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High-efficiency compact heat exchangers are an effictive means for the
stepping up of the efficiency of gas turbine plants, nuclear power stations,
compact nuclear drives, ete. Compact heat exchangers are characterized by
a high heat output at a comparatively small input of circulating work, small
temperature differences and still small bulk.

The present paper’s purpose is to find solutions to one of the problems
encountered in the dimensioning of compact heat exchangers.

Let us start out from the general definition of heat exchangers:

The heat exchanger is an equipment destined to establish contact between
two streaming media, so as to make possible the flow of thermal energy from
one medium into the other. The closer the contact between the two media is,
the more compact is the heat exchanger.

Heat transfer takes place in three steps. In the first step thermal energy
from the inside of the warmer {luid flows into the solid retaining wall; in the
second, thermal energy passes by conductance through the wall which sepa-
rates the two fluids; while in the third step thermal energy, from the wall-side
boundary of the colder fluid, reaches the inside of the colder stream.

Since heat exchanger dimensions are In most cases determined by the
heat transfer coefficient of the streaming media, heat flow can be accelerated
either by increasing the mass turbulence or by the application of very thin
fluid films which, by their small dimensions, will present only very low thermal
resistance.

The latter approach, however, — due to constructional reasons — will
in most cases expand the path the thermal energy must travel through con-
ductance across the wall.

The consideration of these points of view led to the evolution of the
so-called laminar-flow heat exchangers. One type of the laminar-flow heat
exchanger embodies thin plate fins. Mass flow in such types takes place along
the plate fins in a thin film-like laminar layer (Fig. 1).

The plate fins pick up heat from the fluid at T} temperature, and conduct
it to the wall where Ty temperature obtains.
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In determining the dimensions of the plate fins the thermodynamical
problem is generally posed in the following forms.

The medium, with homogeneous temperature distribution (Ti(x, 0) =
= constant) and representing a known time rate of heat capacity, enters the
row of fins of known thermotechnical characteristics and known geometry.
The question is: what is the quantity of heat dissipated by the fluid to the
fins, provided the temperature in the fin base is T'; (this temperature may
vary in the direction of flow), or — less frequently: what will be the temperature
profile of the fluid at the outlet.

The reply to questions of similar nature generally consists of introducing
the concept of the fin efficiency and its calculation. But the neglections made

\The flow of heat i

Fig. I. Energy stream of medium flowing between plate fins

in the classical computation method are of considerable significance for us,
namely in the classical computation method it is assumed that

1. the temperature of the fluid in its flow close to the fin remains constant.

This assumption is untenable in our case from more than one point of
view. Namely, owing to the laminar flow, we must not neglect either the
temperature difference which takes place in the flowing medium between
points closer to, and more remote from, the fin base, or due to the great heat
output the warming-up or cooling off of the fluid — i.e. its temperature
change in the direction of flow.

2. It is assumed that thermal conductance in the fins takes place only
in the direction mormal to flow.

The high degree of warming up of the fluid in compact heat exchangers
owing to the high thermal output, brings about a very considerable temperature
difference in the fin, also in the direction of flow. Thus this temperature
difference, compared with the temperature difference setting in normal to the
flow, must not be neglected. Accordingly, in the differential equation of heat
transfer, two components of the laplacian have to be taken into consideration
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(the influence of thermal conductance normal to the fin surface is, even in
our case, negligible).

3. Completely steady state conditions and negligible conductivity of
the fluid are generally assumed in the classical computation method.

These same assumptions arve applied also in our treatise.

The mathematical problem as written down on the basis of the above
considerations will yield a system of partial differential equations of the see-
ond order, to which a comparatively simple solution has been made possible
by the method of operational calculus, as elaborated in recent years by
MixuvsiNsxy [1].

In what follows we shall briefly outline the solution to the problem,
at the same time pointing at the exact mathematical process followed. Publi-

Fig. 2. Plate fin with one differential element fully drawn

cations which will furnish more details and diagrams to facilitate eventual
practical calculations are under preparation.

Let us now examine one single plate and the mass rate of flow along
it (Fig. 2).

Denoting with Cj the time rate of heat capacity referred to the length,
measured in x direction (as to the geometrical dimensions and directions we
shall rely on the designations of Fig. 2), and distinguishing between plate con-
ductance in the direction of x and y (which will not entail any difficulty
whatsoever mathematically and might be useful in certain cases), the conser-
vation of energy may be expressed by the following two equations:

2a(fl’,;—-T)dx-(Z_y'=—8—%f—(—/ ?-?Lodx)dy;ni(_/ v dy) dx, and
O

20 (T, — TYydx dy = — C, dx %Tﬁ— dy.
y

i
s (1
l
)

In the first equation it has been expressed that, due to the stationary
nature of temperature distribution, thermal energy flowing —— through the
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effect of temperature difference arising between wall and medium (T), — T) —
from anyone of the plate fin elements into the medium, is equal to the surplus
heat gained through conductance.

The second- equation illustrates the equality of the heat transferred by
the fluid and the thermal loss of the fluid.

Summing up what has been so far mentioned in our differential equation
system the dependent variables are: T = T(x,y), the plate temperature
and T} = Ty(x,y) the fluid temperature; the independent variables are the
room coordinates x and y: while a, A, 4,, v, and C, are constant.

Fig. 3. The plate fin dimensions

Since in the further calculations the equations will be made dimensionless,
we wish to call attention already at this point to the fact that the same system
of dimensions will have to be substituted throughout.

Let us introduce the following new denotations (see Fig. 3):

h, for the fin dimension in the direction of x (the distance between fin base
and that plane in the fin in which the heat flow normal to the stream
is equal to zero), and

hy for the fin dimension in the direction of x (that is, in flow direction).

Let us further write

AT =T —T,, }
ATk = T(O‘O) "‘ Tke (2‘)
A@:T@m_T.J .

The temperature difference should be referred to:

ATy = T(0,0) — T, (0,0). (3)
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We shall now define the following quantities:

BT T T @
Y &
& — AL _ T(0,0) T l
AT, AT, AT, J
Whence
AP =D — D, = — AT 3 resp. ]
i

(5)
dT, = — AT,d®, and dT=-—ATl}]d@.J

P4
v=0 7 u=T
v =0/ the direction of flow

S
<

Fig. 4. Qualitative illustration of the @(u.v) and D(u, v) surfaces

Let us, instead of x. y, introduce the following dimensionless room coor-
dinates:

U= and v=—— (6)

Y

Our system of equations (1) will assume the following form:

J@:"‘_yﬁﬁ_"a_z_@ s Yo OO
2a hj B2 ' 2¢ B2 Bu?
and
g — Gr 8P
2ah), dv
The constants combine to give:
A, ioov C. -
A=l B g =2 T ang ¢k ()
2a k3 2a B2 2ah




Thus:
AP = 4, — @ + A4, g and ]
v du? l
. : ®
AP = CE !
ov ]

Fig. 4. shows the newly introduced denotations and the character of
the surfaces arrived at.

Let us now determine the boundary conditions generally encountered
in technical practice.

The temperature of the fluid at the cross section of inlet (y = 0, resp.
v == 0) shall he given in the funection of u: Ty = Ty(u, 0). This permits the
determination of @y (u, 0) = f.(u).

At the point of u = 0, @,(0,0) = fi{0) = 1.%

Examining also the temperature of the plate in the same cross section
(v = 0) beside the wall (x = 0, resp. u = 0), it will be found that T is equal

to zero.

We assume a given temperature distribution for the fin bhase also, i.e.
we assume that @(0,v)is equal to f,(v) provided u is equal to zero, respectively,
in the simplest case f; is equal to 0 (no change takes place in the temperature
of the fin base in flow direction).

Further boundary conditions are set by the fact that — with the sole
exception of the fin base — heat flow normal to the enclosing surfaces of
the fin must be equal to zero. Thus, if v is equal to 0 or to 1, 80/6v is equal
to 0; and should u be equal to 1, then 69/5u is equal to 0.

Summing up:

if v is equal to 0, then @, is equal to fi.(u) and 8D/3v is equal to 0,
if v is equal to 1, then 69@/8v is equal to 0,
if u is equal to 0, then @ is equal to f,(v) finally
if u is equal to 1, then 8@/du is equal to 0.
The last condition is determined either by symmetry — viz. by the

fact that the plane at a distance of h, from the fin base (u = 1) constitutes
the plane of symmetry of the temperature distribution, or by the fact that
in the u == 1 the fin is enclosed by an insulated frontal plane.

The first step in approaching the problem will be “to remove” the
“v" variable through the operational method.

* Or at least at the (0 - du, 0) point.
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According to the general formula of the operational calculus, the follow-
ing may be written:

Note:

In all formulae and throughout the present paper a horizontal line
above any character® will denote the operator, while the letter s will stand
for the differential operator.

If we introduce according to what was stated above for the @{(u, 0),
D(0, v) and Dy(u, 0) functions, the following denotations:

B(u.0

=fu(w); P(0.0) =fi(v) and @yu.0) =f(u), (10)

\_./

then, taking also the Loundary conditions into consideration, the (8) system
of equations will assume the following form

kST

_ 52
AD = A4 (s* O— sf,) + 4, and 1
| :

o

AD = Cs®,, — Cfy,.
Since, on the other hand 4% = @ — @, the last relationship will give:

@—5;{26‘3'@]C—~ka,

respectively,

5, = 2T G
1-+-Cs
Substituting it into (11), we arrive at
- 1 ) - >
O]l - it = 4 (20 — sf,) + A, —— .
s e AR A

Since @ is the function of u only, our equation can now be written in the
following, more simple form:

g (LG gty LA
A 4, s+1/C

u

* Respectively the braces: {}
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Introducing the following denotations:

E = /:’)) _L__i_.. — 821, and l
A4, s-+1/c ) (
; (12)
E:ﬁsj‘u_l___ik.__:s];’ ‘
4, s+1/C J
the equation will appear in its final form
" —LO=1w, (13)

where @, L and 7 areoperators.

The solutions of the (13) operational equation will be operators —
v-functions — in the parameter of u which, by the general formulae of the
operational calculus, will satisfy two of the boundary conditions of the original
differential equation, namely: if v is equal to 0,89/3v will be equal to 0 and
Dy(u, 0) will be equal to f.

The resultant functions will also satisfy a third condition, viz. provided
v is equal to 0, D(u, 0) will be equal to f,.

Since, however, this fact can only very infrequently be applied as a
boundary condition, further investigations are required to adapt the solutions
to the actually encountered boundary conditions (9) — in the course of which
the f, function is also to be determined.

The (13) equation is an inhomogeneous differential equation with the
following right side: w = w(u). The conventional method of seeking the general
solution of inhomogeneous equations consists of the superposition of the solution
of the homogeneous equation on an independent particular solution of the
inhomogeneous equation. This method cannot be applied in our case to the
fact that the formal solutions of the homogeneous operational equation pertain-
ing to (13) are mostly non operators,thus the only solution of the homogeneous
equation is the trivial one [2].

It should be borne in mind, however, that this would hold good only if
VA,/A,#0.Should, namely, e.g. 4,=0,then we might obtain a function as the
solution of the homogeneous equation. This would represent the case when
plate conductivity in the direction of flow is negligible.

Since our investigation’s purpose is to clarify the more general aspects
of the problem, we take plate conductivity in both directions into consideration.
Thus, we cannot apply the conventional method and must resort to the partic-
ular solution of (13) — which in our case vields, at the same time, the com-
plete solution.

The search for such a solution will in the majority of cases not present
any appreciable difficulties, the problem essentially being that although




HEAT TRANSFER IN COMPACT PLATE-FIN HEAT EXCHANGERS 29

the function f; in (13) differential equation may be set theoretically for one
of the boundary conditions (it is the value of @ in case v = 0),in actual prac-
tice this function is generally unknown. For this reason it has been omitted
from the system (9) of boundary conditions.

Since the system of boundary conditions given under (9)is,in the major-
ity of cases, actually known, the solution of the differential equation must
satisfy it.

On the ot herhand, if we expect the solution to satisfy the system (9)
of boundary conditions, f, cannot be pre-determined any longer, but will

Fig. 5. The qualitative chart of @ and @, in case f; is an odd square function
(f; having a period equal to f;)

follow from the solution. Consequently we shall have to seek for such a form
on the right side of (13) inhomogeneous differential equation (f, figured in ),
with which the solution will satisfy the conditions as set in the (9).

A substitution will readily prove (2) that one of the particular solutions
to (13) equation may always be obtained by the following series (provided it
is convergent and can be evolved):

_ s I ]:,('271)
F=—2 %

A O o

where (12 equation) the % operator is a parametric function with u as the
parameter. In the summation u is defined by the requirement being the last
derivative function of k (derived according to u) which will not be analogously
clear, just the (2u - I)th derivative. Provided the infinite series is a con-
vergent one, it may be that p - co.

The solution in this form will not be suitable for further calculations,
unless f, and f viz. k are given.

Since, however, this case is very rarely met with in practice, we must
find the solution in a different form.

To evolve f, and f; in the form of a Fourier series seems expedient. This
will naturally presuppose that both are periodic functions, but right at the
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outset it will be evident that such proviso will substantially facilitate the
satisfaction of the (9) boundary conditions.

Namely, if we choose the period of f; and f, in such a way that the
planes u = —1l;u = +1;u = -3, etc., are planes of symmetry, then in these
planes the derivatives of @ in the direction of u will disappear and a further
boundary condition will be satisfied. Whereafter from the last boundary con-
dition (89D/8v==0, if v is equal to 1), in the knowledge of the required coefficients
of the f; function, the Fourier coefficients of f; can be readily determined.

In that which follows we shall restrict ourselves to the treatment of that
specific case when f}, == 0, viz. wall temperature in the direction of flow remains
unchanged. This boundary condition is automatically met with by selecting
the series of f;, so as to realize the function seen in Fig. 5. (We refer here to the
fact that by the proper choice of fj, and f,,. f, cau be shaped to meet to the full
all practical requirements.)

Choosing equal periods for f;;, and f., due to symmeiry — as outlined
previously — f,, and f;, f;, with unknown coefficients for the time being, may
be written with the following Fourier series:

beo

T,
—u =

[3V]

. 1 .
fi=—{sin—u-L —sin
2 3

and ‘ (15)

. .7 , . 3w
Jo=Dbysin-—u Lt bysin—u-+ ...,
2 - 2

Py

while aceording to the (12) equation:

= w n 4 1 . @
l::——:fpbl— ‘sm——u+
s i A, os(s-=1/C) 2
N 4 1 37
‘T‘(Pb:‘— )Sln—ZL+ =
! 34,z s(s--1/C) 2
=Blsm——u—}~B,sm-—7-—u—1« s
where
2n— 14, s{s-+1/C)
Finally:
- = o1 — T
= S B i ZPT DT (17)
n=1 2

S
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= k, equation, the root of the K L 2 =
s s

k equation will be D =

I
]l
) 1@1

= @, - @,. Thence it follows, that solving the

5 ” )

- ) 2 r— s
- Lg.: nsul,(_wz

L

s s 2

equation, the @ function sought for can be evolved from its 5,7 rootsin the follow-

ing way:
b= S0 (18)

= e

S

n=1

Let us now compute the value of @ , making use of the expression of

@, obtained from the (18) equation. It is obvicus, namely, that

&2k o — 1y (9 — 1) 2k 91 — 1)z
B sin Lz__—_z__u,\,:(_l)k(u_ﬁ_] B sn Zn=DT
du* 7 2 I 2 Z
whence, according to (14) equation:
((271 — l)n‘r“’
- 2n — ’ - 2 !
&, = — B, sin n—1 rzu}—i— SMNe—— | =
2 L i L y
. . {(2n—1)= s 1 .
= Bnhm;— u—I:— 51 7
T
.
1 S—
L
. s . (2n—1)=
= — B, B , sin 5 u

The complete solution, on the basis of (18) equation will be obtained as

follows:

- - 9 — 1) 2
=¥ sB, — sin @Grn—1)= . (19)
= r, '2n—1’ 2 2
‘ ( 2 }

. 2n—1 .
Denoting ——— 7 withw :

2n — 1
— =0,
2
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and substituting the value of B, ((16) equation), the nth coefficient to the
trigonometric series of @ may be set up in the following form:

_ﬁsbn 2 1 _ . 21
L 4 o2 Ay0 (s+ 1O (L + w?)
B being 4,/A4, (12),* the demoninator may be written as:
— ,9[53 +-1_s?— 1+oid, s — Auoﬂ}’
C A, A,C |
whence the nth coefficient becomes:
b 9 7 2
nS T ——8§ —
_ l)ADw : 22)
334—1—5‘-’—— 1+ 4,0 s A, 02
C A, A,C

The roots of the denominator shall be &y, &, and &, [2]. With these
roots the nth coefficient may be decomposed with simple fractions in the

following form:
. [ Dln e D'Zn R D3n } . (23)

§— & S — &y § = &3

Taking into consideration also the relationships between the g, roots,
the following system of equations will be available to determine

Dln_é_D:Zn'f—D&i:bn': (2-1)

€1n Dln T Eap D2n -+ €ap D3n =0 and (25)
1 1 2

_Dln ;iDzn ‘T"—“D?,n:'“—“‘—c‘_ (26)

€1n €an E3n Au 3

The literature referred to under [2] describes the thorough examinations
carried on into the case when one of the roots of the cubic equation is equal
to zero. In such cases, namely, our equation system cannot be applied in this
form.

There remains now to determine the b, Fourier coefficients of the un-
known f, function. This must be done in such a way as to make the derivative
of the @ function, with respect to v, equal to zero at the v = 1 position.

* Substituting also T.
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Substituting the operational form with the conventional form of the
@ function [(19) and (23) equations):

D= X (Dype” + Dyye? + Dy, e¥) sin wu . (27)
n=1

The partial derivative in respect to v at the v = 1 position is

30 | -

— = 3Dy, ¢+ Dy ep, e L Dy gy, e sinou.

81’ 1Z’=1 ne=1

To render this function at an arbitrary u equal to zero, the following
fourth equation will present itself:

Dln €1n e '“' D?_n €on efen + DSn €3n efem = 0. . (28)

Our task has been fulfilled, viz. with the (27) equation the @ function
satisfying the pre-set boundary conditions in the form of a Fourier series,
has been szet up.

Let us now sum up the sequence of the process followed.

The nth coefficient of the Fourier series of @ was obtained in the following
manner:

1. Computing the value of o from n (20) we have used it to determine
the roots of the denominator of the nth operator coefficient (22);

2. solving the system of inhomogeneous linear equations (25), (26) and
(28), we have determined the value of Dy, Dy, and Ds,.

With the so obtained valuesthe n th member of the Fourier series of
@ may be determined on the basis of (27).

This method is, of course, applicable for the determination of any optional
member of the series of @.

Technical practice, however, is interested in the volume of the trans-
ferred heat much rather than in the developing temperature pattern. For this
reason, we shall compute the heat transferred under conditions given in the
presentation of the problem.

The heat extracted from the wall through the fin can be readily estab-
lished by determining the temperature gradient in the fin adjacent to, and
normal to, the wall

, 8T
00 = —ly—  v,-dx,
X x=0

or, integrating along the whole length of the fin:

hy T
Qz—_;‘x‘vﬂj '8_-'

dy .
ox Y

x=0

0

This will show the heat extracted from the wall by each of the fins.

3 Periodica Polytechniea M. VII/L.
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Let us now compute the same heat quantity, applying a factor denoted
with g7, similar to the fin efficiency. (The subscript L serves to call attention

to the fact that this factor, although similar, is not identical with fin efficiency.)
The following will give the definition of this factor:

Q=2h,h,e adTy.
Collating the twe equations of Q and applying
previously (see (6) and (7) equations):

(29)

the denotations used

1
¢ 8D |
e = A, | ;o do. (29a)
._) Ju ‘i'az()
o

a 1

——{  may, however, be calculated from (27)

8t Jumo

50 | =, . R e
——r‘ | = 2 (9] [Dln et 'T' D2n esm" -‘T. D3n e‘:n‘] .
Ol (u=0 n=1
After integration:
1
L~ Ys i B
o0 | =, D, . . D \
| dr = X [a)( 1N ot 20 pfan \ 3n efan
B U lg=0 n=1 €1in €an €3n
Dy, Dy D, }
—_ .
€1n €an €3
Upon substitution of (26):
E -
oo !

. °C
_‘__ L + 3n 655”') _L. ) i
eln 6211 €3n *411 3
Substituting © from (20), the
easily computed:

< 2 8C
ﬁvlf’iu (L)n

< 1
A =2 =

second member after the 2 sign can be
A7

= @2n—1)2

value of g, becomes:

A =
u
& = C -+

Substituting the expression of o and applying the last equation, the

= D D,
S @n—1) [_ﬂ g 1 Don

2 =

bl n=1 eln

D
. ——-] (30)
2n €3n
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In many instances it is not convenient to summate the reciprocal quad-
ratic series. For these cases the relationship obtained for the value of ¢ will
be as follows:

3L=_4u§jw‘:pm-e_ll—_1+ p, =t . p _e__:}_} (31)

€1n €an €3n

Solving the system of equations in three unknown quantities [2], we
arrive at the following correlation ultimately:

L / By ; V5 ; ~ /
n=1 - &ani® L _ (&g, \2 . &2
1-(& —efin 8231[1_ _E) J_ P Uirz) -
\61,2 ! Lap, Eopy)

This will have served to illustrate the sequence followed in solving the
thermotechnical problem in hand. In equations (30), (31) and (32), in the
form of infinite series, even a final formula had been worked out and presented

for cases in which wall temperature, adjacent to the fin base in the direction
of flow, is constant.

We must reiterate here that the method given is easily and efficiently
applicable also to other functions of the wall temperature.

The given infinite series has already been applied in a number of calcu-
lations for actual problems. The calculations have shown that under the
conditions and material characteristics generally encountered in practice,
the series will rapidly converge and the establishment of four-five mem-
bers will yield sufficient accuracy.

Summary

The paper, by investigations into the quantity of transferred heat and extending also to
fin econductivity in flow direction and un-uniform temperature rise in the fluid along the {in,
deals with the fundamental requirements of accurate dimensioning of all kinds of plate fin type
heat exchangers. The conclusions drawn hold good mainly for the dimensioning of compact
laminar-flow heat exchangers.

The treatment of the problem has led to a system of partial differential equations of
the second order. The solution and its adaptation to the boundary conditions are based partly
on the operational calculus as evolved by Mikusifisky. partly on the expansion of the boundary
conditions into Fourier series.

For the frequently occurring case when fin base temperature in the direction of flow is
constant and the temperature distribution of the entering fluid homogeneous, the final result
was obtained in the form of a rapidly converging series. (Under conventional material charac-
teristics the convergence was particularly rapid.)

The calculation method is readily applicable to various boundary conditions,

g
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Nomenclature

b, the nth coefficient of the Fourier series of the f, function:
o fi = Byl o
= D(u, o)
Pty = Do, v)
hy the longitudinal dimension of the fin, normal to the flow
hy the longitudinal dimension of the fin in the direction of flow
E = pBfy — 1Ay, 1fs-fil(s + 1/C)
the differential operator
dimensionless coordinate normal to the flow, u = x/h
dimensionless coordinate in flow direction, v = y/h,
fin thickness i
W = sk
room-coordinate normal to flow
room-coordinate in flow direction
A, dimensionless number A4, = A./2a .y,
A, dimensionless number 4, = /‘./7a . 10/17,7
B, the nth coefficient of the Fourier series of F: % =
C dimensionless number € = (;/20h,
C, the heat capacity of the rate of mass flow referred to the length, measured in the
direction of x By
the full rate of heat capacity for each f{in is: S Cpd,
coefficients (23 equation) o
L= p{1/4, s/(s--1/C) — 5%}
heat transferred per time unit
fin temperature
T, fluid temperature
T, fin base temperature Ty = Ty(o, v)
AT AT =T — T},
T, 4T, = T(0, O) T,
AT, _ITO = T(0, 0) — T,(O 0)
AT; AT = T(0.0) — T
a heat transfer coefficient between fin and fluid
B p=dA 4y
g; dimensionless number, similar to fin efficiency. &y = Q/2h, h, adT,
€1p, €an, Ep exponents (23 equation!) i
) fin conductivity in x, respectively, in y direction
o = (2n—1)7/2
@ wvariable, dimensionless, expressing the changes in the temperature of plate
D = AT:/AT,
D, variable, di mensionle ess, expressing the changes in the fluid temperature @, =
= AT /AT,
AP AD =D — D,
Zresp. {s} operator

‘aa@lcﬁe:m:ﬂ

I]rg

—

' B, sin wu

ne

Dm‘ D:rr D,

N3O g

Note

with respect to dimensions:
Physical equations have been applied throughout, consequently any consistent units
may be employed.
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