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Introduetion

Geneva mechanisms producing intermitient motion have widely spread
because of their simple construction and long duration of life. However, the
latter may be attained only in case they are impeccably designed and correctly
operated. Inadequate design and bad handling will cause their untimely
wear and quick breakdown. This is why their dynamic analysis has become

Fig. 1

essential. An approach through mathematical methods of the problem facili-
tates the reaching of general conclusions, therefore, it is preferable to graphical
methods. As regards construction, Geneva motions may be of external or
internal drive type (Fig. 1). As a Geneva mechanism may be traced back to
" a swing link, it is evident that external drive is at a disadvantage as regards
both kinematic and dynamic conditions. (The quick motion of link mechanism.)
The present paper covers the investigation of the external drive Geneva mech-
anisms and pays special attention to the determination of the number and
location of pin reverses (the passing of the driving pin from one side of the
slot to the other) ; and following this, examines the determination of the mo-
ment important in designing.
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The conditions of the dynamic analysis

Fig. 2 shows a four-slot construction (n = 4) and the symbols used.
The number of slots ou denoted by n and the distance between the axes is
r;. Since the mechanism under examination is univariant, the moment M,
reduced to the driving member (2) may be determined. The drive torque has
to keep balance with this reduced moment. Thus, provided the variation of
reduced moment M, is known, the power necessary for the overcoming of the
opposition can be worked out. The moments may be reduced on the basis of
equal performances

or, neglecting friction,

M,y my, = M, o,

where

My, = M, + 0, ¢

The symbols used in the equation are :

M, = torque acting on the driving shaft of the Geneva mechanism

m, == angular velocity of the driving member

M, = anti-torque moment (e. g. useful opposition)

O, = the moment of inertia of the driven members connected to the
axle of the Geneva

ep = angular acceleration of the follower (maltese cross)

m, = angular velocity of follower (maltese cross).

Taking the efficiency of the Geneva mechanism into consideration, we
may write
mg 1 oo
M, = —- — [M, -+ 04 5] 1)

(£2 79 Ui

The variation of M, may be determined only when the variation of the
kinematic characteristics ar: known.




DYNAMIC ANALYSIS OF GENEVA MECHANISMS 33

Kinematic analysis

From triangle ABC, Fig. 2 follows

AC=0=1)r}+ri— 2r rycosf
7

since ry, = 1y sin gy (from rectangular triangle ABC’), and 05 == — ;in case of
n

a specified number of slots

. o
sin ¢, = —= == ¢ = constant

thus
/1 L ¢z — 2ccos B

hence

The angular velocity

da
Wy = —
dt
because of
. da Czp
a=f(p): v,= e
dp di
Substitute
dp
—_— == 0,
di
then
da
Wy = Wy —— .
dp

w
. . 0 . .
notation 1, = — ; then in case m, == constant, 1,

Introducing the
Wy

varies in proportion to the variation of w,.

i = e f(c‘:sﬁfc) _ 2)
dp 1--¢®—2ccosf

Chosing the number of slots at will ; 7, varies as shown in Fig. 3. It can

be seen that when J = 0° then ¢, = 1, ;5. By substituting:

3 Periodica Polytechnica M V/1.
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Ly max — T

Fig. 4 shows i, diagrams for various slot numbers. In Table I 7 ..
values are also listed apart. The course of the curves has undergone a change
as compared to those in Fig. 3 because of the axisi, constructedin logarithm-
ic scale. The curves shape their courses 1o the perpendicular of angles j,

- P T
RN

asymptotically. The magnitudes of angles 3, are indicated in the diagrams.

The curves i, are symmetrical to the i, axis, therefore, onlv the values of the

funetion between the limits — g« 7 <= 0 have been considered in Figure 4.
The angular acceleration
do, L d2a
&y == om0y e
di dp?

may be introduced also here. With the notation
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. £
i= 0
9
™3
we mayv write
. d2a —c(l —¢2)sinf
1. T e = - S S A
€ /
dp?

(1 4 ¢2 — 2¢cos p)?

(3)
The curve ic connected to a specified number n is shown in Fig. 5. At

the start § = — 3, ; as seen in Fig. 2, the acceleration r, »} coming from the
rotation of member (2) is tangential as regards the cross, thus

g ),8»’) =2 CE

7'0

o

Fig.
In this position

(Te)go = tg Ug. (4)
By further increasing j. through the portion —fj, < 5 < 3
{acceleration).
It reaches maximum at

s positive

d3a
- =0.
dps
: 23 2 ens £ — <
d3 g _ (1 — ) 2¢ cos {)+(1_'C yeos f — 4de
dp?
Hence

—0

As the value of the radical is greater than unity, working onlv with the
positive sign

Pmax

1+ ¢2
== 4IC CO8

4c
The values 2, are listed in Table I.
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Table 1
mn 3 4 3 6 7 8 9 10
igmac | 6462 | 2415 1426 1000 0.766 = 0.620  0.520  0.447
Brax | 4°467 117247 17°34°  22°54° 271°3% | 31°38  35°16°  38°30°
i 1.732 L— | 07265 05774 04816 0.4142 03640  0.3249
fmax | 3144 5.400 | 2.299 | 1350 0.9284  0.6998 05591  0.4648
F,, | 0.0318 01848 0.4349 04707  1.077 1428 | 1788  2.151
Fy, 05774 1— 1.3763 | 1732 2.0765  2.4144  2.7485  3.0711
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Thus

—c(l-—cYsinf

Tmax

(I -~¢%—2ccosp

Uomax ™

max)“

Table I also contains the values i, ;51 = 1 and ignay. Through the portion
0° to — J, of the function i, the ordinates have the same magnitudes but
with negative signs (according to Fig. 5). This corresponds to a decelerating
motion.

Assuming various slot numbers n we obtain the set of curves in Fig. 6.
The alteration in the shape of the curves is again due to the logaritmic scale
used for the axis 7. Similarly to the set of curves 7, will also here do with the
variations of angle 7 between the limits —73, < 7 < 0.

By using diagrams No. 4 and 6 we find o, = 1, 0,, and &, = 1, m,%
p b S 0 w 2 0 £ 2




w
4

DYNAMIC ANALYSIS OF GENEV.A MECHANISMS
Dynamic analysis

After this excursus necessary for further work let us turn to dynamic

analysis. We may write

|
M,y =M, + 0,i.03]1,
7
Introducing the notation
we obtain
; . 1
My= M, |1+ Fili, ——
i
or
R M, R
My=-—"[i, = Fi i,]. (6)
1
. . - M,
By neglecting the variation of M,, the term -— becomes constant and
7

the variation of moment I, is a function of the term in brackets.

Fig. 7 shows the curves i, 7, and ‘i, I, fnr n = 4. Curve M, represents
nely i, -+ Fi i, In Fig. 7 F = 1. moment
M, is composed of positive and negative poztwonw Between — ., and 0° the
mOment is positive independently from the value of F, vet hetm een 0° and

° the alteration of constant F may produce three variants (Fig. 8).

the summation of two curves, na

I. It may be assumed that with a certain value of F the intersect of
the negative branch of the product curve F i, i, will be smaller in absolute

value at any angle than i, belonging te the same angle 5. Then A, changes as

53]
demonstrated in Fig. 8/a and continues to be positive throughout the whole
cyele of motion. Thlb means that the pin engages only one side of the slot of
the cross and does not reverse in the whole course of the motion.

2. When increasing [ the expected situation may be that the ahsolute
values of the intersects F i, i, exceed the i, intersects only along a certain
portion. Curve M, has a negative branch at this part and the moment M, is
positive, changes into negative and becomes positive again, passing twice
through zero in addition to the positions of start and stop in the same cycle
of motion (Fig. 8/b). In the course of the motion, at a certain angle, g the
driwing pin leaves the side of the slot it had engaged before and catches the
opposite side (reverses). Before the motion is completed, the pin once more
reverses. The double reversing renders the operation noisy, produces undesir-
able vibration, strains the slot and may result in breaking the pin. Therefore,
this occurrence must be warded of by circumspect designing.
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3. By further increasing the constant F, at some angle g the absolute
value of the product F' i, i, reaches the value of i, and keeps above it to the
end. This same is demonstrated in Fig. 7 with F = 1. As F depends on the
anti-torque moment M, on the angular velocity of the driving shaft, a)z2
and on the moment of inertia of the driven members (follower and attached
parts), O, a careful selection and combination of the designing and operating
conditions permits to obtain a positive torque throughout the whole motion.
For a quick survey of the conditions of pin reversings the values of F corre-
sponding to transitions among the three cases described above may be used.

The critical range of F' may be determined by equating M, to 0.
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M
L P R
My= —%1, [1 - er]
7
= 0 when
=0; or 1-+Fi, =0
i, =0 when i,=0; this corresponds
to the points § = — 5, and J = j3,, that is to say, the moment equals zero
at the instants of the beginning and ending of the motion.
From the condition
1+ Fi,=0
follows
R < 230
P I (L-+c2—2ccosp)? -
SR 2oeoshl (1)

i, c(1 — ¢2sin f)
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The negative sign denotes a positive value of F since i, is negative on the
portion 0 < 5 < g3,.

Fig. 9 shows the variation of F, as results from Equ. (7) for the case
the number of slots n = 8. The course of this diagram confirms the deductions
inferred from Fig. 7 and 8. The points of intersection of the lines F = cou-
stant with the curve marking out the angles 5 connected to the places M, = 0.
It is to be seen that in zone 1 there is no intersection at all (M, does
not equal zero at any part, Fig. 8/a); in zone 2 there are two intersections
(M, = 0 twice, Fig. 8/b): in zone 3 there is one intersection (M, = 0 once,
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Fig. 8/c). The critical range falls in zone 2, limited by the values Fj, and F,,.
Assuming various slot numbers and determining F values result in the
set of curves shown in Fig. 10.
On all the curves represented in the figure Fj, = F.;,. therefore the
extreme values of the curves F == f(7) must be examined.
dF

—— =0 =4desin®J (1 — 2ccos 3+ ¢*) — (1 — 2ccos g + cH)?co

o
()
p

{7

o

Since (1 — 2¢ cos 3 + ¢?) == 0. Divide by this throughout and transpose the
equation for cos f:

The result is in agreement with the term cos j,,, connected to the values
I, mexe Lransposing into Equ. (7)

F—— L (8)

Considering Equ. (7) this result was to be expected.
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The line F' = constant is tangent to the curve, the increase of F results
in two points of intersection. Therefore, it is apparent that the condition of
the determination of F; is that one of the two points of intersection disap-
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pears, i. e. coincides with angle 5y, at which position the driving pin leaves
the eross.

Transposition of 7 = 3, into Equ. (7) gives
1 1

F23 T e e Zm .
(18)6) [

The term i,, is defined by Equ. (4), thus

Fp=——r=1t
tg a,

[¢1=3

By (9)

The values worked out of F,, and F,; are given in Table I and represented
in Fig. 11.

According to the above, the conditions of pin reversings in Geneva
mechanisms may be determined and controlled.

The next task is to work out the power demand

Ny =M, ,.m,.
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The torque required to rotate the crankshaft has to overcome the oppo-
sition originating on the shaft of the eross, plus the resistance produced by
the accelerations. As long as the cross picks up speed (in the first half of the
revolution) the moment of inertia adds to the resistance. The value of the
average moment (M, ,,) has to be determined for the interval —3 < 5 < 0.

0

(i(«; - Fim 75) d{}

T T T AL d

; T T 4D
i . /._,.« :l: 10

was /. - — 8

N
N
s

1
|
|
SIS
~
Co o Ly

-
|
L]
li
i
r\\
A=)

I
i
N
]
l
b
|
N
1
i
i
|

SO S 03

ol= - 02
3 ¢ 567 8 8§ 0n N8 8 7 6 5 4 3 2 ¢
Fig, 1] Fig. 12
In conelusion the following relationship is obtained
: N \
My, = DM (1 + F 4) (103
Ui
whezre
2 n ¢ 42
D= and A=—feeo }
n—2 2 4 1 — ¢

In Fig. 12 the values D and A are given as functions of n.

In order to facilitate the determination of M, . the nomogram in Fig.
13 was constructed and its use explained in Fig. 14. In case we want to im-
prove the accuracy of reading, the M, values mayv be multiplied by any chosen
power of 10. (It should be kept in mind that this operation causes the result
to change by a corresponding order of magnitude.)

In case a Geneva mechanism is to have its own driving motor, at the
selection of the latter the existence of a maximum moment in the firsthalf
revolution shall also be taken into consideration. M, . is to be determined and
the ratio of the maximum and average moments found. If this ratio is s ma
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-
=

(to about n > 6) the excess load factor of a motor selected on the basis of
My, is enough tu guarantee that the motor will stand the expected peak
power demand without danger. If this ratio is still large (from about n < 6)

Moo b AF

Me o

Fig. 14

the motor cannot be selected on the basis of M,,, but M., should be consid-
ered instead, and values reaching multiples of M,,, might be required.

Let us pass on to the determination of My,
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As is seen in Fig. 8, out of the limit values of M, it is the positive maxi-
mum in the first part of the rotation (— 7, < g < 0) that gives the absolute
maximum. The investigation of the limit values will be restricted to this part.
di, ;

o
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G

-y mp

RAA

CO8 D - 7=




DYNAMIC ANALYSIS OF GENEV A MECHANISMS

I

7 My oo o i

Mo = == [+ Flyi =

o 2 7? [ o w 5/ #001

075 e 1600~

08 S N S i :

085 N NN N 00
089 \\ : i H

995 \ ~ : N - 600+

PSSR

| ~ L : 700

TV

20




005

E. FILEMON

46

T T T )
VAL o avavE
: \ I ERANANGE e
NG A RN AaR ol
, VIV RVIRAN AV Y /
| W Vo)
L N AN .
INNEREEE AV /N R
RN \ ML (ARNREP LY
NN \\ o% L e P
LN TN | : -
NSNS ERNR SN dunraip=o
AR URNRNGNNNERN /// i padl
S R RRENNNNERN /ﬂ/ \ 7z A o
Q T~ i S e e Ny N / \\ ‘ \ 1 -
= S m eSS NANN ::\ et alinEgni= sl
N EREmmpm====ts \\\||// ouEemE e
e N ————= | | | ||




.
~1

DYNAMIC ANALYSIS OF GENEVA MECHANISMS

Transpose the equation for F:

.  sin (1 — 2ccos § - ¢2)? — . (14

2¢%cos® B+ 2¢ (1 — ¢ cos2f — (5¢2 L ¢ cos f - 5¢3 —¢

S~

The inspection of Equ. (11) proves that there is no such condition under
which the angle 5* determining the place of the maximum moment would be
independent from F. Namely, this could occur only in case when

—sinf (1 —2ccosp + 2P 0
2¢2F

vet this expression may be equal to zero only with cos § > 1.

Mot big
g r
f
Mg »
L
Fig. 17

Fig. 15 demonstrates the set of curves corresponding to Equ. (11).
The angle, to which a curve connected to a specified number n comes infini-
tely close may be computed from the following equation of the third degree:

cos® p* L cos g* (— 0,333 @®—b) = (0.074 a® —0.333 b a +d) =0 (12)

where

5¢2 — 1

5¢2
:oand d = e

1 —e2
@ == e}
¢

At a fixed number of slots n the values a. b and ¢ are constant.

For values of F' not represented in Fig. 15 the angles §*

may be com-
puted from Equ. (12). Namely. at this portion with a fairly good approxima-

B

tion the angle 5* can be considered independent from F. The smaller the
number of slots, the better the approximation.
Thus 5* will be found: for F < 8 from Fig. 15, and for F > 8 from
Equ. (12).
Now 1,
Fig. 6. These values transposed in Equ. (6) give M,
tated by the nomogram given in Fig. 16: for its use see Fig. 17. Like with

connected to 5% may be determined from Fig. 4. and 7, from
e . . e
Computation is facili-

Fig. 13, also here the magnitudes of the values oceurring in the figure may be
changed, with the exception of those falling into the first compartment both
in Fig. 13 and 16.
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Summary

The present paper covers the dynamic analysis of Geneva drives. As a necessary
excursus, kinematic conditions had to examined first. Since the questions obtained are difficult
to handle, a table and several nomograms were formed to facilitate the determination of
kinematic parameters. In the scope of the dynamic analysis a procedure for the determination
of the variation in time of the moment acting on the shaft of the Geneva and for the fixing
of the number and location of pin reverses has been developed. A method for the determination
of the average and maximum moments is presented. Tabulated data and nomograms to
facilitate dynamic computations are given. This approach assumes the rigidity of the
members of the devices.
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