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1. Introduection

In designing the blading of rotors or stators of pumps or turbines, one
must consider a three-dimensional flow pattern even when assuming ideal
liquid flow. The problem was solved by C. H. Wu [1], whose method
requires a computing work too extensive for practical cases and is only
practicable with an electronic computer.

Consequently, there is a need for a simpler method of calculation, giving
a good approximation. The blading and the approximate velocity distribution
can be calculated by one of the techniques on the basis of starting a more
accurate caleulation of velocity distribution.

This paper deals with design of mixed flow impeller having thin blades,
the thickness of which is not infinitely small. The investigations were made
assuming incompressible and perfect liquid. In the calculations the possibilities
given by the conformal transformation and the method of singularities were
used. For reducing the calculation work some allowances and simplifications
should be intreduced which can be tolerated according to our experience and
nevertheless give a good approximation.The stream surfaces whose inter-
section with any plane perpendicular to axis z forming concentrical circles
were regarded as surfaces of revolution and, in analysing the flow on the sur-
faces of revolution, the source distribution making a variable layer-thickness
was considered only according to the integrated velocity means. On the basis
of related investigations for practical cases by BEeTz [2] this approximation
gives good results. After transforming the surfaces of revolution and the blade
sections on them into a straight plain cascade, we could determine the blade-
curves (blades having infinitely small thickness) by the method of singularities.
The source distribution responsible for the blade thickness is considered, not
on the blade-curves carrying the singularities, but only distributed on the
whole field, corresponding to the conventional contraction coefficient. Never-
theless, when computing the velocity distribution of the hlade, the value of
the velocity-jump is determined by taking the accurate thickness-distribution
into consideration. In fact, the thinner the blades are, the better is the approxi-
mation of the velocity distribution calculated in this way.
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To determine the blades an iteration process is proposed here.. As a
first step — as approximation of zeroth order — similarly to other processes
[3] the blade surface of an impeller with infinite blade numbers are calculated.
This is necessary, on the one hand, because of the possibility of calculating
the stream surfaces which are regarded as surfaces of revolution depending
on the “*blade load”, on the other hand, because of the starting basis of the iter-
ation determining the final blade surfaces. After the conformal transformation
of the surfaces of revolution into the straight plain-cascades, the blade-curve
is to be determined by iteration and, after fixing the blade thickness, the
blade surface and the velocity distribution can be determined.

The process makes the determination of velocity distribution in the
interblade channels possible, before and beyond the impeller, resp.

The paper shows the design of a pump impeller, but the relations can
evidently be used in the case of turbines or, by putting @ = 0, in the case of
stators, as well.

2. Symbols used

H = head

Q, = fluid mass delivered by the impeller

z == number of blades

I’ = blade circulation

m = angular velocity of impeller

77, = hydraulic efficiency

r. ¢,z = cylindrical coordinates on the impeller
&, 1 = coordinates in the { plane in the straight casecade
§*=§/&, == dimensionless coordinate perpendicular to the straight cascade

I, b = curved coordinates in the meridional section
¢ = blade pitch in the straight cascade
P = 27z

@ = angle characterizing blade thickness
7s(s) = vorticity distribution along the camber line, in straight cascade
Y¢(§) = vorticity distribution along the coordinate axis &, in straight cascade
;J?(E*) = dimensionless vorticity distribution
f = blade angle
#, = blade thickness on the pressure side
#s= blade thickness on the suction side
o, = radius of blade curve in straight cascade
¢ = absolute velocity in the impeller system
¢; = absolute velocity in straight cascade
¢, = component of velocity ¢ in the meridional section
¢, = component of velocity ¢ in direction u
¢g, ¢, = components of velocity ¢
cmx = velocity ¢, in the case of infinite number of blades
cme = the correspondent of the velocity ¢y in straight cascade
;- = basic flow velocity in straight cascade
¢j¢ = induced velocity in straight cascade . ) ) .
¢pn = the correspondent of the velocity of rotation before the impeller in straight
cascade
. ck") = F/?t . .
¢y = component of velocity c¢;; along the streamline
¢in = component of velocity ¢;; perpendicular to streamline
u = peripheral velocity in the impeller
u, = the correspondent of u in straight cascade
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relative velocity in impeller
the correspondent of the velocity w in straight cascade
relative velocity on the pressure side of blade

w
n
relative velocity on the suction side of blade
wye = the correspondent of the velocity w, in straight cascade

the correspondent of the velocity w; in straight cascade

the correspondent of the relative velocity on the pressure side of the blade of
infinitely small thickness, in straight cascade

the correspondent of the relative velocity on the suction side of the blade of
infinitely small thickness, in straight cascade
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3. Fundamental relations. Determination of the impeller element

With the known meridional curve (A4, 4) and the known breadth
db (I) in Fig. 1, let us investigate the fundamentel relations required for the
design of blading of the impeller element characterized by these “dimensions™.

The surface of revolution characterized by the meridional curve (4, 4)
is to be regarded as approximated flowsurface. Now the flowpattern on the
surface of revolution can be transformed to a flow pattern on the plane (,
where the blade row of impeller element with a number of blades z, will appear
as an infinite cascade of blades, with pitch ¢ [4]. Transformation will be made
by the relations

zt
= (1)
and
C g
. =t i
e I @)
27 rsind

rn

In the impeller system the symbol ¢ denotes the absolute velocity of the

flow which is regarded as a potential one. Its conformal value on plane { can
be calculated from the known relation

2rz

c. 3)

In the impeller system the continuity can be expressed as

1 3¢ d ,
ve=— — (cur)+ ——% = —¢, —Indb 4
c -~ ( )+ " op m (4)

where ¢, and ¢, denote components of velocity ¢ in meridional and rotational
directions, resp. On plane { the same is

ve =20 1 B o 4y g, )
a& on

3 Periodica Polytechnica M. VI/4
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where ¢; and ¢, denote components of velocity c; in directions of & and 7,
resp. [4]

It is evident from differential equation (5) that in straight cascade one
must consider a flow with sources varying in directions £ as well as 7, because
of cs(£, 7). Nevertheless, experiences show, that acceptable aceuracy cai be
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Fig. 1

achieved by setting into the differential equation (5) the mean integral values of

t

1
cm®=7j%@

0
t

1
Com (E) - 't_ [ ¢ dy
0
in lieu of c:(&, 1) and ¢, (&, n).
According to [4]
dQ.

cm:—— 6
¢ ztdb (8)

—— () (7)

where dQ, is the fluid quantity delivered by the impeller of elementary
breadth db.

This process holds for blading of impellers with “thin” blades, i. e.
blades with small thickness. In this case we can achieve a good approximation,
if the effect of the blade thickness will be taken into consideration by the
only “contraction coefficient” from the viewpoint of continuity. Consequently,
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using the symbols in Fig. 1, instead of equation (6) we calculate with the
relation
2rx

Crnks (8)

Cgm =

<

where ¢y is the mean of meridional velocities of elementary impellers in the
case of infinitely thin blades, ¢nr = dQ.2r 7 db(1 — g3/ey).

\

T/d/'=z§a’5
{ 42 £
|
7
1
1

cie
In the straight cascade — in plane { — the flow will be generated in

the conventional way, as sum of a basic flow and an induced one:
— 1
¢, = € -} €;; 9

where ¢;; is the velocity induced by vorticity distribution placed on the stream-
line carrying the singularity. The velocity of the basic flow — as reported
[5] — can be determined from the sum of

€l = cﬁm + cpv] 'IT' ckfr] (10)

where ¢s, can be calculated from equation (8) and

cm:-—]:Tp (11)

where I', = 2r, @ ¢;y and ¢y, is the component given by the prerotation at

5*
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inlet, in the case of infinitely large numbers of blades. Finally

r

Oy = ._2;_ (12)
where
I'= 2mgH (13)
Cl)"]h z

denotes the blade circulation. Velocities of ¢, ¢p, and ¢, will be regarded
as positive ones, if they show (see Fig.1) in the positive directions of axes
§ and 7 resp., after the transformation relations (1) and (2) are used. The
basic flow determined by Equ. (10) meets Equs. (7) and (8), resp.

The induced flow is generated by the vorticity distribution y; placed
on the streamline carrying the singularity (see Fig. 2). Let it be

L yeds — ryras (14)

-

ﬂ/s.ds =7 df =

where £* = §/%, and y;(¢*) are dimensionless values. Using the symbols of
Fig. 2 and remembering that ds = Vl 4+ tan2f d&, so

I
Ve = = s (E%). 15
& Vl -+ tan? f§ re(E) 1>)

The element of d& breadth of the straight cascade — it is in the fact an
infinite vortex row of d I" intensity which lies parallel to axis 5 and is charae-
terized by coordinates of £’ and 7’ — induced velocity components of

12
de;,= ﬂ?’
t

in point P(&, n). In the above expression @ and ¥ are influence functions
expressed [6] as

—_—e sinznl::_.?]_
&= : ! ‘ (16)

—n 4
1 —2e t cos?n-ﬂ——n—-{—e
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and .

v — ‘ — (17)

Taking relation (14) into consideration the components of induced velocity,
parallel and perpendicular to the cascade, can be calculated in point P(§, 1)
from the integrals

1
I’ ~ 7 —-. =7 PO PR
e — - Jyzi(f*')®( LI Rl Jasv (18)
t it t
=0
and
F i
. N , §___ El ¥ — ot .
o= | PHEN Y[ A e 19)
=0

An iteration process can be suggested for determining the streamline
carrying singularity. To set up the process we wish to take two items of the
process proposed by CzIBERE [7]:

1. Approximation of order i 4 1 can be obtained from that of order
i in such a way, that the streamline of i 4 1 will be computed as if the singu-
larities were placed on curve i, then the streamline of i 4 2 will be computed
with singularities transmitted to the curve of i 4 1, and SO om.

2. We prescribe relations of

(ei)ids; = (cir)is. ds;q,
and

(cin)ids; = (Cin) i1 dSis1

between the components (c¢;); and (¢;n); (relating to the arc element dy; as
tangential and normal components) of velocity induced by singularities placed
on the curve of 7 on one of the points of that curve, and, the correlate compo-
nents of the induced velocity relating to the arc element ds;.; of the approxi-
mation of order i -+ 1.

CziBERE prescribed the second relation only for the ’eigeneffect’
— for velocities induced by their own vortices of the investigated blade.
However, no essential error can be made by extending the mentioned process
to complete induced velocity for the sake of reducing the computation work.
Consequently, paying attention to the relation of ds = }/I - tan®g df we
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can write

1 + tan® /31'

Cit)ig = Ci)i
(c)ia (,)ll, 1 +tan?g,

- /14 tanp,;
(cinivr = (cin)s T a8
1 -~ tan- ﬂl“i‘l
where J; and 3;., are, respectively, tangent angles of approximations of order
1. and 7 — 1 with axis &,

-3

7z

Denoting u, = u 2rz,st and taking into consideration. that 3;;; <0
the streamline equation will be (see Fig. 3)

2

08 [ipy = e SIN By — uy €08 iy = (Cin)igy = 0

[

Con COS Pigg + Cligy
or by taking Equ. (21) into consideration

tan ;. Coy T ki — Uy _:_C(Cin)i J[1 4 tan?p, (22)

mg

and since (c;,); = (c;,); cos 3; — (c;¢);sin 3; therefore

tan ﬁ[+1 _ Cpn + C]{’q - u’)] + (Cl'”l])l' _ (Ci§>i tan /3{ (23)

Cmg

where (¢;s); and (c;,); are values computable from the integrals (18) and (19)
resp., at the point pertaining to the same value § of the streamline obtained
as a result of the preceding iteration step. The streamline of order ¢ -1 will
be given from the integral

Nigy = | tanf,dE=§ § tan f,, d&* (24)
0 0
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As an approximation of zeroth order we accept the streamline relating
to the blading with infinite number of blades. In this case (¢;z);—o and

(ea)ica(£) = = J VS — oy, (25)
0

form can be used, or

tan B,_, = Con -+ Ciiq + (Cz"q)i=0 — Uy (26)
CmE
and finally
Nimo = & S tan f§;_o d&*. (27)
0

Using relations (25), (26) and (27) the streamline resulting in the zeroth
approximation can be calculated. As soon as the singularities (the y; distri-
bution) will be placed along the mentioned curve, the approximation of first
order can also be determined with the aid of expression (18), (19), (22) or
(23) and (24). When transmitting the singularities to the curve obtained as
the approximation of first order the iteration can be continued as long as the
difference in approximation values of order j and j -+ 1 are negligible.

With the aid of the above shown iteration process the sireamline carry-
ing the singularities — the blade curve i.e. the blade of infinitely small
thickness — can be determined along the surface of revolution (4, 4) (see
Fig. 1), that is along that approximate flow surface. The blade profile element
can also he determined in the knowledge of function ¢s/p: = f(I) taken from
relation (8), only the angle of ¢5/2 is to be plotted on both sides of the blade
curve.

But the blade element determined by the above shown method was
related with a given — predetermined (!) — surface of revolution and a given
velocity distribution ¢,(l). On the basis of practical experiences one can
categorically assert, that either the meridional curve (4, 4) (see Fig. 1), or
the velocity distribution c¢py(l) should not be taken by a “set of trajectories”
assuming the potentional flow pattern. It is conceivable, that stream surfaces
could make surfaces of revolution only when the blading is an infinitely dense
one (or in a bladeless space). However, in this case the distribution of singular-
ities cannot be discrete and surfacial, but continuous and spatial one. Inasmuch
as the said distribution has the feature containing vortex vectors with compo-
nents perpendicular to the meridional plane, which is usual, so the surfaces
of revolution (as approximate flow surfaces) are to be determined by con-
sidering these components. Consequently, as an approximation of zeroth
order the impeller with infinite number of blades must be determined.
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4. Approximation of zeroth order. Impeller with an infinite number
of blades

As a starting point of the iteration process (as an approximation of
zeroth order) an infinite number of blading will be used. In conformity. with
the task (Q, H, n) and the assumed vorticity distribution y, and further, by
allowing the determination of stream surfaces regarded as approximate sur-
faces of revolution, those as functions of the blade loading.

Principal dimensions for the impeller can be taken in the usual way
[8], [9], [10] for the accumulated experiences of engineering practice, which

s

§

& R
= ‘,2,,) \(:’:f/f, ‘

allows the determination of these dimensions even by the conventional
methods.

With known principal dimensions we will determine the impeller with
infinite number of blades, which gives the approximation of zeroth order.
In the course of the processing we shall determine the vortex components
perpendicular to the meridional section of the impeller with an infinite number
of blades, on account of the meridional curves (surfaces of revolution obtained
from the step of order i and of the distributions c(l) and further, from the
obtained values we will compute the meridional curves of order ¢ < 1 and the
distributions ¢p(l), resp. This iteration is to be continued as long as a negli-
gible tolerance is reached.

At first the impeller will be disintegrated to partial channels (see Fig. 4)
by meridional curves taken as is usual [11], in the meridional section of the
impeller. At the same time the velocity distributions ¢y (l) will also be deter-
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mined. With known meridional carves (I, II, III, IV) defining the surfaces
of revolution, the transformations can be made by relations of (1) and (2)
and, after fixing the functions of gs/p; = f(I) and y¥(&*), the “blade curves”
can be computed by relations of (25), (26) and (27). If the points of blade
curves were computed for the same £* values in the case of each surface of
revolution and, if the computation were made with the same functions of
v¥ (£%), then the points pertaining to the same {* value lie on the same
vortex line. In Fig. 4 one of these vortex linesis drawn (g). From this diagram
one can see, that the component perpendicular to the meridional section can be

computed from relation

F(l,b)= —w tan ¢ (VX ), (28)

cos A

where the symbols arc those of the diagram. Here the vortex vector 7V X ¢
lying on the blade surface has a component of (VV X ¢), placed in the meri-
dional section, and directed perpendicular to the meridional streamline (I1).
The component can be determined at any point of the meridional section
between the leading and trailing edges. This is the value of vorticity distri-
bution, which affects the meridional flow pattern. In Equ. (28) the value
[(V % c)bl is that of the continuous vorticity distribution on one of the
surface of revolution, which was prescribed by us when taking the function
of y¥(£*). According to this

(VX ey = S (29)

where y¥ is the function of &, consequently that of 7 on one of the meridional
curves. With the aid of relations (28) and (29) the values of the function
F(l, b) at the various points of the meridional section can be determined as
soon as the distribution 7§ is known.

In the coordinates r, @, = (see Fig. 4)

(Vvxe), = eq;[ 680; — %)
The
) Zi’ = — a;' cosé—&siné
and
dc, dc,

= sin d — Oc; cos o
3b
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or by putting ¢, = c¢sin § and ¢, = — ccos
(v xe) R 8c | c a0
e),=—e_ |[—- —
i "les el ,
But from Fig. 4 it is F(r, 5) = — (77 X ¢),, and so the vorticity of the meri-

dional flow can be deseribed by the differential equation

dc 3o
e F(rs 30
ab ‘ al ( ) (30)

(see Fig. 4), or, along a preferred orthogonal trajectory b

o o H(b) = F () (31)

where H(b) = (30/61)(b). Iteration process seems to be reasonable for deter-
mining the meridional streamlines and velocity distribution cpy(l). To deter-
mine the function F{r, z) we have to start out from the flow before
and after the impeller, the set of meridional streamlines and the distri-
bution ¢y (I) taken from conventional methods. Regarding this as an approx-
imation of zeroth order of the meridional curves pertaining to the func-
tion F(r, z). Now, along the approximate orthogonal trajectories the approx-
imation of zeroth other H(b) of the function H(b) can be considered
as known, and we must solve but the differential equation

_fgfmk

db —{" cm’-: HO (b) = F ([)) (32)
The solution is
— ijdi. b _\-}"1-1;1,,7 ) — _cth;.
=€ ° { e Fdi+c,e’ (33)
0
or, because of
s 5 ar 2 (hd
~ . 3 N . — i i~ %
Q _ | ;—{1_ "l)cmkdb: | {,-(1_iz’e ; } e Fd}.}db+
2z Jood ¥ ¥ \ 78 .
0 0
2 *Ha
o~ 3 N -~ { Hda
i Cm/{gJ r (1 g5 ) ’
. 2
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on the external streamline

B
sl CENORNORNOPE
2=
oty = S (34)
{7 (8) 4, (6) 45 (b) db
where
b
— A7 33
A (b)=e (35)
and
LI
A, (b) :J FA g gy =1 = (36)
4, (%) ¥
Along the orthogonal trajectory — or trajectories — the velocity dis-

tribution ¢y, can be determined by Equ. (33), (34), (35) and (36). Now the

liquid mass distribution is given by the integral

b b
p(0) = [ r(b) Ay (b) 4, (b) A3 (b)db — cor, | 1 (b) A, (b) Ay (b)db.  (37)

0

Knowing this, in the case of partial channels of number %, the intersection
points of the orthogonal trajectory and the stream-lines disintegrating the
partial channels for delivering equal partial volumes Ay = Q,/27k, can easily
be plotted. After carrying out the computation along several orthogonal trajec-
tories, if we know the conditions of the potential flow before and after the
impeller,* the meridional streamlines could be plotted and, after taking new
orthogonal trajectories, the new functions H(b) could be determined. The
process is to be iterated as long as no essential difference in values of the
initial and the computed distributions appears. Thereafter, we have to check,
whether the values (28) of function F(If b) do not essentially vary, otherwise
the whole computation work is to be repeated.

Arriving at the end of the iterations the meridional curves and along
these the velocity distributions cpy (I) are known, consequently those surfaces
of revolution are available, which can be regarded as approximate flow sur-
faces. In addition the approximation of zeroth order of the “blade curve”
is also known on each surface or revolution — and on the transformed straight
cascade. All data are available to determine the final blading.

* More general conditions of this kind, having the basis of measurements and experiences
will be published in a future paper.
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3. Determination of blading. Computing velocity
distribution

After the approximation of zeroth order is available, the blading of the
“impeller elements™ pertaining to the surfaces of revolution can be determined.
The course of computation was already mentioned in Chap. 3. In connection
with this we have still to deal with the difficulties connected with the integrals
(18) and (19). In both cases, at the point & = £’ i.e. ¥ = £*’ integration of
a discontinuity function takes place, for the influence functions in the said
place are discontinuity ones and of infinite value, and for y¥ 5= 0.

In some £* point the integrals will be computed by disintegrating them
to sections. Let it be

Cig = Cig T Cix (38)
and
{"i'q = C;-q + C;’n . (39>
where
L. A5
el = i[ J D dE (40)
t
0
and
i 4
K 1
h=p| | e [ pwas (41)
0 &‘;tdf‘
or
o A
r 2
cfy = — vEDdEY (42)
t
e
and
e a5*
r p
e =L f VW dgn (43)
t
as ’

Le
s

Integrals (40) and (41) can be computed directly. When computing
integrals (42) and (43) one must take into consideration, that if 2a(&— &)/t
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and 2x(n—n’)jt were of small value, then

{D%—t /71——7; _ _—t tan 1 (44)
2 (E—EP+(H7)} 27 1itan’f E—F
and
t ’ t 1 1
¥ ag - —$ - (45)
28 (E—&P+Mm—7) 27 1 +tan?f £ — &
With this
e ‘:‘1::_:
—1 r Tk den
s i (= (+6)
14 tan?f 2z€, A 2l
L, A5
and )
, 1 I yds
¢ = J £ . (47)
14 tan*g 2zé, Ex £
o 45t

After substituting into Equ. (38), (39) and (46) or (47) Equ. (23), which
gives the streamline, the form obtained is

Cp'q + Cli'r] - uT] + (C;"q)[ - (C;E)’tan ﬁi Ji— Cid) (48)
c

tanfi, =
mé

where ¢;; can be computed from the integral

£, §g !

I . r 1 vE(E dﬁ*'
Cig= (¢)* = — 97 J ( ‘ (49)
4z

The computation of the latter can be made without any difficulty. Because
o (ERTY o it YL ey
vE(EY )~ vk (E*)+E;(§* — &)+ ..

and A&* is small, it is sufficient to consider the first three terms, and so

—F dy-
27k, dE*

5*)4;*

Cig™
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The “blade sections’ can be computed for any surfaces of revolution
when starting out for the approximation of zeroth order. Knowing these, the
very blade is also known and its vane pattern sections (i.e board and radial
sections) can be determined without any difficulties in the usual way.

In the following we shall deal with the method of determining velocity
distribution.

As a first step, we have to determine the velocity distribution around
the blade of infinitely small thickness. With the symbols used in Fig. 3 the
projection in the plane { of the relative ““mean’ velocity (when u, = u2ra/zt
and f;+; < 0) can be expressed as

Wy = €SI By - €y SI0 fry + €g €08 Py — g sin By + ()i

i1

or taking into consideration Equ. (20)

w, :[cmg (e - (er)i tan i - (¢t ey — 1) tam fraq =

] r & 1
= 252/5_" : ——

where the positive sign refers to the suction side, and the negative one to the
pressure side. In the following let us denote the first by w} and the second
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by wi. Fig. 5 shows the element of a transformed blade section, which was
sectioned out of the curvature centre of the curve carrying the singularities
over an angle da. By determining the blade curve of infinitely small thickness
on the plain J and plotting the measure of 1 = zt py/47 on both sides
of the curve, the airfoil of the transformed blade section could be determined.
There are known or there can also be determined #,(s), ¥(s), d 9,(ds, d &;) ds
and p;(s). Now, when these are known, the velocity distribution along the
blade can already be determined with a good approximation.

Considering the absolute flow as being a potential one V Xw= —2wor
the component of vortex vector perpendicular to the surface of revolution is
(V X w)s] = 20 sind.

If we preseribed the transformation

2rz
W, = —— W
zt
then
,’ 1 90 sin 5 2ra)? -
VX w,! = 2wsin » J (51)

also holds and it can be determined along the curve carrying the singularities
as well as along the profile.
For the points S, P and N resp. in Fig. 5 let us introduce the symbols

VXwls, [VXwilp and [VXw/y

resp. With symbolsin Fig. 5 equations

1.
whds — wyds, = — — (v xwp 4+ IVXwly) df,
and

”n 1 h ] 1
wedss — w; dy = — ?({V Xwis + VX wlp)df,

can be set down. After putting the values ds = ¢; da,

ds, = o, da (1 — 0, Jo)? + (d9,/ds)?, ds,= o da [(1 +Do)* + (d9,/ds)?,
dfn =0 da (1 - 19n/IZQC) 2971

and

df, = oo da (1 + 9,20 9,

we obtain, that

) ) | .
~ w; + Zn (1 B zn (VX wilp + VX wy)
n [ Oaps (@)
" (1-— ) - ( ds J

9
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and

(v xwis+|vxwip)

P4

L2
2
Wy, = Qcﬁ

Vo] + (52

On the surface of revolution, that is at the points correlate with point
N and S (see Fig.5), the velocity on the pressure side can be computed from
equation

2t -
1w, = Wpe (54)
2rn :

and the velocity on the suction side from
W, = —— W, - (53)

The reported process affords easy way to determine velocities in whatever
point of whichever surface of revolution: between the blades or before and
downstream of the impeller. :

Velocities referring to any point P(Zp, 7p) can be determined by putting
in the Equ. (16), (17), (18) and (19) of £ = &, and n = np and the components
¢isp and c;p of the induced velocity can be computed from Equ. (18) and (19)
resp. Knowing these, can be determined without difficulties the components
of absolute velocity, as

=t -
Cup= 7"~ (C.DTI - Cren + Ci’ip) (36)
2rz :

and

2t -
Cp = T (Cmﬁ 'In' CiéP) (5 [)

as well as those of relative velocity, as

Wpp==Cyp — Up (58)
and

Wnp == Cmp (59)
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Summary

Paper presents an iteration process for designing mixed flow impeller or stator with
thin blades, assuming the flow of an incompressible perfect fluid. Approximation is good and
computation is relatively simple. As an approximation of zeroth order the blade surfaces of
an impeller with infinitely numerous blades will be determined, then, preserving the flow
surfaces of rotational form depending on the blade load. the blade sections will be computed
using the singularities method after conformal transformation. After the blades had been deter-
mined. the velocity distributions along the blade, between the blades, or before and after the
impeller could be calculated with good approximation.
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