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High-efficiency compact heat exchangers are an effictive means for the 
stepping up of the efficiency of gas turbine plants, nuclear pO'wer stations, 
compact nuclear drive:::, etc. Compact heat exchangers are characterized by 
a high heat output at a comparath-ely small input of circulating work, small 
temperature differences and still small bulk. 

The present paper's purpose is to find solutions to one of the problems 
encountered in the dimensioning of compact heat exchangers. 

Let us start out from the general definition uf heat exchangers: 
The heat exchanger is an equipment destined to establish contact between 

two streaming media, so as to make possible the flow of thermal energy from 
one medium into the other. The closer the contact between the two media is, 

the more compact is the heat exchanger. 
Heat transfer takes place in three steps. In the first step thermal energy 

from the inside of the warmer fluid flow::: into the solid retaining wall; in the 
:::econd, thermal energy passes by conductance through the wall 'which sepa
rates the t"\\-O fluids; 'while in thc third step thermal energy, from the wall-side 
boundary of the culder fluid, reaches the inside of the eolder stream. 

Since heat exchanger dimensions are in most cases determined by the 
heat transfer coefficient of the streaming media, heat flow can be accelerated 
either by increasing the mass turbulence or by the application of very thin 
fluid films which, by their small dimensions, will present only very low thermal 
resistance. 

The latter approach, however, - due to constructional reasons - will 
in most cases expand the path the thermal energy must travel through con
ductance across the wall. 

The consideration of these points of view led to the evolution of the 
so-called laminar-flow heat exchangers. One type of the laminar-flow heat 
exchanger embodies thin plate fins. Mass flow in such types takes place along 
the plate fins in a thin film-like laminar layer (Fig. 1). 

The plate fins pick up heat from the fluid at Tk temperature, and conduct 
it to the wall where To temperature obtains. 
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In determining the dimensions of the plate fins the thermodynamical 
problem is generally posed in the following forms. 

The medium, with homogeneous temperature distribution (Tk(x, 0) = 

= constant) and representing a known time rate of heat capacity, enters the 
row of fins of known thermotechnical characteristics and known geometry. 
The question is: what is the quantity of heat dissipated by the fluid to the 
fins, provided the temperature in the fin base is To (this temperature may 
vary in the direction of flow), or -less frequently: what ",-ill be the temperature 
profile of the fluid at the outlet. 

The reply to questions of similar nature generally consists of introducing 
the concept of thc fin efficiency and its calculation. But the neglections made 

Fig. 1. Energy stream of medium fIo"wing between plate fins 

in the classical computation method are of considerable significance for us, 
namely in the classical computation mcthod it is assumed that 

1. the temperature of the fluid in its flow close to the fin remains constant. 
This assumption is untenable in our case from more than one point of 

view. Namely, o"wing to the laminar flow, we must not neglect either the 
temperature difference which takes place in the flo"wing medium between 
points closer to, and more remote from, the fin base, or due to the great heat 
output the warming-up or cooling off of the fluid - i.e. its temperature 
change in the direction of flow. 

2. It is assumed that thermal conductance in the fins takes place only 
in the direction normal to flow. 

The high degree of warming up of the fluid in compact heat exchangers 
owing to the high thermal output, brings about a very considerable temperature 
difference in the fin, also in the direction of flow. Thus this temperature 
-difference, compared with the temperature difference setting in normal to the 
flow, must not be neglected. Accordingly, in the differential equation of heat 
transfer, two components of the laplacian have to be taken into consideration 
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(the influence of thermal conductance normal to the fin surface is, eyen III 

our case, negligible). 
3. Completely steady state conditions and negligible conductiyity of 

the fluid are generally assumed in the classical computation method. 
These same assumptions are applied also in our treatise. 
The mathematical problem as "written down on the basis of the aboye 

considerations will yield a system of partial differential equations of the sec
ond order, to 'which a comparatively simple solution has been made possihle 
hy the method of operational calculus, as elaborated in recent years hy 
l\IrKT.JSE\-SKY [1]. 

In what foHows we shall hriefly outline the solution to the p1'ohlem, 
at the same time pointing at the exact mathematical process followeel. Publi-

Fig. 2. Plate fin with one differential element fully drawn 

cations which will furnish more details and diagram::: to facilitate eyentual 
practical calculations are uncleI' preparation. 

Let UE' now examine one single plate and the mass rate of flow along 
. (F' 'J) It Ig. - . 

Denoting with Ck the time rate of heat capacity refel'l'ed to the length, 
measu1'ed in x direction (as to the geomet1'ical dimensions and directions we 
shall rely on the designations of Fig. 2), and distinguishing between plate con
ductance in the direction of x and y (which will not entail any difficulty 
'whatsoeYe1' mathematically and might be useful in certain cases), the conse1'
vation of ene1'gy may be expressed hy the following t'wo equations: 

2a (Tic - T) dx· dy = ~ (- i.v ST Vo dX) dy 
Sy. .. Sy 

2a (Tic - T) dx dy = '- Ckdx ss; dy. 

;- (- i.x Vo dy) dx, and ',I 
ox 

( 
I 
J 

(1) 

In the first equation it has been exp1'essed that, due to the stationary 
,nature of tempe1'ature distribution, thermal energy flowing - through the 
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effect of temperature difference arising between wall and medium (Tk - T) -
from anyone of the plate fin elements into the medium, is equal to the surplus 
heat gained through conductance. 

The second equation illustrates the equality of the heat transferred by 
the fluid and the thermal loss of the fluid. 

Summing up what has been so far mentioned in our differential equation 
system the dependent variables are: T = T(x, y), the plate temperature 
and Tk = Tk(x, y) the fluid temperature; the independent variables are the 
room coordinates x and y; while a, I.x , I.y , Vo and Ck are constant. 

Fig. 3. The plate fin dimensions 

Since in the further calculations the equations "will be made dimensionles:;:, 
we wish to call attention already at this point to the fact that the same system 
of dimensions will have to be substituted throughout. 

Let us introduce the following new denotations (see Fig. 3): 
hx for the fin dimension in the direction of x (the distance between: fin base 

and that plane in the fin in which the heat flow normal to the stream 
is equal to zero), and 

hy for the fin dimension in the direction of x (that is, in flow direction). 
Let us further write 

LlT = 'T - T,,, 

LlT" = T(O,O) - T", 

Ll1j = T(O,O) - T. 

1 
J 

The temperature difference should be referred to: 

LlTu = T(O,O) - Tk (0,0). 

(2) 

(3) 
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We shall now define the following quantities: 

rp = Ll~, = T(O,O) -~ ) 
k JTu LlTa LlTa 

, 
I 

rp = Ll1f = 
> 

T(O,O) T I ---
LlTa LlTa Ll1'o J 

(4) 

Whence 

Llrp = rp - rplc = - LlT • resp. 1 
LlTa ' 

d~, = Ll1'o drplc and dT = - LlTa drp. J 
(5) 

, ,1 

r;, = , ~:""---.".f.<-.."..:;,-:,,,L--------7.-:' 

6=O~-------~----__ 
, u=o -' u=1 

v = 0 /' the direction of 1701'1 
u 

Fig. 4. Qualitative illustration of the <[>(11, t.) and <[>k(u, v) surfaces 

Let us, instead of x, y, introduce the follo'wing dimensionless room coor
dinates: 

and 

x 
U = - and 1: 

y 

hx hy 

Our system of equations (1) "will assume the follo'wing form: 

Llrp = ~ 8rplc . 
2ahy 8v 

The constants combine to give: 

I,x 8~ rp 

2a h~ 8u2 

4 = I,x ~ 
- 11 and C=~. 

2ahy 2a h~ 

(6} 

(7) 
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Thus: 

(8) 

Fig. 4. sho'ws the ne'wly introduced denotations and the character of 
the surfaces arrived at. 

Let us now determine the houndary conditions gcnerally encountered 
in technical practice. 

The temperatme of the fluid at the cross section of inlet (y = 0, r€'sp. 
1: 0) shall h€' given in the function of It: Tk = T,,(u, 0). This permits the 
determination of @k(It, 0) fdu). 

At the point of u = 0, @k(O, 0) = :MO) = 1.* 
Examining also the temperature of the plate in the same cross section 

(v = 0) heside the wall (x = 0, resp. u = 0), it will he found that T is equal 
to T(O, 0), that is LlTj is cqual to T(O, 0) - T(O, 0) and thence @ is equal 
to zero. 

We assume a given temperature distrihution for the fin hase also, i.e. 
'we assume that@(O,v) i;;: equal to fJv) provided It is equal to zero, respectively, 
in the simplest case fe is equal to ° (no change takes place in the temperatme 
of the fin base in flow direction). 

Further boundary conditions are set by the fact that - with the sole 
exception of the fin base heat flow normal to the enclo;;ing su;rfaces of 

the fin must be cqual to zero. Thus, if v is equal to ° or to 1, S@!Sv is equal 
to 0; and should 1l be equal to L then 8@/8It is equal to 0. 

Summing up: 

if v IS ec{ual to 0, then @I: IS equal to fk(U) and SW/Sv is equal to 0, 
if v IS equal to 1, then 8@/Sv is equal to 0, 
if It is equal to 0, then <P is equal to fv(v) fin all v 
if It is equal to 1, then S<P/Su is equal to 0. 

The Jast condition is determined either by symmetry - viz. by the 
fact that the plane at a distance of hx from the fin base (u = 1) constitutes 
the plane of symmetry of the temperature distribution, or by the fact that 
in the 11 = 1 the fin is enclosed by an insulated frontal plane. 

The first step in approaching the problem will be "to remove" the 
. 'v" variable through the operational method. 

* Or at least at the (0+ du, 0) point. 
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According to the general formula of the operational calculus, the follow
mg may be written: 

--- = srfJ - rfJ(ll,O) {am} -
av 

~ote: 

In all formulae and throughout the present paper a horizontal line 
aboye any character'" will denote the opcrator, while the letter s wiU stand 
for the differential operator. 

If we introduce according to "what was stated ahove for the rfJ(u, 0). 
rfJ(O, v) and rfJ,,(u,O) function!", the follo,"-ing denotations: 

- (0' I' ( \ (j) ll, ) = J!l ll), rfJ(O,v) = f,.{v) and (10) 

then, taking also the houndary conditions into consideration, the (8) system 
of equations wilJ assume the following form 

- a2 iJ5 1 
J<15 = Ar(s" <15- sf!!) + Al1~ and )1 

Oll-

J<15 = Cs(f)" - Cj;, . 
(11) 

Since, on the other hand J(f) = w - W", the last relationship "will glye: 

respectively, 

Suhstituting it into (11), we arrive at 

Since <15 is the function of II only, our equation can no,,- be written in the 
following, more simple form: 

* Respectively the braces: {} 
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Introducing the follo'wing denotations: 

0') -----s- , 
A, s Ije 

1 s 
and 

I (12) 

10 = (3sj' - _1_ - sk 
u .1 I lie - " 

-/ill S T j 

the equation will appear in its final form 

iP" -LiP = w, (13) 

where c]J, Land w are operators. 
The solutions of the (13) operational equation will he operators 

v-functions - in the parameter of II which, hy the general formulae of the 
operational calculus, "w:i1l satisfy two of the houndary conditions of the original 
differential equation, namely: if v is equal to 0, Sc]J,Sv will he equal to 0 and 
c]J,,( u, 0) will he equal to J".. 

The resultant functions will also satisfy a third condition, viz. provided 

v is equal to 0, c]J(u, 0) will he equal to /r" 
Since, however, this fact can only yery infrequently he applied as a 

houndary condition, further investigations are required to adapt the solutions 
to the actually encountered houndary conditions (9) - in the course of which 
the /r, function is also to he determined. 

The (13) equation is an inhomogeneous differential equation 'with the 
following right side: w =w( Zl). The conventional method of seeking the general 
solution of inhomogeneous equations consists of the superposition of the solution 
of the homogeneous equation on an indcpendent particular solution of thc 
inhomogeneous equation. This method cannot he applied in our case to the 
fact that the formal solutions of the homogeneous operational equation pertain
ing to (13) arc mostly non operators, thus the only solution of the homogeneous 
equation is the trivial one [2]. 

It should he horne in mind, howeyer, that this would hold good only if 

]/ A.clAu,' O.Should, namely, e.g. Av=O, then we might ohtain a function as the 
solution of the homogeneous equation. This would represent the case when 
plate conductivity in the direction of flow is negligihle. 

Since our investigation's purpose is to clarify the more general aspects 
of the prohlem, we take plate conductivity in hoth directions into consideration. 
Thus, we cannot apply the conventional method and must resort to the partic
ular solution of (13) - which in our case yields, at the same time, the com
plete solution. 

The search for such a solution will in the majority of cases not present 
any appreciahle difficulties, the prohlem essentially heing that althougu 
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the function fu in (13) differential equation may be set theoreticaHy for one 
of the boundary conditions (it is the value of ([J in case v = 0), in actual prac
tice this function is generaHy unkno·wn. For this reason it has been omitted 
from the system (9) of boundary conditions. 

Since the system of boundary conditions given under (9) is, in the major
ity of cases, actually known, the solution of the differential equation must 
~atisfy it. 

On the ot herhand, if we expect the solution to satisfy the system (9) 
of boundary conditions, fu cannot be pre-determined any longer, but ,\ill 

u 

Fig. 5. The qualitative chart of Wand Wk in case fk is an odd square function 
(fi, having a period equal to fu) 

follow from the solution. Consequently we shall have to seek for such a form 
on the right side of (13) inhomogeneous differential equation (fu figured in w), 
with which the soJution ·will satisfy the conditions as set in the (9). 

A substitution ·will readily prove (2) that one of the particular solutions 
to (13) equation may always be obtained by the following series (provided it 
is convergent and ean be evolved): 

(14) 

where (12 equation) the k operator is a parametric function ,vith u as the 
parameter. In the summation ,u is defined by the requirement being the last 
derivative function of k (derived according to u) which will not be analogously 
clear, just the (2,a l)th derivative. Provided the infinite series is a con
vergent one, it may be that Il -? =. 

The solution in this form will not be suitable for further calculations, 
unless fu and fk viz. k are given. 

Since, however, this case is very rarely met with in practice, we must 
find the solution in a different form. 

To evolve fu and fk in the form of a Fourier series seems expedient. This 
will naturally presuppose that both are periodic functions, but right at the 
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outset it will be evident that such pro"\iso will substantially facilitate the 
satisfaction of the (9) boundary conditions. 

Namely, if we choose the period of fi, and Iu in such a "lay that the 
planes u = -1; u = +1; u = 3, etc., are planes of symmetry, then in these 
planes the derivatives of <P in thc direction of u 'will disappear and a further 
boundary condition will be satisfied. 'Whereafter from the last boundary con
dition (S<P/Sv=O, if v is equal to 1), in the knowledge of the required coefficients 
of the Ik function, the Fourier coefficients of Iu can be readily determined. 

In that which follows we shall restrict ourseh'es to the trcatment of that 
specific case when Iv = 0, viz. wall temperature in the direction of flo'w remains 
unchanged. This boundary condition is automatically mct with by selecting 
the series of fr., so as to realize the function secn in Fig. 5. (W-e refer here to the 
fact that hy the proper choice of fi, and f,,, f' can he shaped to meet to the fuB 
all practical requirements.) 

Choosing equal periods for Iu and Ik, due to symmetry - as outlined 
previously f" and jl(, f,/ with unknown coeffjcients for the time heing, may 
he written with thc following Fouricr senes: 

.{' 4 (" 7C 
Jk = - sIn?,u 7C _ 

1 . 3:7: ) 3'sm-
2 

u, ... 
and (15) 

-I' '. 7C b' 37C 
Jl1 = b1 Slll 2 u -+- 2 SlllT ll -;-

while according to the (12) equation: 

4 1 '\. 7C -- ,sln-u 
A lI 7C s(s-;-ljC) , 2 

(
' 0b 4 1 '). 37C I 

P 2 - --- 1,IC) sIn? lL , , 3A
lI

7C s(s _ 

B 
. 7C 

1 Sln-ll 
2 

B 
. 37C 

"SIn -u 
- 2 '" ., 

where 
1 

(16) 
s (s I,'C) 

Finally: 
(2n - 1) 7C 

k = :::E B" sin u. 
,,=1 2 

(17) 

A simple substitution will at once sho\\- that if k = kl -+- k2 and iP1' 

iP 11 <P iP" 
further iPz are the roots of the - L = X~l respectiyely of the 

s s s 
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- (f> - (f>/I - (j5 -
- L = k2 equation, the root of the - L - = k equation will be (j5 = 

s s s 
= rfJ1 (j52' Thence it follows, that soh-ing the 

s 

- (j5 (2n 1) 71: 
L- = Bnsin It 

S 2 

equation, the if) function sought for can be evolnd from its (f>n roots in the follo'w

ing way: 

(]J = ::E (f>n' (18) 
11=1 

Let us no'w compute the value of (j)11' making use of the expression of 
(j), obtained from the (18) equation. It is obviou5, namely, that 

d2k 

( B n sin -'----'--
dU21: . ,- 2 

\ (' (211 - 1)71:21' (211 - 1) 71: 
) = ( - 1)1: 2 ) B n sin 2 It , 

whence, according to (14,) equation: 

, '( (211 - 1) 71: ')2)1i 
211 -1 ) s = ( 2. B 11 sin 71:11 -=-:5' - -'----:=---

. 2 L:::o L, 

__ B~' (211 - 1) 71: S 
- n,lll 2 u, L . 

1 

1 

S ( ')n 1) B . - 71: 
= - n _ , (2n _ 1 )2

S1n 
2 It. 

L---,- 71: . ') 
..0..1 .' 

The complete solution, on the basis of (18) equation will be obtained as 
folIo,,-s: 

(j)= _ ~ sBn 
~ - (2n-l )2 n=1 L+ ---71: 

2 

2n -1 
Denoting 71: with OJ : 

v 2 

2n -1 

. (2n - 1) 71: 
SIn l[. 

2 

---71:=OJ, 
2 

(19) 

(20) 
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and substituting the v-alue of Bn ((16) equation), the nth coefficient to the 
trigonometric series of (j5 may be set up in the fono'wing form: 

f3sb n 2 1 
- --- -------=----

L+w2 AllOJ (s+l(C) 

f3 being Av/All (12),* the demoninator may be written as: 

'whence the nth coefficient becomes: 

1 
S3 + C 

o ' bn 2 bns- -T -s ---
C OJ 

o 1 s- - ---'-----"'--- s -
A,. 

(21 ) 

(22) 

The roots of the denominator shall he Clm c2n and C3n [2]. With these 
roots the nth coefficient may be decomposed with simple fractions in the 
following form: 

(23) 
S - C2n 

Taking into consideration also the relationships bet'ween the cn roots, 
the fol1o\ving system of equations will be av-ailable to determine 

(24) 

(25) 

(26) 

The literature referred to under [2] describes the thorough examinations 
carried on into the case when one of the roots of the cubic equation is equal 
to zero. In such cases, namely, our equation system cannot be applied in this 
form. 

There remains now to determine the bn Fourier coefficients of the un
known fu function. This must be done in such a way as to make the deriv-atiye 
of the if! function, with respect to v, equal to zero at the v = 1 position. 

* Substituting also L. 
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Substituting the operational form 'with the conventional form of the 

rp function [(19) and (23) equations]: 

The partial derivative in respect to v at the v = 1 position is 

= -;.-' (DIn ,sIn ee", 
-== 
n=l 

(27) 

To render this function at an arbitrary lL equal to zero, the fono'wing 

fourth equation will present itself: 

o. (28) 

Our task has been fulfilled, viz. -with the (27) equation the (jj function 
satisfying the pre-set boundary conditions 111 the form of a Fourier senes, 
has been set up. 

Let us now sum up the sequence of the process followed. 
The nth coefficient of the Fourier serics of rp was obtaincd in the following 

Inanncr: 
1. Computing the value of OJ from n (20) we have used it to determine 

the roots of thc denominator of the nth operator coefficient (22); 
2. solving the system of inhomogeneous linear equations (25), (26) and 

(28), we have determined the value of Dlr!' D 2n and D 3n • 

'Vith the so obtained valuesthe n th member of the Fourier series of 
rp may he determined on the basis of (27). 

This method is, of course, applicahle for the determination of any optional 
memher of the series of rp. 

Technical practice, however, is interested in the volume of the trallS
ferrpd heat much rather than in the developing temperature pattern. For this 
reason, we shall compute the heat transferred under conditions given in the 
presentation of the problem. 

The heat extracted from the wall through the fin can be readily estab
lished by determining the temperature gradient in the fin adjacent to, and 
normal to, the wall 

dQ • 8T) d 
= -I'x--i Vo' x, 

8x x=o 

or, integrating along the whole length of the fin: 

hp 

, 8T\ Q = - j·x Vn J -- dy . 
8x x=o 

o 

This will show the heat extracted from the 'wall by each of the fins. 

3 Periodica Polrtechnica :'.1. \'1:1/1. 
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Let us now compute the same heat quantity, applying a factor denoted 
v{ith 8L, similar to the fin efficiency. (The subscript L serves to call attention 
to the fact that this factor, although similar, is not identical with fin efficiency.) 
The foIlo'wing will gin the definition of this factor: 

(29) 

Collating the two equations of Q and applying the denotations used 
previously (see (6) and (7) equations): 

8L = A" r act> dv. 
J all 11=0 
o 

act> ! --I may, however, be calculated from (27): 
an !ll=o 

After integration: 

s 

Fpon substitution of (26): 

! 
,~,..,ct>: =[ D D 

J _o_i dv = ~ (I) (.~ eEl" --'-~ eE,,, 
1""\ I /, J 

alL 1,,=0 ~l 8111 c211 
o 

(29a) 

D3n eE
", 1-

8 311 . 

Substituting OJ from (20), the second member after the I: sign can be 
easily computed: 

~ 2C SC ~ 1 
.";;;,, --;--( " = ---;;--:: ...,;", -(-?-n--l-)2-
n=l _d Ll 0- ----:tu::c- n=l _ 

C 

Substituting the expression of OJ and applying the last eCIuation, the 
value of CL becomes: 

(30) 
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In many instances it is not convenient to summate the reciprocal quad
ratic series. For these cases the relationship obtained for the value of CL 'will 
be as foHows: 

, _e_z_'" __ I_ , D2n (31) 

Solving the system of equations in three unknown quantities [2], we 
arrive at the following correlation ultimately: 

8L = 1 
C 

(32) 

This will have served to illustrate the sequence followed in solving the 
thermotechnical problem in hand. In equations (30), (31) and (32), in the 
form of infinite series, even a final formula had been -worked out and presented 
for cases in which wall temperature, adjacent to the fin base in the direction 
of flow, is constant. 

\Vc must reiterate here that thc method given is easily and effIcicntly 
applicable also to other functions of the waB temperature. 

The given infinite series has already been applied in a number of calcu
lations for actual problems. The calculations haye shown that under the 
conditions and material characteristics generally encountered in practice, 
the series will rapidly conyerge and thc establishment of four-fivc. mem
bers will vield sufficient accuracy. 

Summary 

The paper, by investigations into the quantity of transferred heat and extending also to 
fin conductivity in flow direction and un-uniform temperature rise in the fluid along the fin, 
deals with the fundamental requirements of accurate dimensioning of all kinds of plate fin type 
heat exchangers. The conclusions drawn hold good mainly for the dimensioning of compact 
laminar-flow heat exchangers. 

The treatment of the problem has led to a system of partial differential equations of 
the second order. The solution and its adaptation to the boundary conditions are based partly 
on the operational calculus as evolved by ~Iikusiiisky, partly on the expansion of the boundary 
conditions into Fourier series. 

For the frequently occurring case when fin base temperature in the direction of flow is 
constant and the temperature distribution of the entering fluid homogeneous, the final result 
was obtained in the form of a rapidly converging series. (Under conventional material charac
teristics the convergence was particularly rapid.) 

The calculation method is readily applicable to various boundary conditions. 

3* 
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Nomenclature 

bn the nth coefficient of the Fourier series of the fll function: 
.f!: fi, = I[! /c( It, 0) 
fn fu = I[!(u, 0) 
It' fv = qJ(o, v) 
h, the longitndinal dimension of the fin. normal to the flow 
h~ the longi tndinal uimcnsion of the fin' in the direction of flow 
k k = Pfll l/Au .1/s ·N(s -;-l/C) 
5 the differential operator 
u dimensionless coordinate normal to the flow, II = x/hx 
v dimensionless coordinate in flow direction, v = y/hy 

1'0 fin thickness 
iC 1(' sk 
x room-coordinate normal to flow 
Y room-coordinate in flow direction 

A'I! dimensionless number All i.j2a . ro/hi 
A. dimensionless number A,. i'v!2a . l'olhJ 
Bn the nth coefficient of the Fotlrier -eries of k : k ~, B_ sin (()11 

C diInensionless nUlnber C = CJ:/2u.hv r;'~'\ H 

Cl: the heat capacity of the rate of mass flow referred to the lel1;;:th, measured in the 
direction of x Ir • 

the full rate of heat capacity for each fin is: J xC1:d" 

D Jn. Dell' D"" coefficients (23 equation) 
r r = 1'5 [ljA,,' 5/(s':"1!C) - 52] 
Q heat transferred per time unit 
T fin temperature 

Tic fluid temperature 
To fin base temperature To To(o, v) 

..:1T..:1T T Tic 
.J T,: .J T I, T(O, 0) T I, 
dTo LlTo T(O,O) T,,(O, 0) 
.:1T: LlTj = T(O. 0) - T 

6. heat transfer coefficient between fin and fluid 
/3 P = -t,/A Il 

CL dimcllsionlcss number, similar to fin efficiency. CL = Qi2h" hy cd To 
cIn 82n 83n exponents (23 equation!) . i< i.v fin conducth-ity in x, respectively, in .y direction 

(i) (!) (2n-l):7/2 
I[! variable. dimensionless, expressing the changes in the temperature of plate 

I[! = LlT:/LlT 
I[!" variable: di n~ensionless. expressing the changes in the fluid temperature I[!k = 

..1T{{/.JTo 
Lll[! Llo;1) I[! I[!" 

Z resp. {=} operator 

Note 

with respect to dimensions: 
Physical equations have been applied throughout, consequently any consistent units 

may be employed. 
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