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Introduction

Connection between shaft and hub is generally secured through keying,
the shaft end being splined or shaped to some other profile and fitted in a
hole. Modern machine construction endeavours to solve the problem of con-

Fig. 1

nection between shaft and hub by fitting profiled pins and holes. In 1939,
the firm E. Krause and Co. developed a machine for the production of tri-
angular profiles with filleted corners, the so-called K profiles. This machine
serves for processing, both external and internal surfaces of K profiles. In
our davs such machine tools have been developed on which profiles flanked
by ares with any desired number of angles, and filleted corners, the so-called
polyvgon profiles can be produced (Fig. 1).

The present paper offers a comprehensive analysis of various polygon
profiles starting from the kinematic sketch of the above-mentioned machine,
describing techniques for generating polygon profiles, and in conclusion
points out. how polygon profiles can be produced by means of an equipment
which can be mounted upon a common grinding machine in hand.

Analysis of polygon profiles

The analysis of polygon profiles can be approached by examining the
operation of the machine. The kinematic sketch of the machine is given in
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Fig. 2. Grinding of the workpiece (8) is done by the grinding disc (1), the
axis of which executes simultaneous horizontal and vertical motions during
operation. The motions in both directions of the grinding disc are com-
manded by an eccentric disc (4), the eccentricity e of which is adjustable
according to the profile wanted. The eccentric controls the horizontal motion
of the grinding disc shaft through the slide (3) directly, and the vertical
motion of the same indirectly: through the two-arm lever (7) with a regulable

Fig. 2

fulcrum. As a result of the simultaneous horizontal and vertical motions of
the center of the disc, this center moves along a specified curved path.

In the following the equation of the path of the disc center will be
developed, from which the equation of the profile to be generated on the
workpiece can be derived.

Curved path of disc center

Fig. 3 shows the eccentric (4). The center of rotation of the eccentric
is O, its geometrical center moving along a circle of the radius e is C. Turn
the eccentric from the position shown in the figure by an angle 5, then the
center C comes to position C’. Co-ordinates of the point C’ are:
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Members (3) and (9) terminate in flat sides perpendicular to their direc-
tions of motion, therefore, their displacements correspond to the co-ordinates
of the point C’, respectively.

Denoting the transmission ratio of the member (7) by k, in a new
co-ordinate system &, 1, shifted in respect to the first one to a constant dis-

tance, the co-dordinates of the grinding disc center will be (Fig. 2):

f=v 1)
n=ky (2)
or, after reduction
£ 3
02 k2e2 ( )
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As can be seen, the resultant of the two harmonic motions along two axes
perpendicular to each other causes the center of the disc to move along an
ellipse, the minor axis of which is 2e, and major axis 2ke.

The insertion of the gear (5) between workpiece and driving eccentric
causes the center of the disc to make the swinging motion examined above,

Y
4
Y
{
i
Fig. 4
n times by each revolution of the workpiece — where n is the ratio of the

numbers of revolutions of the workpiece and the eccentric, 1. e. the trans-
mission ratio. Polygon profiles fit for use in practice will be obtained, of
course, only if n is a positive integer number, also denoting the number of
angles of the polygon.

Fig. 4 shows the curved path of the grinding disc center in case of the
proportionality factor of the lever arms is k.
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Supposing the whole system is rotating at an angular velocity equal
to that of the workpiece but of opposed sign. As a consequence, the work-
piece comes to a still-stand, while point 0,, Fig. 4 rotates about the axis
of the workpiece. Now the equation for the path of the grinding disccenter
may be written. For this purpose the co-ordinates according to Egs. (1)
and (2) can be used. Denoting the distance 0—51, Fig. 4 by M, we can write
the equation of the ellipse corresponding to Eq. (3) in a system of co-ordinates
x, y attached to the center of the workpiece (Fig. 4). as

x; =M —e cos 3
yy ="k e sin j3
Let the transmission ratio between the numbers of ‘revolution of the
workpiece and driving eccentric. respectively, be n, the angular displacement

of the eccentric 3, and the angular displacement of the workpiece o : then
the following relationship between 7 and « holds true:

g =nz {4)

Taking this into consideration
xy =M — e cos nu {5)
vy =k e sin nz {6)

While the eccentrie turns away with an angle 5. the center of the
grinding disc arrives at point P, (Fig. 4). The workpiece at the same time
turns through an angle o : from this follows that by the application of the
principle of reciprocity of motions, the center of the grinding disc comes to
point P. This point can be determined by turning off the triangle OP P, by
an angle o.

The co-ordinates of point P in the system of co-ordinates x, y are:

X = x, cos & —, sin @
X 1 V1
Y = x, sin ¢ -y, cos «
1 Y1
Substitution of x; and v, from Egs. (5) and (6) gives the parametric
equation of the path of the grinding disc center as a function of the angular
displacement of the workpiece :
X = Mcosaz —ecosucos nvu — ke sin nv sin o 0
vy

= Msin o — e sin « cos n2 -+ k ¢ =int nu cos « (3)
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The curve determined by Egs. (7) and (8) is the path of the grinding disc
center. Reverting to the derivation of this curve, out of all the curves of
the set obtained by varying the  proportionality factor of the lever arms,
we can select the one which is the most advantageous from the point of view
of production, as well as of the connection of the members.

Let the center of the grinding disc lie at point A4, Fig. 5, when the
driving eccentric turns in an angle no. The workpiece in the meanwhile
turns in an angle o, thus, relatively to the workpiece at stillstand, point 4
gets into position A’

Imagine the workpiece and the axis of the grinding disc moving away
from each other, i.e. the constant M which occurs in the equation increasing
(M, = M -+ c). Then point 4 comes to 4,. and point A", will be obtained
by drawing a perpendicular at a distance M -+ ¢ to the straight line inclined
at an angle o, mentioned above and measuring the distance k e sin no upon it.

Similarly, in the case M, = M — ¢ the center of the disc comes to the
point 4,. Fig. 5 demonstrating that if the straight line drawn through points
A; A7 Ay is perpendicular to the profile at the points A5, A" and A7, the
three curves containing the points under consideration are equidistant. These
curves may be treated in such a way, that the center of the grinding disc
lies at point A and the radius of the disc is ¢: thus, the grinding disc comes
into contact with the workpiece at point 4, in the case of processing a shaft,
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and at point 4 in the case of grinding a hole (Fig. 6). If the straight line
of A;, A’, A} is normal to the profile; the tangent to the profile will be
perpendicular to this straight line, and as a consequence, the common tangent
of the profile and disc is paralle] to the major axis of the elliptical path of
the disc center. Thus final processing is done through the point of the disc
which is eut away from its manile by a straight line parallel to the minor
axis, passing through the center of the disc.

All this holds true in case the tangent to the profile includes an angle
{90° - a) = ¢ with the positive axis x.
The direction of the tangent to the profile is given by

tgy = LA <
dX
since
v X
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and
. dY L . :
= =Mcosa —ecosacosnu(l —kn)+esinasinna(n —k) (9
a
. dX N . .
X = T = — Msina - esinacosna(l —kn) +ecosasinna(n—Ek) (10)
a
Substituting
tep = Mcosa —ecosacosna(l —kn) + esinasinna(n —k)

— Msina + esinacosna(l —kn) +ecosasinna(n —k)

it can be seen that the relationship ¢ = 90° 4+ v holds true when n = I,

namely, in this case

tg @ = —cotg v (11
since
— cotg v = cotg (— o) = tg (90° 4 o)
ihus tg @ =1g (90° =+ &)
i.e.

It has been proved by this, that the profile is alwavs determined by
the point which is cut away from the mantle of the grinding disc by the
straight line passing through the center of the disc parallelly to the minor
axis of the elliptical path of the disc center. It is easy to see that the contact
is brought about along a curve identical with the path of the center, vet
shifted to the distance ¢ (Fig. 7).

When writing the equation of the profile generated on the workpiece,
Egs. (7) and (8) are modified only in so far as the place of the constant M
is taken by M — .

As the minimum dimension of the workpiece (diameter of the inner
tangent circle to the profile) is determined by point @, and the maximum
dimension (diameter of the outer tangent cirele) by point & (Fig. 7), the
constant M — ¢ occurring in the equation is identical to the half of the mean
diameter R of the profile,

Fmax = Twin .
R = —779‘~ (12)

4

At the same time 2R is the nominal diameter of the profile.
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When k==n then ¢==90° 4~ ¢, as a consequence the curves are not equi-
distant, and the diameter of the disc influences both the configuration and the
size of the profile. The equation of the profile does not coincide with that
of the path of the grinding disc center.

According to the above, in case k = n the equation of the profile
becomes

x=Rcosu-—ecosacosni-—nesinnusino (13)

v =Rsinv—esing cosny — nesin nicosu (14)

_Path of center

An analysis of the path of the grinding dise center advocates similarly for
the condition k = n.
A preliminary construction also shows that the curve corresponding
1o the condition k = n goes the innermost path and thus has the shortest
arc. The correctness of this statement can be checked mathematically.
The equation determining the length of the arc of the curve is

odo =di = )dX? L dY?

where o denotes the radius of curvature connecied to the respective poinis

on the curve,




o
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diis the elementary arc length belonging to the angular displacement du.

Since

v X ay o9y
da do

hence, substituting X and 5} from Egs. (9) and (10)

dX = [—AM sina 4+ esina cos nz (1—kn) - e sin na cos a(n—=Fk)] do

dY = [ Mcosa—ecosacos nz(l—kn) + esin nzsina (n—%k)] d=

and performing the operations indicated

di = HAH' —ecosna (L — k)2 + elsin?na (n — k)*da

T

thus the circumference

W
+

i={V[M —ecosna(l —kn)]? + e?sin’ na (n — k)2 d~ (15)

]

<

The computation proves the correctness of the construction, since the
second term of the radical is positive in any case, consequently the smallest
circumference will be obtained when the factor of proportionality of the
lever is equal to the gear ratio between workpiece and driving eccentrie.

“Then n = k. henece

2

e* sin® nz (n—k)* =10

and according to the ahove, if & = n the constant M occurring in the equation
is equal to the mean radius of the profile (M = R). thus the circumference
becomes

1 == “([R——ec.osn.a(l —n?)]da (16)
0
integrating
1= {Ra —E—Q—:—lﬁsinna
n

and taking the limits into consideration

i=2Rx (17)
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The result is worthy of attention: in case k == n the circumference
is independent both of the number of angles and the eccentricity, being equal
to the circumference of the circle of nominal diameter. The case k =
the most favourable also, according to this consideration. since, other thmgs

[N
n

being equal, the shortest curve also implies the shortest time for processing.

Fig. 10

As can be seen the selection of a value k = n is justified. In the fol-
lowing this particular case will be analysed. Since it is known that contaet
1s brought about along an elliptical curve, it can be stated that the radius
of the profile will be minimum at the instant when the angular displacement
of the eccentric is p = 0° = 2 a7 (where a is an integer number, 0 < a < n).
and maximum. when 3= 180° - 2qx. From the relationship hetween the
angular displacement o of the workpiece and angular displacement of the
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180° - 2a=

eccentric follows that o = ———— at ry;,; and ¢ = — - at Trmax-
n n

It can be laid down as a fact, furthermore, that for a profile of n angles,

suitable for the connection of machine parts the number of the limit values
is 2n.

Polygon profiles constructed according to the method outlined above,
with constant eccentricity e and number of angles n. but with varying mean
diameter are shown: in Fig. 8 for n = 2, Fig. 9 for n = 3 and Fig. 10 for
n = 4.

Fig. 11

Examination of these figures shows that in case of reducing the dia-
meter (or, which comes to the same thing. of increasing the eccentricity) a
cusp is formed on the profile, then the profile branches intersect each other,
as a consequence, a profile of a smaller diameter than wanted will be produced,
since the disc cuts into the part processed during the first half swing. This
fact motivates the kinematic analysis of profile generation.

Kinematic analysis of profile generation

Let the eccentric (4) rotate counterclockwise with a constant angular
velocity o. The velocity of its geometrical center is then 7, = ew (Fig. 11).
The center of the disc moves in a horizontal direction, with a velocity o,
which is equal to the horizontal component of 7. 7y, = e®» sin nz. In a
vertical direction the velocity is multiplied by the gear ratio of the lever,
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Uys == — nP,. In case we consider the vector 7; pointing downward as
negative, then ¥y = ne ®» cos n7.

. B . . (’)
The workpiece rotates clockwise with an angular velocity —
s “n

. The

velocity components of the point which is in contact with the grinding dise

. - . ® . . @ :
are: horizontal ¥, = ne sin no = ewsin no, vertical 7,y = "y (R -+

— e cos na).
Tt can be seen that in case of any chosen angle n the horizontal velocity
component of the points in contact on disc and workpiece are identical :

By = Uge. A relative motion between disc and workpiece is possible in a

AN

———

AY
/
/ \

ne o cosna

vertical direction only. Therefore we can confine our investigation to the
analysis of the variation of vertical components of velocity.

Ty = mn e ®cos nu as a function of the horizontal stroke of magnitude
2¢ displays a linear distribution (Fig. 12). ¥;; = (R + ¢ cos n7) —;;)— as a
function of the radius also varies linearly.

Fig. 13 shows both velocity distributions. It can be seen that proces-
sing throughout the part of the stroke extending from O to e is continuous,
since the disc and workpiece move convergently. Through the part from
e to 2e the two velocities are of identical direction, thus processing is sub-
jected to the condition that the velocity of the point on the workpiece is the
higher one, failing which the dise slips forward, loses contact with the work-
piece and processing comes to an end. In the second half of the stroke, begir-
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=]
(&1}

sle

Fig. 13

ning from the point of intersection of the velocity distribution curve (point
D) the disc has a no-load run.

As is seen, a condition of continuous processing is that velocity dis-
tribution curves resulting from the rotation of the workpiece and swinging
motion of the disc should not intersect each other on the section of mag-
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nitude 2e of the stroke. In a limitation case maximum velocity of the work-
piece is equal to the velocity resulting from the swinging motion of the disc.

(R + e) :— —new (18)

Fig. 14 shows three variants of velocity distribution curves with eccen-
iricity e a constant and radii R varying. Rotate the whole system with an

w . .
angular velocity — The workpiece comes to a stillstand, while the dise

continues performing its swinging motion as described above, in a system
o) .
rotating with an angular velocity w0 Consequently, its velocity will be the
resultant of the two motions. In Fig. 15 the variation of relative velocities
are shown, also apart, for each of the three cases.
Let us by turn examine the three cases.
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. ®
a) Here (R 4+ e)— < new, thus
' n

R <e{nz—1) (19)

relative velocity at point 2 is zero (Fig. 15a). Processing is so far undisturbed.
At this point the relative velocity reverses the signs, the disc has a dead
center position in respect to the workpiece and starts moving in the opposite
direction, receding from the piece. Its velocity increases as far as point 3.
In the meanwhile the disc performs a half swing. Throughout the rest of the
motion, the absolute value of the relative velocity decreases up to point 2*
where it reverses the signs again. the stone has a second dead center position
and processing begins anew. The dise cuts into the profile processed through
section 1—2, as a result of which the maximum radius specified cannot pos-
sibly be executed. The maximum radius of the truncated profile is delimited
by point 4.

1t can be seen that in case R < e (n*—1) the disc has an idle stroke.
the profile becomes truncated. and as a consequence of the incision, the
arcs of the curve meet in an edge. The profile has a cusp and therefore is
unsuitable to connection parts of machines,

o

b) Here (R — ¢) o= Teo, thus
R=c¢e(n*—1) (20)

Fig. 15b shows that here the relative velocity does not reverse the
signs. At point 2 the disc generates the specified maximum diameter. Relative
velocity at this point is zero. {.e. the dise comes to a stillstand for an instant,
then processing goes on without incision in the profile.

Therefore, in case R = e {n®*-—1) the specified maximum radius can
be obtained, the disec has no idle run, but still the condition of formation
of cusps on the maximum radius has to be examined.

, 1)
¢) Here (R =€) w > n e, thus

R > e(n*—1) (21)

The relative velocity neither reverses signs, nor drops to zero, therefore
neither an incision, nor an idle run or formation of cusp can occur (Fig. 15¢).
According to the above, on profiles suitable for connecting parts of machines,
the relationship

R>e(n*—1)

holds true.

7 Periodica Polvtechnica M III/I.
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The conclusions developed from construction can also be checked
mathematically. Let us examine the extreme points of the curve.
The vector equation of the profile is

r==xi+yj (22)

where x and y can be substituted from Eqgs. (13) and (14). For determining
the extreme values the vector

is needed. At points where the scalar product 7 # equals zero, either 7 LT, or
7 =0, 1.e. there is either an extreme value, or a dead center.

rvo=xt -+ yy

Substituting ¥ and y from Egs. (9) and (10) and performing the operations
set out, considering that k = n, we can write :

75=-3sin nao [R—e(l—n? cos nu]lne=20 (23)

The product is zero if one of the factors is zero, ne == 0. sin no = 0 in case
o = 0° -L g, where @ may be any chosen integer number. Thus

0° + ax
@ =mn —————
n

which gives 2n extreme values. E. g. in case n = 3
o = 0°, 60°, 120°, 180°. 240°, 300°.
Further extreme values result from the condition

R—e(l—n? cos nz =20

After transposition
08 ne R (24
T L I — g
e(l —n? (24}

Let us examine three cases again.
@) when Rje < (1 —n?) [case of Eq. 19] cos nou <1, and for each
ratio of Rje there are in addition 2n extreme values.
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b) when Rje = (1 — n®) [case of Eq. 20] cos nu =1, When
cos no = 1, then sin nz = 0, thus there is no further extreme value besides
those mentioned above.

¢) when Rle > (1 — n®) [case of Eq. 21], cos no > 1, this cannot
be. consequently, no further extreme value results under this condition either.

As is seen, there are generally 4n extreme values, vet for Rle = 1 — n?
a number of 2n of them will disappear. The difference in the signs between
the results of the conclusions drawn from Fig. 15 and of the present dis-
cussion {n? -1 there and 1 — n? here) follows from the fact that the senses
of rotation of the workpiece and eccentric are opposite.

A detailed mathematical analysis of the behaviour of the profile at
extreme values is unnecessary, as the construction answers this question.
Possibility of inflexion does not even occur. Minimum and maximum spots
are unequivocal. E.g. in case of n = 3, the radius has minimum values at
o = 0°, 120° 240°, and maximums at « = 60°, 180° 300°. Only the eon-
dition of formation of cusp needs an examination apart.

The profile has a cusp where the radius of curvature is zero. The radius
of curvature can be determined from the following relationship :

since
) v
¥ e = — cotg
%
and
dv’'
L dy'  da —1
N
dx e . Rsinda|l — —cosna (I —n?)
da ) R )
the radius of curvature is
[ o SO TN
0= — I—Ecosmz(l—n-) R {25}

o == 0 when
e
I ——cosna{l —n3)=0
R

R
e(l —n?)

cosn o ==
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The cquation obtained is identical to Eq. (24) thus there are also three pos-
sibilities here :

a) when Rle << (1 —n?) [case of Eq. 19] cos nz << 1. consequently
2n cusps will result for each ratio R/e. The stone has dead center positions
at these spots.

b) when Rfe = (1 — n?) [case of Eq. 20] cos nz =1, whence nu =
= 0 4~ azt . The curve has three cusps at the spots of maximum radii.

¢) whea Rfe > (1 — n?) [case of Eq. 21] the curve has no cusp.

Thus computation has justified the conclusions drawn from Fig. 15.

Figures 8, 9, 10 show sets of curves. In Fig. 8 n = 2, here ’1 — ngi =
=3.InFig.9 n =3, here 1 — n? = 8.In Fig. 10 n = 4 and 11— n? =15,

In practice an answer is generally expected for the questionl which
eccentricity should be selected for a profile of a specified mean radius R.
Increasing e causes the difference between minimum and maximum radii
to increase. and increasing eccentricity results in a tapering profile at anv
radius. Figures 16, 17 and 18 demonstrate the effect of increasing the eccen-
tricity for the case of R = const.
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Fig. 17

The curves in each set shown in Figs. 8, 9 and 10 are equidistant, and
the functions of the radii of curvature show that the centers of curvature
of the extreme value spots in case of any ratio of Rje lie at the cusps of the
curve. Osculatory circles to the small and the big arcs facing the former can
be drawn from these cusps.

In case n = 2 there are two cusps only (on the major axis) from which
the osculatory circle to the arc of small radius of curvature can be drawn.
The centers of curvature for the extreme value spots on the minor axis of
the ellipse lie at the point of intersection of this axis with the curve including
the cusps (Fig. 8).

Furthermore. we have to decide the question : a pelygon of how many
angles should be chosen as the most suitable.

Substituting n = 1 in Eqs. (13) and (14) of the profile

x=Rcosu—e

y = Rsina
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as a result, a polygon profile of one angle is a circle with the center shifted
to a distance e (eccentric). By similar substitution of n = 2 the result is an
ellipse. A further increasing of n gives the already known polygon formation,
composed of a number of n arcs.

One group of polygon profiles is characterized by constancy of dimen-
sion, i.e. when checking its dimension at any chosen spot the measurement
result remains the same. For instance a circle has a constant dimension

Fig. 18

whereas an ellipse has not. It is seen that this quality is not independent of
the number of the polygon angles and it may be assumed that a profile is
of constant dimension whenever the number of angles is an odd number.

This problem may be examined as follows :

By means of an external caliper gauge or any other device having
parallel measuring surfaces, the distances between such points of the profile
can be measured, the tangents of which are parallel to each other. Yet to
such points belong angular displacements no and no - nw, respectively.
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Let n be an even number: Fig. 19 demonstrates that while the driving
eccentric rotates through an angle nu, the working point of the stone arrives
at position A. The point on the workpiece which is processed at this instant
by the stone can be determined by turning off the triangle 0 4 4, by an angle
o. The point on the profile is A4’, the direction of the tangent 4’4’;. When
the angular displacement of the driving eccentric grows to na 4+ nx, the
working point on the stone again coincides with point 4. Point 4" on the
workpiece can be determined by turning the triangle O 4 4, through an angle

Fig. 19

o -+ . The tangent to point 4" directed along 4, A" is parallel to the tan-

gent to point A’. The distance measured is 4’; 4”’;. The distance 0.4," can
be expressed as

04, =R - ecosnz

A4 = 204, =2 (R - e cos no) (26)

It can be seen that the distance measured is a function of v, and therefore
in case when n denotes an even number, the profile cannot possiblv be of
constant dimension.
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Now let n be an odd number. By following the construction in Fig.

20, we see that at an angular displacement nu the working point on the disc

comes to position .4, and at an angular displacement no - nx to position

B. The points on the profile can be determined by turning off the triangles

044, and OBB,;. The points on the profile are 4’ and B’, the directions

of the

tangents ¢ and t’, the measured distance A4’B’.

4B’ = 4B;

and

where

and

since

hence

OB} = R + ¢ cos (no -+ nw)
cos no = — cos (na + n)

OB, + 04; =2R

27
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This order of ideas applies to any angle nu. It follows that polygon
profiles with odd numbers of angles have a constant dimension, identical
with the mean diameter. Also the sum of the two radii of curvature at points
4" and B’ is equal to the mean diameter, since

o4, =R-—e(l —ncosnz

op, = R—e (1 —n?) cos(nr + nx)

whence

04, — 0 = 2R

This analysis advoeates for application of polygon profiles with odd
numbers of angles, because a constant dimencion renders assembling and
gauge testing of the pieces simple, furthermore such profiles are self-centering.
Out of the polygon profiles with odd numbers of angles, the case n = 1 gives
a profile unsuitable for connection, thus n = 3. 5, ... ete. can be taken into

consideration.
If we possess two specified profiles of identical dimensions, one with
n = 3 and the other with n = 5 as number of angles, the question is, which

number of angles is more serviceable in practice can readily be answered.
Provided the eccentricity is the same for both cases, the minimum nominal
radius where no cusp is produced will be R = %e for n = 3, and R = 25e
for n = 5. Thus, if the nominal diameter of the profile is 25¢ minimum radii
of curvature will be

for n = 3 omin = [25 + (1 —n¥)]e = 1Te, and

for n == 5 omin = 25 + (1 —n¥]e=ce

i.e. other things being equal. the increase of the number of angles results
n a very substantial reduction of the minimum radius of curvature.

This fact is particularly important for the processing of inner profiles.
Namely, inner profiles can also be produced by broaching, yet. if an execution
of high accuracy is needed, or production of a pull broach is not economie.
the inner surface has to be ground (a hardened surface cannot be finished
by broaching, either, but only by grinding). What was said holds true also
for processing inner surfaces, yet the maximum diameter of the disc is
limited :

diax < 2 omin (Fig 21a and 21})
where

Omin =
[

5+(l—nﬂe
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This condition sets an upper limit to the grinding disc diameter, whereas
the lower limit results from the conditions of metal cuiting.

The above considerations demonstrate that the most serviceable are
polygon profiles of three sides.

So as to render representation simpler, we have delineated the profiles
as composed of arcs. The course of the construction runs as follows (Fig. 22a) :
Draw a circle of a radius 7,643e. This circle intersects the radii inclined at
120° to each other. From these points, the arcs of radii r and R can be drawn.
These arcs meet on the straight lines joining the points 4, B and C. (An

approximate construction method for elliptical profiles is shown in Fig. 22b.)
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Grindstone

Generating polygon profiles with epicyclic gear

The same profile can also be produced by a rolling movement. It is
known that when inside a stationary circle of radius R another circle, of
radius R/2, rolls without sliding, the points on any chosen diameter of the
rolling circle move on elliptical paths, with the exception of the points lying
on the circumference and the centre of the small cirele, the paths of which
degenerate in a straight line and a circle, respectively (Fig. 23). A point at
a distance a from the center of the rolling circle describes an ellipse and by
variation of the parameter @ the shape of the ellipse, i.e. the ratio of the
major and minor axes can be varied.
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The elliptical path of the stone center can also be derived from the
rolling without sliding of the circle (4) inside the circle (3) (Fig. 24). ry = 2 7.
In case the circle of radius r, is not at stillstand. but rotates about a point
D. then, in fact, the ellipse deseribed by the point determined by the dis-
tance @ will rotate as compared to the workpiece being at stillstand.

According to Fig. 13. we can write

T T, =Ty Ty 4
where
Ty — 1y = (1, ra) €08 G i = (r) - ) sinag
7,= —r,cos{n2—3)i-+rsin(ny—o);
d=uacos(nz—:)i-+asin(n Lcjj
=ubstituting
r=2x"1-+v"]
where
a7 = (r, - 1) oz —r,cos {n7— ) — qcos (nz - ¢)
V= (r, +rysinz — rosin(ne— . ) = asin {nz -+ o)
substituting the functions
cos(nz — ) == cosnzcosg - sinposina
sin (n7 — 2} = zin n 7 cos 7 — cos nasin o
cos (n7 = ») = eps n 7 cos 2 — sin pa sin o
sin (no -~ ) = sin n 2 cos ¢ -+ cos no sin u
after transposition we get
x” = (r, = rs)cos x— (r,—a)cosnzoeds L —(r, +a)sinnzsinu (28)
= (ry —ry)sine —(ry—a)cosnisinz — (ry +— a) sinn tcos o (29)

A comparison of the above equations with those of the polvgon profile :

x=RCOSG—— 2 003N~ COSTL — nesin nd sin o

v = Rsing —ecosnrsina -~ nesinne cos v
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suggests the values to he selected for the radii ry. ry, r5 and r, of the circles
and for the distance a. These values are determined through the following
relationships :

moreover, r, = n Ty, transformation gives
ne-+e=2r

ne—?::za

From these relationships the parameters of the epicyclic gear ecan be
determined.
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The sketch of the epicyclic gear is given in Fig. 25. In case the whole
system rotates with an angular velocity — o, the wheel (3) comes to a still-
stand, the workpiece rotates about its own axis, and only the axis of the
grinding stone has the swinging motion. discussed above. The shaft of the
grinding disc has to be mounted in the wheel (4) in such a way that it could
be shifted radially. For each number of polygon angles the distance @ can
be determined:

H n=1 a =0
— 9 1
n =2 a=1,r
o= 3. a =15 r
no= 4, =73 r,

Processing polygen profiles with apparatus to be mounted on grinding machine

To transform a grinding machine in hand is a rather difficult task,
because the shaft of the grinding stone is mounted in bearings set in the
frame. In a polygon grinding machine the shaft of the stone has a swinging
motion, whereas the axis of the workpiece is at stillstand. The idea arises
that the two motions could be interchanged. In order to generate the desired
profile, a relative motion between workpiece and stone is needed. This can
come aboutl also when the axis of the workpiece has a swinging motion and
only the stone rotates about its own axis (Fig. 26).

Notations in Fig. 26:

1. Grindstone,

2. Workpiece clamping head.

3. Swinging parts,

4. Driving eccentric,

5. Gear box of ratios 1:1,1:2, 1:3, 1:4,

6. Synchronizer of workpiece and eccentric motions.

7. Multiplying lever for shifting axis of workpiece vertically,
8. Workpiece,

9. Slide for transmitting horizontal motion of eccentric,

10. Slide for transmitting vertical motion of eccentric.

The driving eccentric (4) has a kinematic connection with the work-
piece (8) only. The slides (9) and (10) together with the lever (7) compel
the workpiece to execute a motion similar to that of the grindstone in the
polygon machine. The gear box (5) (which is only symbolically noted as a
gear drive) causes the shaft of the workpiece to execute n swings at each
revolution. Thus, all parts of the device constructed according to the above,
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except the stone, can be assembled in one body, which can be fixed to the
bench of the grinding machine.

The relative motions of the workpiece compelled to move with its axis
swinging. and of the grindstone turning about a fixed axis result in the same
polygon profile. the equation of which is already known.

Fig. 26

Kinematic problems for generating polygon profiles have been solved
in the above. It will be the task of the machine tool designer to create a proper
constructional device for practiced realisations.

Summary
The absve paper offers a synthstic investigation of various polygon profiles on the
basis of the kinematie sketch of a polygon grinding machine, shows ways of generating
polygon profiles and finally points out how such profiles can be processed by means of an
equipment which can be mounted on grinding machines at disposal.
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