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Introduection

The literature in reactor physies [1, 2, 3] generally deals only with the
critical size computation of compact spherical and cylindrical reactors.
Nevertheless, there may be some points of view, that could justify the building
of reactors, which do not contain either fuel or moderator in their centre.
That is, such reactors have an *empty” space in their middle. As a matter
of fact this is one of the advantageous ways, that the building of spherical
reactors for energetic purposes can be imagined, because the system of central
inflow and radial outflow of the cooling medium necessitated by thermo-
dynamic viewpoints [4], requires an “empty’ space in the centre. In the
case of cylindrical reactors the radial cooling pipe system [5] as well as the
manner of cooling with twin stream [6] having a central cooling inlet may
also require the building of a reactor with a central cavity.

In this paper we shall describe a simple as well as an approximative
method for the computation of the ecritical sizes of hollow spherical and
cylindrical nuclear reactors. The critical size can be calculated by the so called
one-group diffusion method, under the assumed following simplifying con-
ditions:

-~ we assume bare reactors, without a reflector,

— we consider the central cavity as completely empty from reactor-
physical viewpoint as well, £, = 0 inside the hollow space (X, is the macro-
scopic absorption cross section),

— the reactor is homogeneous in the whole active zone,

— we regard the geometrical dimensions of the reactor as equal to its
extrapolation dimensions.

1. Hollow spherical reactor

Fig. 1 demonstrates the structure of a reactor with a central cavity.
Concerning this inner hollow spherical space the following diffusion equation
can be accepted:

Ao — % —0 (L1)
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But since, as we assumed, X, = 0, therefore

that is

(1.2)

Fig. 1. Structure of the spherical reactor with a central cavity

Concerning the active zone encompassed by spherical surfaces r; and
R the critical diffusion equation. the so-called wave equation can be used

A® + Bid = 0
or in spherical coordinates:

/2 2
d@-:_;igi_;Bg@:o (1.3)

dr o dr

The following marginal conditions have to be statisfied in order to solve the

equation:
1. If o= L (D = @0
, j
2. r=r, B—Ig =0, from D, 42, =D do
dr dr dr

(as the neutron flux is constant inside the empty space).
3.Ifr=R, D=0.
The general solution of Equ. (1.3) is

B(r) = C, sin Bg r L, cos B, r (1.4)
r
From the first condition:
¢, = C, sinB,r, L, cos B,y (1.5)

Ty Ty
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From the second condition:

C,|Bgcos B,ry— sin By ry } —C, [Basin B, r, - cos Bery ] =0 (1.6)
: ; Ty ; ) Ty i
and from the third condition:
C sin B, R e cos B, R —0 (1.7)
'R * R

From Equs. {1.6) and (1.7) the geometrical buckling can be expressed
in the following implicit form:

tg Bﬁc T, — B,r,

thGR: e S
: B,ry-tg Byry 41

or in simpler form

3

Byry = tg (Bgry — BgR) (1.8)

In crder to determine the least ““eigenvalues” of the geometrical buckling
typical for the critical reactor we start out from the inverse of Equ. (1.8)

B;ry — BgR = Arctg Bgry + nx (1.9)

from which it is evident, if n = 0 the solution is trivial and the least “*eigen-
value” of B, derives from n = —1

Bory — BgR = Arctg Byry — = (1.10)

From this equation we obtain the known result B, = 7 /R for compact reactor
(ro=10).

From Equ. (1.10) the geometrical buckling cannot be expressed in
explicit form, here we have to adopt, e.g. the way of graphical solution. For
this purpose let us transform Equ. (1.10)

B_R To l:Arc thgRi——rt
° R ° R

or
B,R——L" |1 AvcteB,RIL (1.11)
° R—r, °* R
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Fig. 2 shows the graphical solution, by introducing the symbol X for B,R
) R ry | ,
and the symbol Y for ——— [ — Arctg B, R—RL . The dotted line, connecting
—r,
the intersecting points of curves X and Y shows the products of multiplication
B,R of the critical reactor in function of ri/R (in case of compact sphere
B,R = 7). The graph in Fig 2 in a different scale also shows the relation of

B,R
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Fig. 2. Graphical determination of the geometrical buckling of the hollow spherical reactor

the geometrical buckling of the hollow and compact spherical reactors (Bg/Bg,)
in case of an identical outer radius (R = const.). It is evident that in case
of identical outer radius the geometrical buckling of the hollow spherical
reactor is greater than that of the compact one.

Assuming constant outer radius and knowing the variations of the
geometrical buckling the comparative relations of the critical volume of the
hollow spherical reactor to that of the compact one can be determined. Assum-
ing the same matrices for both types of reactors the material buckling can
be taken as constant in all cases (B, = const.). For a critical compact spherical

reactor By, = Rl = B,, and the critical volume of the reactor is:
0
% ¥ [T 3
p, =% Ry 4"‘( ~‘];130 ! (1.12)
3 3 \ B, B3,
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In case of critical hollow spherical reactor the values of the geometrical
buckling must likewise be concordant with that of the material buckling
{Bg = Bp). At a given outer radius (R = R;) according to Fig. 2, the geo-
metrical buckling (Bg) of the hollow spherical reactor is greater than that
of the compact one (Bg,). In order to become critical the hollow spherical
reactor must increase its inner and outer radius at the same B,/B,, rate, i.e.

B, ) B,
R = R,—%  and rj=r,—% (1.13)
80 g0
25~
v
%
2
&)
P — =108
0 a2 04 a5 08 /R

.
Flig

. 3. Critical volume ratio of the hollow and compact spherical reactors, in the function

of r,/R

Therefore, the critical volume of the hollow spherical reactor is

£

dd (R™® — 1/3) = A= {_fﬂ_ RS —
3 3 R

4o ry |3 B, P
= — |1 |0 |R}| = 1.1
I w16

The comparative relation of the critical volume of the hollow spherical
reactor and that of the compact one is given by the quotient of Equs. (1.14)

and (1.12)
Yo _ [1 _ [_’_o_ 1 Be
v R ||| B,

V=

(1.15)
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In Fig. 3 the variations of the critical volume ratio in function of
Ty .
T are given.

In order to determine the flux distribution in the hollow spherical
reactor, the values of C, and C, can be obtained from Equs. (1.5) and (1.6).
Putting these values into Equ. (1.4) we get the following form for the flux

distribution:
D(r r sin B, r cos B, r
(r) = 0 £ —tgB,R—% | (1.16)
D, sin Bgr, —tg B,R-cos B, r, r ° ro
1
£ R 5
¢ 2 /5[/73,2/)3 5053,275/
[ R
08 : :
08 R
Nz —
\
0z \) f
G .
0 02 04 a6 a8 7 r/R

Fig. 4. Flux distribution in compact and hollow spherical reactors (r,/R = 0,2)

for which the B, values can be taken from Fig. 2 Equ. (1.16) if r — 0 gives
as a result of the flux distribution of the compaect spherical reactor.

@ ) R sin :{ r
(r) _ 1 sin B,1 _ R (1.17)
D, Bg r i1 r

Fig. 4. shows the flux distribution in the case of ry = 0,2 R.

2. Cylindrical reactor with longitudinal cavity

Fig. 5 shows the line diagram of the cylindrical reactor with a longitudinal
cavity. In the empty axial cylinder of ry radius we consider the neutron flux
as constant in the r direction but varying in the z direction, according to the
value of the flux the r, surface.
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Concerning the cylindrical collet form active zone the wave equation
can be expressed in cylindrical coordinates:

P15 %P pgo—g (2.1)
or? r o ar 822 ;

Separating the variables r and z in Equ. (2.1) [D(r.2) = O(r) - Z(z)] and
dividing with © - Z we obtain

Fig. 5. Structure of the eylindrical reactor with a longitudinal cavity

where the parts depending on r and s can each be equalized by a constant

" (2.3)

EREL
- dr? Cor dr_"

o

and

_{"d?Z‘____ 2 2.4
Z[ )J-— 8 (2.4)

<

furthermore it can be demonstrated, that « and 3 are positives.
The general solution of Equ. (2.3) is

0 = CJyfar) + C,Y(ar) (2.5)
where J, and Y, are the first and second Bessel functions, zero order. Marginal
conditions in the z = 0 plane:

1L r=r, O= 0,(0 =0,
2. I r =7y, — =20
r=Te

3. r=R, 0=0
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According to the first condition:
OO = ClJO(.arﬂ) _;' CZY‘()(arU) s @() (2.6}
from the second condition '
de .
—— = a[— C, J, (ar)—C, Y (ary)] = 0
dr
CJ,(arg) +C, Y, (ary) = 0 (2.7)
10
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Fig. 6. Graphical determination of the product «R in case of ecylindrical reactor with longi-
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tudinal cavity

from the third condition

0 = CJ,(«R) + C,Y(aR) = 0

J; (ary) . Jo (aR)

From Equs. (2.7) and (2.8)
Yi(an)  Yo(aR)

The least eigenvalues of the product «R in function of ry/R can be
determined from Equ. (2.9) in a graphical way. Introducing the symbols

_ Jy(ary) and Y — Jo (aR)_
Y, (aR)

X =
Y, (ar)

Fig. 6 shows the graphical solution. The results of the solution are given in
Fig. 7, where the diagram on the one hand shows the products «R in the
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function of rfR and on the other hand the comparative relation of the «
factors of the hollow cylindrical reactor and that of the compact one.

The values of C, and C, can be determined by Equs. (2.6) and (2.7),
by inserting these values into Equ. (2.5) we obtain the radial flux distribution
in z = o plane (Z=1):

D(r) 1 ) Jo(aR) o .
5~ T aR) [ ot = 2y Vo] =
o Jo(ary) — —2—=Y (ar,) o (eR)
Y, (aR)
= 7 [Jo ary- D)y | (210)
Jo (ary) — ”il—(_ai Y, (ary) * 1 (am)
 (ary)
Fig. 8 shows the radial flux distribution of r, == 0,2R.

The solution of Equ. (2.4) containing the z variable is identical in the
cases of both the hollow eylindrical reactor and of the compact one, i.e.

g2 — {%} 2.11)

For the flux distribution of the whole active zone it can be stated:

D(rz) _ 1 ’.J() (ar) —

JU (GR) Y 7
, (o ﬂ 08
D, Jo (ary) — _Jn (aR) Y, (ar,) Y, (aR) H

Y, (aR) ‘ (2.12)

O

The geometrical buckling of the critical hollow reactor can be deter-
mined by the equation:

P = ( ’ R\ (2.13)
H
where the ¢ values in function of r /R are taken from Fig. 7. The critical

volume of the hollow cylindrical reactor can be determined with the knowledge
of the material buckling (B, = B,;). From Equ. (2.13)

R — (R} (2.14)
H?2 B2, — =2
and so the critical volume is
V:P _(i)“]RzﬁH= - } . (2.15)
R 'R H? B}, — =
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The condition of the minimal critical volume:
L (2.16)
dH

As B too is a function of H it is complicated to solve Equ. (2.16).
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Fig. 7. Variation of «R in function of r /R for cylindrical reactor with a longitudinal cavity
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Fig. 8. Flux distribution in the compact cylindrical reactor and in the cylindrical reactor with
longitudinal cavity (r,/R == 0,2)
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As an approximation we assume even in the case of the hollow cylindrical
reactor the optimal H = 1,847 R ratio valid only in case of the compact
cylindrical reactor. Consequently, using Equ. (2.14)

H — 1.847 ML .
| H? BEn —
and from this:
; T v L
e l 1,847 (a{{) - (2.17)
B,
25
v
A
2 ]

L

0 a2 ] as 08 /R

Fig. 9. Comparative relations of the critical volumes of the cylindrical reactor with a longi-
tudinal cavity and of the compact one, in function of r /R (if H = 1,847 R)

Putting this into Equ. (2.15) the critical volume of the hollow cylindrical

reactor is:
- Y 32
, 1,847n[(—_”—) i (aR)‘Z] /
v — [1 i)-’} | 1,847 )

R B,
As an illustration let us compare the critical volume of the hollow cylindrical
reactor with that of the compact one (¥, = 148/B;)

(2.18)

T 2 372

]'/' . 1.8472ﬂ[{—§i-:' -T— ( R)2

= [1 1% L] (2.19)
v, R 148

Fig. 9 shows the comparative relation of the critical volumes as com-
puted from Equ. (2.19). It is to be noted that the minimal eritical size of the

3 Periodica Polytechnica M. IX/3.




238 G. BUKJ end G. BEDE

hollow cylindrical reactor is somewhat smaller than that shown in Fig. 9, as
we have not taken into consideration the optimal R/H ratio peculiar of the
hollow ecylindrical reactors.

3. Cylindrical reactor with a transverse cavity

Fig. 10 shows the structure of the eylindrical reactor having a transverse
cavity, Le. two cylindrical zones. Inside the hollow space of h; height and of

Fig. 10. Structure of the reactor with transverse cavity

R radius the neutron flux can be considered as constant in Z direction and

- . . - . 0
varying in r direction, according to the values of the flux on the z = ry plane

surface.

For the dual cylindrical active zone the same wave equation can be
used as in the case of Equ. (2.1), the unchanged form can also be used in
Equs. (2.2), (2.3) and (2.4).

The solution of Equ. (2.3) is the same in this case as in that of the
compact cylindrical reactor, i.e.

‘o

2,405

a? = ( 405 | (3.1)
LR

The general solution of Equ. (2.4) in this case is

Z = C, sin f§z -+ C, cos 3z (3.2)

Marginal conditions in r = 0 axis
1L z2=h)2, Z=2,(D= Dy
dz

2.If z= hO/Q,—— =0

<

3.1fx=H]2, Z=10
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According to the first condition

Z,=C, sin -—?-13 -+ (, cos =Dy, (3.3)

i L

from the second condition

Clcosﬁg—(’- — C,s (3.4)

257 25

2 _PH_
(BH),

2% 2

P

0 02 0% 06 08 hot!

Fig. 11. Variation of #H in function of h /H in the case of cylindrical reactor with transverse
cavity

from the third condition

C, sin —'B?— -+ C,cos ﬁfI =0 (3.5)

The function of SH can be formulated from Equs. (3.4) and (3.5)

to _/3,”.(3. — e l ——to“ﬂH J— 1]
S22 _BH L2 2
g —
2
from which
H
pH= —— 7 3.6
H = (3.6)

Fig. 11 shows the values of the SH products and the ratio of factors

BH[(SH), of the hollow cylindrical reactor and that of the compact one in func-
tion of hy/H .

3*
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The longitudinal flux distribution along the r = 0 axis (O == 1) can be
defined by expressing the values of C; and C, from Equs. (3.3) and (3.4) and
by putting them into Equ. (3.2)

D(z . ph oh
(=) = sin = sin fz 4 cos PR cos pz =
D, 2 2

w] (3.7)

i \ }
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Fig. 12. Flux distribution in the compact cylindrical reactor and in the cylindrical reactor with
transverse cavity

Fig. 12 shows the longitudinal flux distribution of the hollow cylindrical
reactor when the height of the cavity is hy = 0,2 H.
The flux distribution of the whole active zone is

D(rz) 2,405 | T hy,
— SRS PO 3.8
(po Jo( R r) COS[H-—-hO ( , J] (3.8)

&

The geometrical buckling of the cylindrical reactor with a transverse
cavity can be obtained from the equation:

2]

B

ooy

_ (5}1 ]2 n [2,405 (3.9)

H R




CRITICAL SIZE OF HOLLOW SPHERICAL REACTORS 241

The critical volume can be computed in the same way as in the case
of the cylindrical reactor with a longitudinal cavity. On the strength of the
H = 1,847 R ratio, characterising the critical volume of the compact cylindrieal
reactor we can use the analogy of Equ. (2.19)

2 372
. Lo 18T ' ﬁ;i")l + (2.405)2
— :[1 e 1,847 (3.10)
v, H | 148
2
v
|2
15 /
G dz a4 06 08 ho/H

Fig. 13. Comparative relations of the critical volume of the eylindrical reactor with transverse
cavity and of the compact one in function of h,/H (if H = 1,847 R)

Fig. 13 shows the critical volume ratio as computed from Equ. (3.10).
The graph as in the former case does not show the minimal critical volume,
as we have not taken the R/H ratio into consideration, optimal for the hollow
reactor.

4. Cylindrical reactor with longitudinal and iransverse cavity

Fig. 14 shows the structure of the reactor with a longitudinal and a
transverse cavity. For this type of reactor the equations given in Sec. 2 and
3 can be made valid. The geometrical buckling can be computed from the
equation

(aR

B; =
; R

L [_%i’ (4.1)

where the values of aR can be taken from Fig. 7, and those of SH from Fig. 11.
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For the flux distribution of the whole active zone we can write

@(’:) = ]1 R [J()(ar) o ’:‘[TO"('G-I‘{“‘)‘ Y—u (ar)~
@ Jy (ary) — “‘_O—(i““)‘ Y, (ary) Y,y (aR)
Y, (aR)

Fig. 14. Structure of the reactor with longitudinal and transverse cavities

Furthermore the comparative relation of the critical volume of a hollow

reactor of this type to that of a compact cvlindrical reactor — of H = 1,847
R — is
y o 1.,84.73,7[ Ji[i_ l'f(aR)z |
S=1 — Mol 2o ] . | 1,847 : (4.3)
7, H || R 148

Summary

In general, the literature of reactor physies deals with the computation of the flux and
of the critical size of compact spherical and cylindrical reactors. This paper defines the geo-
metrical buckling, flux distribution and critical size of hollow reactors with the one group
diffusion method. The procedure is approximative because only by using the transport theory
as well as the multigroup diffusion method could the exact values be determined. (The exten-
sion of the computation in this direction is planned). The investigation deals with spherical
reactors having a central cavity, as well as with eylindrical reactors having longitudinal and
transverse cavities. In each case the results are demonstrated by graphs.
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