )' 
Bn = 2, a + i--

fJ
--) 7S 2 \30. T L ~-(3--, 

B.).) = - - L 7S - a - ], -
1 

t
' (0 fJO) 0 'fJ" ')', 6(3°' 1', .) ) a 0.- - . a- T:'>- a-! - I' ( . a-

-- 2 a2 -L 4[32 /3 0.2 -I- 4fJ2 ,2 (3 

0.(5(32 - 60.2) 
B 23 = -'-------'----'--'----

40.2 + 9fJ2 2 
. 15 fJ 
L-J 

4 

a(3(83fJ2 - 1480.2) + i(48a 1 - 1680.2(32 +- 15(3'1) [ . 8 0.2 

Bo = 7S-3a-,-L--. 
_.j fJ(36a 2 + 25fJ2) . 3 fJ 

All the approximative expressions are motivated for the range (!) > 100. 
Taking all that has been stated above, the approximative solution of 

the differential equation (5) can be 'written as fo11ov,.-s: 

Wo N - e-{Jx 2 cos(ax + cot) Aa 3fJ2 - 0.2 
. f . 

~ 32 fJ 
3 cos 3(ax + wt) - ; [sin(a;~ --L wt) -

- : sin3(ax + wt)] - e-{Jx [3 cos(ax + cot) 6 cos 3(ax wt) + 

+ ~ ; sin 3(ax + cot)] e-2
{3X [cos(ax + cot) +3 cos 3 (ax + wt) + 

+ ; (sin(ax +- cot) + sin 3(ax wt))]l. 

This solution satisfies both the differential equation (5) and the boundary 
condition (Sa). 
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Consequently - on the condition that the value x remains below a 
certain limit - the function lP(;t, t) as an approximative solution will 
take the form: 

lP?0 A e-rx {sin(aX + wt) - !L (1 - e-PX) cos 2(ru: , 8 wt) -

- e-· SIn ax - wt - - -- - e-'" [(1 ofJX)' ( ) (' ;:; 8 Ox 

32 ' ,3 3 

where 
_ a 2 

q=?---­
(3 

2e-{3x e -2!iX) cos 3(ax + wt) ]} 

3{32 - a2 
= A(% -L 1) 

/3 

When the yalue of w increases (e.g. co > 200), the solution can be expressed 
by neglecting further members. In this way: 

: (1 - e-{lX) cos 2(ax -j- fJJt) 

:~ I (1 - e-2
!iX) sin(ax + wt) - (: - ~ e-Px + e-215X

) sin 3(ax -;- wt)]} . 

Of course, when w is increased, the value A has to be diminished, first in order 
to have a convergent series, and on the other hand, for the sake of good approxi-

3{32 - a 2 

mation with the first three members. Thus. the value of the product A --C-__ _ . P 
has to be kept within a certain limit. It can be foreseen that the convergence 
is surdy exists, if 

I 3P2_ a2 

l
A <0.4. 

P i 

In considering the solution lPthe solution of the linear equation (1) proves 
satisfactory as a good approximation for the case of flat waves. This flatness 

- a2
1 of 'waves is only sufficient. if the value of A -'----- is small enough; con-. . I p 

sequently the approximation 
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as was put in the original differential equation, is motivated only on the same 
condition. 

When for the sake of simplification, only the linear differential equation 
is to be taken as basis of calculation, 'we find, that with the solution <P we have 
good information on the magnitude of the neglected members and also on 
the possible limits of the quantities A and w. 

Summary 

In this paper, the approximative solution of a pneumatic telemechanical controlling 
problem is treated, that involves a quasi linear equation, when the physical parameters are 
assumed to be within certain limits. The solution of the differential equation is found by using 
the Calculus of Perturbation. This method serves as a good hasis to estimate the range of the 
physical parameters for the sake of an acceptahle approximative calculation of tiie lincar 
differen tial equation. 
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