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The signal transmission in a pneumatic regulating system is often carried
out to a long distance through a narrow piping; thus, the questions we have
to put are: how the friction in the air filled piping acts as damping factor and
how the form of the signal mav be distorted.

In this paper this problem will be dealt with, for the case of the simplest
initial signal having a sine form. Besides, frequency and amplitude are freely
chosen within certain limits. Anvhow it is necessary to have a rather small
amplitude compared with the unit.

The object of our consideration is a long (on principle infinite) air-filled
tube; on one end there is a piston moving in periodic motion e.g. 4 sin o t.
Our task is to determine, on whichever point of the tube, the displacement of
a gas particle from the point of equilibrium: @(x, ). Thus, @ (x, t) denotes the
displacement of the particle with the original position of x at the moment ¢,
Now, in describing the motion, the Lagrange method will be applied:
this choice is advantageous, because the displacements in question, in relation
to the point of equilibrium, are of the smallest range. In this system, @ and &
denote the velocity and the acceleration; both bound by more complicated
forms of expression, if the Euler method is applied.

As is known, the differential equation relating to frictional motion, has
the following form:
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According to the above described case, the boundary conditions are:
at the front-end of the tube, we assume a harmonic oscillation, having a fre-
quency o and an amplitude A;

@ (0,8) = A sin ot
and according to further suppositions, due to the influence of friction, at an
infinite distance, the motion ceases i.e.

lm &(x,1) =0
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Further, considering the process after a fairly long period of time, it
disappears under the steady influence of the friction and the initial condition.

The physical para meters in the differential equation and the boundary
condition are: ay,[m/sec] = 340, the sound velocity in the air; » = 1.4 (con-
stant, dimensionless), pipe diameter 5 mm, and accordingly: by = 16 [sec™1],
D [m], @, (dimensionless), D, [m™1], w [sec™1], 4= 0.05 [m].

With a @, having a value small enough, i.e. for waves having a rather
flat form, the approximative form of the differential equation is:
b
— P, =

i

ay

a;
NB: It was GRUBER who drew attention to this problem.
The positive parameter A shall be introduced as follows:
A=A+ 1)< 1.
With this, the differential equation will be modified:
"1__3.@X @ %@ff_ﬁ@f:o.
\ J
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The function D(x.t) that satisfies both the differential equation and the bound-
ary condition. can be written according to our supposition as a progressive
series of powers of i:

With this, the differential equation can be written in this form:

{ 1 = o 1 = b o
o sn--1 an NN 0 ~pgn —_
l——— ¥ Do SMPpye —— DDy — . VD, = 0.
<1 n=0 n=0 ag n=0 ay n=0

After rearrangement according to powers of 4, the functions @, are described
by the following series of differential equations:

D[D,] =0 1)
]_ n—1
D[P,.]= ———Z @(n_]_#)_\, @;m‘; (n=12,...) (1a)
A=
where
1 b,

D[@n]E@nxx_T@nlt—'—Tin; (n=0,1,2,...)

as ap
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Obviously, the boundary condition can be separated:

D [(0,1) = A sinwt

D,(0,t) = 0,

(n - 1, 2, . )
lim @,fx.8) = 0,

X 0o

(n=0,1,2,...).

Let us try to establish the function @, in the following form:

D (%, 1) = uyfx) ™

From this, we obtain for u, the differential equation of ordinary type:

[ ? wb,
o+ l— —i—juy=0
\ag g
Introducing the notation:
w? wh, s s
— — i = (e + i)y
as ap
we obtain
w? wb
a’2~—ﬂ2: > 2(1/3:-— 00—.
a? aj
The solved equations are
1 ) ®
4= — 1;a)(]/o)~~{—b5—}~w), limo = — —
V.‘Za s a
0 0
1 / 2 2 M b() < =3
g = oo +b; — o), limf = —2 = 0.023520411 ...
V—'Z_ao s €5 2(10
For u,(x) we find the simple solution:

uy(x) = Cy, sin{a 4+ i f)x 4 Cy,cos (@ + i f) =
and by considering the boundary condition we have:
Cyp=—1i4d
i.e.

ug(x) = — pdeA+inx
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Table I

p~3a9)

r::Lb}

@ s | - 12 - B2 Qs g (F* + a¥) | —

50 | 0.023241 0.1488845} 0.023455 | 0.295051  0.023478 | 0.442146 0.000264 0,000766
100 | 0.023455 | 0.295052  0.023510| 0.588705  0.023521 0.882668 0.001027 0.003056
150 | 0.023496 0.411802 | 0.023521) 0.882668 0.023526 1323721 0.002300 0.006873
200 0.023511 0.588706 0.023525 1.176706 0.023527 1.764887 0.004081 0.012216
250 0.023517. 0.735670 0.023526| 1.470776 0.023328 2.206015| 0.006370  0.019085
300 | 0.023521 0.882665 0.023527 1.764872 0.023528 2.647218 0.009169 | 0.027481
350 | 0.023523 1.020684| 0.023528 2.058982 0.023529 3.088289 0.012477 | 0.037404
400 | 0.023524. 1.176726 0.023528 2.333092, 0.023529 3.529473 0.016293 0.048854
150 0.023525 1.323749 | 0.023528 2647206 0.023529 3.970658 0.020618 0.061829
500 | 0.023526 1.470790 0.023528 2.941328 | 0.023520 4.411842 0.025453 0.076332

] | |
i ! ' i

Accordingly, the real portion of the differential equation (1) is:

D, = Ae=" sin(a x + ot).

This solution satisfies both the differential equation (1) and the boundary

condition (2).
Based on the second differential equation (la) we write

1
D [@1] = _:1“ ®0x (D().\':: (3)

and from the boundary condition (2):

@,0,t)=0,  lim®,(x,1)=0. (3a)

Ko 00

By complementing with the perturbation member, we obtain the second
ditferential equation:

D[?,]= ;;1— 9_2'3x[— pla2 + 52) -+ B(B* — 3a?) cos 2(ax + wt) +
+ a(34% — a?) sin 2(ax + )] .
For the range » > 50 the above constant between brackets

—Blaz + 52)
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382 — ot 2 32
I

—=  hB=F | B—F | m-2 &=l

|
wl g

0.001529 0.884043 0.443024  6.4061 . 335.832 ? 0.000214 0.000237| 0.002717 0.004506
0.012599 3.641253  0.883201 125795  338.923  0.000056 0.000066| 0.001399 0.002488
0.042751 8.236790 1.324155 18.8032 | 339.519 0.000025 0.000030| 0.000935 0.001684
0.101527 | 14.670676  1.765179  25.0400 @ 339.728 0.000014 0.000016; 0.000706 0.001231
0.198465 22.942611‘ 2.206257, 31.2819 | 339.826 = 0.000009 0.000011 0.000563‘0.000994
0.343108 | 33.052759! 2.647367| 37.5265 | 339.880  0.000006 / 0.000007 0.000458,0.000776
0.545005 | 45.001883 ! 3.088513 | 43.7731 | 339.910 0.000004| 0.000006 0.000385}0.000762
0.813720 © 58.791305; 3.529708 | 50.0217 | 339.926 0.000004| 0.000005 0.000360 0.000706
1.158712  74.415090 3.9708307 56.2687 @ 339.943 0.000003 0.000004  0.0060292!0.000590
1.589602 | 91.878960 | 4.411994| 62.5171 | 339.953 0.000002, 0.000003 0.0002520.000528

is negligible. This will easily be understood, after introducing the notation

a
—— = k{w).
3 ()
Accordingly we can write:
—Bla = B = R )~ — R
ppr—3a%) = —PB K — 1)~ —3Kk? 3
a(33 — o) = — k333 — B) A« k3 3

where k (50) = 6,4 and shows a monotone increase with  increasing. (Table 1)
Rewriting the perturbation member in exponential form:

Rl(x$ 1) = _'i (zle:u:—i-i:?w: Lz e’,;x—iZwt)
4

where

When looking for a solution of the differential equation (3), the presumed
form remains the same. Here the perturbation member is composed of two
parts, and thus the assumed solution will take the form:

B (%, 1) = u (x)e2 4 up,(x)e 2,
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So, the function uy; and u,, are described by the differential equations:

42 . b A
uyy - — 120 2| uy, =z
11 7 5 5 | ¥ 1
ag aj 4
" do? b, A z
! ; 0 —_ T T phx /
uyy + |[— +z2w—:)u12—.—.ule~ . (4)
as ag 4

With the general solution of these differential equations we find the
solution that will satisfy both the boundary condition (3a) and the conditions
expressed by

u,(0) = lim uy ;(x) = 0. (j=1.2) (4a)

42 . o )
P 2)”_:,'_((‘1“"7‘/5’1)
ag aj
and
4w ,
9 —rzlw——o—:(al—zﬁl)’
ay 0

we obtain:

ﬂl:L ]/ U)”,‘/ w2 -%——ZQ--—U)J.

By considering the second part of the boundary condition (3a) we obtain
as solutions for the homogeneous differential equations to (4):

Uy, = Gy~ Gimiox Tesp. Upgp = Cppe=Euriodx,
The constants C;; and C,, must be determined according to the condition that
the solution of (3) should satisfy the first part of the boundary condition

(3a). This can be achieved, if we put, for the general solution of the inhomo-
geneous differential equations the following conditions:

uy; (0) =0 resp. Uy, (0) = 0.
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As the particular solutions of the inhomogeneous differential equations
(4) the following functions are to be found:
uy, ;= B, e resp. Uy = B es = u;

where

A

Thus, solutions of (4) satisfying the boundary conditions (4a) are:
1y, = B, (e(~28=120)% _ g(—fi+ie)x)
Ugg = Ugy-

With these, the solution of the differential equation (3) is:

@l —_ "11(-‘3) ei‘?_wi . ﬁll(x) e—-i?wt —

o cos 2(ax -+ wt) — sin 2(ax + cot)] —

21

B _fi_{e—iﬁx[ 362 — a2 f2 — 3a2

38— a2 2 _ 32
— e—wc[i# cos(a,x 4 2mt) — ﬁ____a

3 . sin(ax -+ ?_a)t)”.

This solution satisfies both the differential equation (3) and the boundary
condition (3a).
According to (la), the differential equation to be solved is:

D[@z] = (®0x gDl.\’x "IL @1.\' @Oxx) (5)

1
A
and the pertaining boundary condition:

D,(0,1) = 0, lim @,(x,1) =0. (5a)
X—rcc

If we adhere to the above applied form of the function the perturbation
member

1
Rz(xv t) = "Z (Dox ®1xx + @n Do)

in the differential equation, (5) could be established in a most complicated
form only; therefore, it is advisable to find a simplification in the formula of
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the function @,.This is possible, when the members containing the coefficient
B2 — 302
a
neglected: this is the more justified, the higher value of » is. Furthermore,
the approximative equalities 5, ~ § and a; ~~ 2a will be, the more accurate as
the value of @ becomes higher and higher (Table 1). Of course, the value of x
must be kept within certain limits. By omitting the negligible members
we have:

are, in a range of o that surpasses a determined limit (e.g. w > 100)

A 3p7 —a? ! 5
D, Ao — — ‘8——-1 e (1 — e%) cos 2(ax—+wt) .

8 B

After having carried out the necessary calculating operations, the per-
turbation member of the differential equation (5) takes the form:

/ 32 o2 _
R,(x, 1) = _;17_ é”__/g_a_ (z,, €5ux+i8et Lz ghax—iBut 1z ghuxtion
+ Tay graXTiat | Zy3 graaX—fwt _:_ By, € X+i3ut 1 524 eZ‘ﬁ x~i3cut)

my = 6[a(33* — o) + i (3 — 3a)]
2y = — 2[afa® + 52 + i 3p(a? + )]
Ty = 30.[32 ":— iﬂ(3a2 —‘!-' 2 ﬂ"‘)
5, —  a(8a — 138%) - i 3(18a% — 332)

Ly= —3(3 —ia) = — (3 —ia)

L= — (28 — i), Ly = — (23 — i3a).

The solution of the differential equation (53) can be formed as the sum of
the solution of the homogeneous differential equation and that of the inhomo-
geneous differential equation:

D,

I
S

}A
S

When looking for a solution for the homogeneous equation, the same
form as before can be maintained:

D, = uyy(x) €390 1w, (x) e B39 1oy, (x) e L u,,(x) e

2

Consequently the functions u,; and u,; (j = 1,2) have to be determined.
namely, supposing that @, satisfies the boundary condition (5a).
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The solution of the homogeneous differential equation involves the
following differential equation:

)
s 9w b 3w e —0
21 7 ., 05| %o =
a; a;

and its conjugated pair. By introducing the notation:

G w2 ., 3w i s
— — iby—— = (&, + if,)*
@y ag
we obtain:
:’ﬁ jTm— N
3 b2
@y = — == |/ w|| o+ )
V2a, ¥ 9
30/ [, b
52 = |/ W /' M= —— = o~ D] .
1'/ 2a, | | 9

Combining these expressions with the above calculated—quantities a,
and «,, 5, the following can be easily verified:

. ) . 2w . 3w
lima= — —, ma, = — —, lima, = — ——
[opm a, fr—_—— a, - a,
and
. . . b
lim 8 = lim 8, = lim f, = —~ = 0.023529411...
)= oo [ P 2(1,0

For the range o > 100, the following approximations are valid:

Further, it can easily be proved, that by applying the above accepted
rule of formulation, we obtain:
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whence
ap~n-+la and Fy~p, n=1,2,..))

in a certain range w > O (with the already assumed data Q = 100).
We find the particular solution of inhomogeneous differential equation (5):

@‘)i — .:_/{_—-3_@2 — a?- (B.)l efe;x-l—!gwf _:__ E"l ei‘x—i&uf + B.«,') e:ux+[wt + E.):) eE_;gx-»z'mt_:,
2 39 ﬁ 2 2 22 22
+ B23 e::3x+i(uf _E_ -—B.QS e;;:gx—i‘ﬂt _I_, E;;24 e:3=x+i31!)t _}__ B_;4 ei;x-—f&uf)
where
Bn:—l—(ga"" L 3/3~—a~1%_1__{3 . iéraa—
2 a ‘ ] 2 B
[ 2.1 A2 2 L 432 2 1. [A2 2
B-)o:'}’” a(a lﬂ)—‘l«a ‘/g ¢ ‘6/3 lm—lw a—~1a
279 e ape 5 a@-4p] 2
By, = a(54% — 6a2) 4~ ig(15a2 -+ 632) o ia LY
> da? 1 9B 2
b _ oB(83F —148a%) L i(48at — 168032+ 158 L .8 o
* B(3602 - 258?) 3B

All the approximative expressions are motivated for the range o > 100.
Taking all that has been stated above, the approximative solution of
the differential equation (5) can be written as follows:

D, A2 Ao 32— e~Px {2 cos(ax + ot} -+ 3 cos 3(ax + wi) ——% {sin(ax + wt) —

*T32 B

~

— ~;—— sin 3(ax - a)t)} — g% [3 cos{ax -+ wt) -+ 6 cos 3(ax -+ wi) +

8 I3 Ay )
-+ Y sin 3{ax - wt)} -+ g [cos(ax + wi) +3 cos 3 (ax + ot) -+

(sin(ax - wt) 4 sin 3(ax + o)t))” .

This solution satisfies both the differential equation (5) and the boundary
condition (5a).
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Consequently — on the condition that the value x remains below a
certain limit — the function P(x,f) as an approximative solution will

take the form:

D A A e {sin(ax + wt) — —g~ (1 —e™) cos 2(ax + wt) -
g g ‘ (5 8 oo ol . .
ot (1 —e™*%) sin(ax — wt) — |— — — ™ -+ 7| sin 3(ax 4 wf) —
32 [ 3 3
5 e n , 3p v o
— e (287X L e cos(ax+ o) — —— (1 — 2P e ™) cos 3(ax + wi)
a a
where
g=2 = oy =
fod fal
P P

When the value of » increases (e.g. w > 200), the solution can be expressed
by neglecting further members. In this way:

D~ Ae0x {sin(ax + ) — ~§-— (1 — e cos 2(ax - wi) -
-+ %] (1 — e~ sin(ax + o) — 2 ~83— e L e7%%| sin 3(ax + wt)]} .

Of course, when o is increased, the value 4 has to be diminished, first in order
to have a convergent series, and on the other hand, for the sake of good approxi-

. . . 352 — a?
mation with the first three members, Thus, the value of the product 4 3 — o
has to be kept within a certain limit. It can be foreseen that the convergence

is surely exists, if

}}4§’if—a<o4
Fo

In considering the solution @the solution of the linear equation (1) proves
satisfactory as a good approximation for the case of flat waves. This flatness
]
. - : L 3=t
of waves is only sufficient, if the value of A4 3 —o I is small enough; con-
|

sequently the approximation

1+ @)Dl — (x+ 1) O,
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as was put in the original differential equation, is motivated only on the same
condition.

‘When for the sake of simplification, only the linear differential equation
is to be taken as basis of calculation, we find, that with the solution @ we have
good information on the magnitude of the neglected members and also on
the possible limits of the quantities 4 and .

Summary

In this paper, the approximative solution of a pneumatic telemechanical controlling
problem is treated, that involves a quasi linear equation, when the physical parameters are
assumed to be within certain limits. The solution of the differential equation is found by using
the Calculus of Perturbation. This method serves as a good basis to estimate the range of the
physical parameters for the sake of an acceptable approximative calculation of the linear
differential equation.
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