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Symbols

G = air intake
oy, = pressure ratio of compressor
0; = pressure ratio of turbine
T = temperature before the turbine and the compressor, respectively
ngs 7y = compressor efficiency; turbine efficiency
p—4p )
b

ALy; ALy= compressor specific work; turbine specific work
index *“0’* = characteristics of the given starting point of process

¢ = factor of pressure loss (G =

— G . - . .
G = < = ratio of characteristics for an arbitrary point of the process,
)

but one sufficiently near to the starting point to the charac-
teristics of the starting point

A6 = < = ratio of difference between the characteristics of an arbitrary
0

point of the process but one sufficiently near to the starting
point and those of the starting point of the process to charac-
teristics of the starting point of the process. This definition also
refers to the other characteristics of the gas turbine

cpps Cpg = specific heat of air and gas, respectively

: 2y — . . . :
b= & —— = expression formed from the adiabatic exponents of air and gas,

£ respectively

1. Specification of the problem

The accurate examination of the fractional loads in gas turbines neces-
sitates a lengthy and difficult computation work. When designing gas turbines
and determining their operations as well as their trends of development, it
is often necessary to have an approximately realistic view, obtained by means
of relatively simple calculation methods, of the fractional load conditions
of gas turbines having different work cycles and structure — above all in
order to be able to compare them with one another.

For the investigation of the technical-physical phenomena often a method
is employed' with good results when the mathematical expression describing
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a given process can be converted to a difference equation. The calculation for
applying the difference equation assumes that the function between two points
is sufficiently near to one another of the described function that the process
can be substituted by a straight. This approximation is entirely sufficient when
examining the fractional load conditions in gas turbines as in this case the
exact and particular data of the gas turbines are not known, and the applica-
tion of efficiencies and factors of the individual machine components is effected
only on the basis of data drawn from similar machines.

The present study deals with the applicton of such a computation
method for the above problems, as well as with the solution of a concrete
problem.

2. Fundamental connections of the procedure
2.1 Difference equation of specific work consumption of the ?diabatic compression

The adiabatic specific work consumption of the compressor at a point
near to the initial (known) state is given by the formula:

AL, = e, T(af — 1). 2.1)

The division of the expression (2.1) by the expression of the initial
(known) state gives the formula

AL, — ALy ey T A=l me—1 mkeai - (2.2)
AL, Cpp T, af,—1 =ag—1 ag, — 1
T, -
T) = T =1, since at a fractional load the possible change of the temperature

of the induced air as well as that of the specific heat under compression is
negligible.

As the value of AT;{ is only function of ;. therefore, the change of the
specific work of compression is expressed by the complete differential:

-  B8AL, Aleaf,—1] ,—
dAL; = _L" day, = a— ( - :hﬂ 1 l rday =
Ty o, Ty — 1
axfteal, (2.3)
= - 4.
ag—1

At the computed point 7§ ' = 1, therefore

8AL, __af (2.4)

= ; .
97, lg— 1
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‘When resubstituting the expression (2.4) to that of (2.3)

a
a - Tpq

d Af,k = —

agy— 1

-d 7, .

Substituting the differential equation by difference equation, the formula
is as follows

a gy

AAL, = AR, =k A7, (2.5)

a
T — 1

The value k can be computed from the initial characteristics of the
process.

2.2 Specific work of the adiabatic expansion

Specific work of the turbine:

1 s —1
AL, = cpgT{l - Eb_] - cpgT{ o _]. (2.6)
t t

On applying the procedure in the same way as in case of compression,
but taking into account the possibility of the change of temperature before
the turbine, the result is

AL, — AL, ____Y_’_{r‘/?—l',.( of ‘):T{é?'é?u—(s?o
AL, T, 0 1 l6f —1] or . 0) — 0f ‘
By dividing the preceding equation to the end with the value of (3?J:
b, sh
.._—_I—/[ = T' W . (2.7)
0507, — 1) g

After forming the total differential of the expression ,:TI: and taking
into consideration that AL, is a function both of T and 9,

1%, = 2AL 4y 2AL
TaT e

o dé,. {2.8)

Having determined the differential of equation (2.8)

0AL,  &-6% —1
oT o4 (6%, — 1)

3 Periodica Polytechnica M. VII;2.



130 E. P4SZTOR :

0AL, _ 5. b
30, 50<1(55 — 1)

Being at the computed point T = d; = 1, consequently

AL, . oALi b

8T =1 35, zag’o—l:t 2.9)
When substituting the expressions (2.9) into (2.8)
d AL, =dT - t-ds, .
After having converted the difference equation
AAL, =AT + 14, . (2.10)

The value of the constant ¢ can be determined from the initial (calculated)
characteristics.
~

2.3 Change of the quantity of medium passing through the gas turbine

According to the elliptic equation valid for the multi-stage turbine

p.= VG- T(pt— Pho) + pi- (2.11)

where
P1o5 Pao = pressure before and after the turbine at the computed run-
ning state,
P Pr = pressure before and after the turbine in the operational
state of fractional load.

Having divided the equation (2.11) to the end by the expression

Pso . . . C .
= ——, the following, already dimensionless equation is given:

PisPo 0k P2

51=]/CZTTI,‘ (1—-},»J+ 1 , (2.12)
' P: 070 %%

where in accordance with the signs employed above

C—Cl6yd, =2, T=L, 5 P

S0 T, P20 -
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From equation (2.12) it can be seen that §; can be expressed by the
following function:

5f :f(é T; P2) - (2.13)

In order to determine the difference equation of the change of the
quantity of medium passing through the turbine, let us form the complete

differential of equation (2.13)

a5, =2 ag 2% g7 L B g5, (2.14)
oG oT op.,

The partial differential quotients of equation (2.14) can be obtained by

means of the differential quotients drawn from equation (2.12) according

G;T and p,

. CT— (1 —
T 1 1p2 —— (2.15)
ol o A

[T = (1 — o)+

]/ Dz ( 5?0) 0

At the computed and sufficiently approximate operational state of frac-
tional load is G = T = p, = 1. Taking this into account, equation (2.15)
will be converted as follows:

\ —
89 1. (2.16)
G %

In the same way the values of the other partial differential quotients
can also be reckoned:

8% _y 5{1-%} 2.17)
aT %
L ——1) (2.18)
op, 6%o

After substituting the relations (2.16); (2.17); (2.18) into (2.14), the
formula is as follows

détz[l—qu . (dCT'O,SdT—dﬁzJ.
; 0 )\

When passing over to a change of operating state of finite value

A46,=gdGC +05-4T —A4p?),
3*

(2.19)
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( 1
where g = |1 — ? is the constant to be determined from the initial state.
0

The relation (2.19) represents the difference equation of the change of

the quantity of working medium passing through the turbine.

2.4. Equilibrium equation of coaxial turbine and compressor

Let us establish the difference equation comprising the change of state
of equilibrium of coaxial turbine and compressor by means of the difference
equations concerning the variation of expansion and compression work.

In a state of equilibrium the performance of the turbine is equal to the
assumed performance of the compressor

AL, —_— _ T T
— % = AL,;%,; AL, = AL, 7;. (2.20)
N
where
ﬁk?—]T = "ﬁo .

; Having represented the complete differential of the expression _Zf‘
(considering that L, = f/ATt : 1)

L oL
dAL, = i j_L/ d AL, 4+ _89\{[/,\
oALy o Ng

di, . (2.21)

The prescribed differential quotients should be determined, then

8AL, _ 8AL,

odL, " on, ALy
at the conﬂ)uted point:
SAZ’J%- =1; 8‘4_1"’* =1. (2.22)
8AL, s
On substituting the relations (2.22) into (2.21)
dAL, = d AL, + d7,. (2.23)

When converting to difference equation (7, being invariable):

A AL, = A AL, . (2.24)
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The equations (2.5) and (2.10) are to be substituted into (2.24):

kA7, = AT — ¢ 15,

or

A7, = (AT —1do). (2.25)

The equation (2.25) gives a relation between the three most important
characteristics, Ay, AT and 49, of the state of equilibrium of the coaxial
compressor and turbine.

2.5. Behaviour of series-connected turbines under fractional load

When there are two turbines series-connected without intermediate
firing, the relation of the degrees of heat of the incoming gas into the turbines
is given by the formula:

N

\To= Ty =, (2.26)

S|

where
T,; T, represents the temperature before the turbines (indexes accord-
ing to the direction of stream)
0, pressure ratio of the first (high-pressure) turbine.
When applying a dimensionless figure

Tz:Tl’“}_-
o}

Entirely equal to the method outlined until now [T, = f(T,; &,)]:

8T, = —=dT, -~ —2-dJ,. 2.27)
2 T 1 1 (2.27)

After having set up the differential quotients of equation (2.26), and
taking the conditions (6, = 1; T, = 1) of the operating point into consideration:

=—b. (2.28)

The substitution of the relations (2.28) into (2.27) gives the formula

8T, — dT, — b d3, .
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Passing over to difference equation, this results in the following formula

ATy = AT, — b4 6, . (2.29)

Taking into consideration that the value b = Ligk_ 1 = 0.248 is
essentially a smaller number than the unit, this can be set up gwith a govod ap-

proximation:
AT, = AT,.
2.6. Equilibrium equation of the complete gas turbine system

In the state of equilibrium (4w = 0) of the gas turbine the pressure
increase produced in the compressors will be consumed, on the one hand, in
the turbines, on the other hand, it covers the pressure losses of the system:

d=o0"=x (2.30)

where 0 = complete pressure ration of turbines,
7 = complete pressure ration of compressors,
o = pressure loss factor of complete gas turbine system.
When applying a method identical with the above procedure

A7 = 46 + 45

In case of fractional load calculations ¢ = permissibly stands beside
(do = 0)
Az =45 (2.31)
2.7. Determination of the fractional lead performance

The performance can be established as the product of the heat drop in
the working turbine and of the gas quantity passing through it:

. N-4t,-¢.
As a result of the method identical with the preceding steps:
AN = AL, + 46. (2.32)
3. Application of the methed
It is the fractional load operating state of a gas turbine having a given

initial characteristic that should be determined by means of the method
outlined above.
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Thermic characteristics of the nominal operating state of gas turbine:

7o = 0.25; pressure ratio of gas turbine compressor

8o = 3.32; pressure ratio of turbine driving the compressor
8¢ = 1.593: pressure ratio of working turbine

G, = 2.21 kg/sec; air intake of gas turbine

a = 0.286

b = 0.248

T, = 1073 K°; maximum temperature of gas turbine.

The switching diagram of the g!s turbine is shown in Fig. 1. The gas tur-
bine is performing a two-adiabatic work cycle without any heat exchanger,
this being equipped with a separate working turbine; the working turbine
Tuns at the low-pressure part of expansion.

.

Fig. 1

T .

To determine the fractional load operating state of the gas turbine, the
following equations are to be set up:

The equilibrium equation of the quantity of medium passing through
the turbine which drives the compressor can be established by means of the
relation (2.19):

A4l =g" (4G +054T —Apl).

As the pressure after the working turbine is invariable (atmospheric),
therefore the change of the counter-pressure in the turbine driving the com-
pressor determines the pressure ratio of the working turbine, thus:

?

A ] = ApL.

The equilibrium equation of the quantity of medium passing through
the working turbine is given by the formula:

’ 4300 =g (4G +054TH).

It can be set up on the basis of equation (2.29) with good approximation,
that: :
AT — AT! — AT.
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Equilibrium equation of the compressor and of the turbine driving the
compressor according to the relation (2.25)

Jﬁkz%(tfdr5§+JT).

Equilibrium equation of the complete gas turbine system according to
(2.31):
Az, = As] -+ 18]

Changing the values of the constants figuring in equations (g', g'’, k, t') is shown
in Fig. 2 as a function of the characteristics determining the constants. Deter-
mination of the constants is to be achieved according to the following relations:

30
!
il

g \

b H
L] I — ]
12345 67y 00 900 1000 1100 K

Fig. 2 Fig. 3

2

11 C 12
glzl—‘(é—/ 5 g”=1—|-§{—1—];

a
asty, . ¢ = b

I e
7l —1 (0 =1

After having performed the indicated operations, the function AG/AT which
determines the fractional load operating state of the gas turbine principally,
will be constituted as follows:

05T gl 0,58 gl gl 1 .
_ 1+ L 058 — 0,5 gl —0,5gl!
46 K K K & g8 8
AT gl — gl gll 1 gl — tigh | tlglgh )
° 2o K K

In this equation there only the const\ants that can be determiued from the
initial conditions occur. By means of the above relations, starting from the
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characteristics determining the nominal operating state and assuming the
maximum heat drop as 4T = 50° C, the fractional load thermic characteristics
which belong to Tg = 1023° K can be determined (Fig. 3). Considering the
values thus obtained as nominal ones as the characteristies of the fractional
load operating state, but in this case those related to Tj = 973° K can again
be determined.

4. Accuracy of method

In order to show graphically the error made in the course of compu-
tations and the method, respectively, it is Fig. 4 which shows the change of
the specific work of adiabatic expansion as a fuction of the pressure ratio
both by means of equation (2.6) assuring an exact solution and the approxi-

keol ‘
kg -
80 Vi 487247 —
>,7 :

7
O o

490 //.‘

/] _
2 ’7L b=1073 K=const._|
i ! |

12 3 & 5 64

Fig. 4 Fig. 5

mative difference equation (2.10). In the figure the fundamental conception
of the method is clearly to be seen, that is, the original function will be approx-
imated by a fraction line system made up of the tangents drawn at the given
points of the function; in such a manner that the original function and the
value of the ordinates of the fraction line system approximating that should
coincide with each other at a given value of the independent variable.

From the system of approximation the results are that in the case a
function has no point of inflexion in the given examined section which should
be approximated, the made error will increase when moving away from the
point of coincidence, however, on augmenting the number of the approximative
line parts, the made error can be kept, in principle, within arbitrary limits.
Obviously the problem is, how to divide the investigated interval, in order to
establish a difference equation within the given limit of error, into partial
intervals equal to each other.

_Let us approximate (Fig. 5) the examined function f(x) in the interval
(%, — x,) with difference equation and check, into how many partial intervals
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Ax = () — x9)
n
given limit of error. Consequently, determining the gravity of the made error
if the approximation f(x + n A x) ~ f(x) + f/(x) dx + f'(x + dx) dx £ ..
o+ flxd(n—1) dx] dx is applied.
The made error is:

the interval (x, — x;) should be divided while observing a

H,y=flx+ndx) —flx) —f'(x) - dx — ... f' [x+(n — 1) dx] dx. (4.1)
After a simple conversion of the right-hand side:

H, =S {flx + (i + 1) An] — flo + ide) —f (s + id) Az} . (42)

I=

=3

Having ranged the function f(x) into Taylor’s series and applied Lagran-
ge’s residual member, the formula will be ' ’

Jlo+ 42) = ) + () A + L

that is

S+ A5) —fla) = () Az + L8 e (4.3)

where p; is an arbitrary point of the interval. When achieving the substitution

"(o;
flae+idx) — flx + (i — 1) dx] = f'[x + (i — 1)dx] dx + f—;{iﬁ x2

at the right-hand side of the relation (4.2) on the basis of (4.3), then the value
of H,, amountg to

g 1) nM |, (% — )
S — 2 N2 VN2 . 4.4

where M = " (90;) = max f” (x) in the examined interval, x, — x; represents

Xy —.'\31_ :dx

the length of the interval and
n

In expression (4.4) it can be seen thai the value of the error decreases
when increasing the number of the partial intervals, and it will become zero
if n=o.
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In practice, in most cases it is the relative value error but not the absolute
one which is needed:
H .
i, (4.5)
S(xy)

H, 9, =

n

where f(x,) represents the function or its approximative value at the point x,.
In applying the method, the exact course of the process is not known only
its approximation, thus, the determination of the value of f”(x) cannot be
otherwise carried out, but with approximation in the following way:
When comparing Newton’s interpolation formula with the figure ranged
in Taylor’s series of the same function, relations can be gained by means of
which the differential quotients are to be determined from the differences:

1 (.. &U,  A2U, AT,
1) = —fay, - A Y AU AU 4.6
7 Ax( ' 2 3 4 , (4-6)

1 11 5
" (x) = AU, — B+ pU, 25U, + .|, @1
;@ ,/Jx‘z( ‘ Tt T e T ) *1

where 4" U, (Fig. 5) represents the difference of the n-th order belonging to
4 x at the given abscissa x. Among the values f”(x) pertaining to different
abscisse of the given complete interval (x, — x;) the maximum approximative
value of f"(x) can be selected directly.

The procedure for determining the error of the method outlined in this
study is as follows:

Considering one of the characteristics determining the fractional load
operating state of the gas turbine (in the present study AT) as an independent
variable, the characteristic curves for fractional loads of the gas turbine
can be determined as a funection of AT. By means of forming the differences
of characteristic curves, the max f"(x) belonging to the complete interval can
be determined, next the value of the error pertaining to -7 can be assumed
in advance. After having determined the value of the error and comparing
with the permissible value, respectively, a possibility arises to correct the value
of AT which was assumed in advance. .

It is obvious that with a view to limiting error of the various dependent
variables there are independent variables with different partial intervals which
occur; and of these it is the independent variable with the least partial interval
that has to form the basis of all approximative calculations.

Consequently, the correctness of the assumption of partial intervals for
the independent variables of the process can be checked, and the value belong-
ing to a given limit of error AT determined, by applying this method.
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Summary

The study deals with a possible method for examining the fractional loads of gas
turbines approximately. The main point of this method is that the fundamental equations to
be applied for the fractional load calculations can be converted into differential. then into
difference equations. Thus, the functions given in an exact way for fractional loads can be
approximated by a fraction line system consisting of straight sections, then by establishing
difference equations when a point of the operating state of the gas turbine (as a rule. the
maximum operating state) is known, the characteristic curves for fractional loads of the
gas turbine with a given working cycle can be determined. When applying the method exposed
in this study and having approximative difference equations, the error made at the approxi-
mation can be specified. The more accurate the calculation is, the nearer the computed point
of the rate operating state at fractional loads comes to the known starting data.

Finally, the author expresses his tahnks to Dr. M. Farkas {Technical University,
Budapest, Chair of Mathematics for the Faculty of Electricity) for having given the auther
great aid for elaborating the Hmit of error in the method.
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