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Introduction 

Connection between shaft and hub is generally secured through keying, 
the shaft end being "plined or shaped to some other profile and fitted in a 
hole. Modern machine construction endeavours to solvc the problem of con-

Fig. 1 

nection between shaft and hub hy fitting profiled pins and holes. In 1939, 
the firm E. Krause and Co. developed a machine for the production of tri­
angular profiles with filleted corners, the so-called K profiles. This machine 
Eerves for processi1lg, both external and internal surfaces of K profiles. In 

our days sueh maehine tools have been developed on which profiles flanked 
by arcs with any desired number of angle", and filletcd corners, the so-called 
polygon profiles can be produced (Fig. 1). 

The present paper offers a comprehensive analysis of various polygon 
profiles starting from the kinematic sketch of the above-mentioned machine, 

describing techniques for generating polygon profiles, and in conclusion 
points ouL how polygon profiles can be produced by means of an equipment 
"which can he mounted upon a common grinding machine in hand. 

Analy~is of polygon profiles 

The analysis of polygon profiles can be approached by exammmg the 
Dperation of the machine. The kincmatic sketch of the machine is given in 

6 Periolli{'a Polytechllica :,\1 Ill/I. 
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Fig. 2. Grinding of the workpiece (8) i8 done by the grinding disc (1), the­
axis of "which executes 8imultaneous horizontal and vertical motions during 
operation. The motions in both directions of the grinding disc are com­
manded by an eccentric disc (4), the eccentricity e of which is adjustable 
according to the profile wanted. The eccentric controls the horizontal motion 

of the grinding disc 8haft through the 8lide (3) directly, and the vertical 
motion of the same indirectly, through the two-arm lever (7) with a regulable 
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fulcrum. As a result of the simultaneous horizontal and yertical motions of 
the center of the disc, this center moyes along a specified curved path. 

In the following the equation of the path of the disc center ,dll be 
developed, from which the equation of the profile to be generated on the 
workpiece can be derived. 

Clln:ed path of disc center 

Fig. 3 shows the eccentric (4). The center of rotation of the eccentric 
is 0', its geometrical center moving along a circle of the radin" e is C. Turn 

the eccentric from the position shown in the figure by an angle p, then the 
center C comes to position C. Co-ordinates of the point Care: 
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x' = e cos f3 

y' = e sin f3 

lIembers (3) and (9) terminate in flat sides perpendicular to their direc­
tions of motion, therefore, their displacements correspond to the co-ordinatp~ 
of the point C', respectiyely. 
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Fig. 3 
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Denoting the transmission ratio of the member (7) by k, in a ne-w 
co-ordinate system ~,Yj, shifted in respect to the first one to a constant dis­
tance, the co-ordinates of the grinding disc ccnter will be (Fig. 2) : 

~ = x' (1) 

17 = k y' (2) 

or, after reduction 

(3) 
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As can be seen, the resultant of the two harmonic motions along two axes 
perpendicular to each other causes the center of the disc to move along an 
ellipse, the minor axis of which is 2e, and major axis 2ke. 

The insertion of the gear (5) between workpiece and driving eccentric 
causes the center of the disc to make the swinging motion examined above, 
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71 times by each revolution of the workpiece - where n is the ratio of the 
numbers of revolutions of the workpiece and the eccentric, i. e. the trans­
mission ratio. Polygon profiles fit for use in practice ,rill bc obtained, of 
course, only if n is a positive integer numher, also denoting the number of 

angles of the polygon. 
Fig. 4 shows the curved path of the grinding disc cent er in case of the 

proportionality factor of the lever arms is fr. 
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Supposing the whole system is rotating at an angular velocity equal 
to that of the workpiece but of opposed sign. As a consequence, the work­
piece comes to a still-stand, while point 0 1 , Fig. 4 rotates about the axis 
of the workpiece. Now the equation for the path of the grinding disccenter 
may be written. For this purpose the co-ordinates according to Eq!'. (1) 

and (2) can be used. Denoting the distance 001 , Fig. 4 by lVI, we can writ" 
the equation of the ellipse corresponding to Eq. (3) in a systcm of co-ordinates 
x, y attached to the cent er of the workpiece (Fig. 4), as 

)'1 = k e t'in /1 

Let the transmis:;ion ratio between the numbn~ of'revolution of th(· 
,,"orkpiece and driving eccentric, respeetiYf'I:, be 71, the angular displacemen t 
of the eccentric fJ, and thc angular displacemen t of the work pit>ce u: then 
the following relationship between p and u, hold~ true: 

Taking this into cont'ideration 

)'1 = h e "ill 11 I. 

(4) 

(5) 

(0) 

While the ('ccentric turn~ away with all angle ;'i, the renter of th .. 
grinding disc arrives at point PI (Fig. 4.). The workpicce at thp, same time 
turns through an angl(> u: from this follows that by the application of th" 
principle of reciprocity of motions, the c('nter of the grinding disc come;:: to 
point P. This point can be determined by turning off the triangle OP1P 2 hy 
an angle u. 

The co-ordinates of point P in tht' "y,-lem of c()-()nlillai('~ x. y are: 

eos 0. -y :''In (J. • 1 

SIn u --Yl eos (J. 

Substitution of Xl and .1'1 from Eq". (5) and (0) gnTf:' the parame1ric 
equation of the path of the grinding di~c center a" a fun<'lion of the angular 
di:"placcmcnt of the workpiece : 

x = "1J cos (j - e co;:; (J. co:- 11'1. - k e sin IlJ. "in (J. (7) 

)' = jJ sin (j - e Ein 'j. cos Il I. - k e "ill /10. cos U (8) 
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The curve dett'rmined by Eqs. (7) and (8) is the path of the grinding disc 
center. Reverting to the derivation of this curve, out of all the curves of 
the set obtained by varying the proportionality factor of the lever arms, 
we can select the one which is thc most advantageous from the point of view 
of production, as well as of the connection of the members. 

Let the cfnter of the grinding disc lit' at point A, Fig. S, when the 
dri.ing eccentric turns in an angle no. The workpiece in the meanwhile 
turns in an angle a., thus, relatively to the workpiece at stillstand, point A 
gets in to position A'. 
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Imagint' the workpiecf and the aXli' of the grinding (1i~c moying awav 
from each other, i.e. the con",tant j·I which occurs in the equation increasing 

PIl NI -i- c). Then point A come" to Al' and point A'1 will be obtained 
by dra-wing a perpendicular at a distance ly[ -i- c to the straight line inclined 
at an angle Cf., mentioned above and measuring the di;:tance k e sin nCf. upon it. 

Similarly, in the case lH2 = 11,[ - c the ccnter of the disc comes to the 
point A;. Fig. ;:; demonstrating that if the straight line drawn through points 
A~ A' A; is perpcndicular to the profile at the point;: A;, A' and A;, the 
three CU1Te£' containing the point;: under considfration are equidistant. These 
curves may be trt'utt'd in such a "'ay, that the et'nter of the grinding disc 
lies at point A and the radius of the di~c i" c: thus, the grinding disc comes 
into contact with tht' ,,'orkpiece at point A ~ in thl' case of proces"in~ u shaft, 
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;and at point A; in the case of grinding a hole (Fig. 6). If the straight line 
{)f A;, A', A; is normal to the profile, the tangent to the profile 'will be 
perpendicular to this straight line, and as a consequence, the common tangent 
of the profile and disc is parallel to the major axis of the elliptical path of 
the disc center. Thus final procei'i'ing ii' done through the point of the disc 
-which is cut away from its mantle by a straight liile parallel to the minor 
axii', passing through the center of the disc. 
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All this holds true in case the tangent to the profile includes an angle 

(90 0 a ) = q' with the positive axil' x. 
The direction of the tangent to the profile is given by 

dY Y' tg rr 
dX 

since 

1"' 
)r 
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and 

y- ~: = lvf cos a - e cos a COi' no. (1 - kn) + e sin a sin n a (11 - k) (9) 

-l"fsina esinacosna(l-kn)+ecosasinlla(n-k) (10) 

Suhstituting 

lvf cos a - e cos a cos 71 a e sin a sin n a 
tg rp = ------------------- ---,---....:..--------------. --------'-

- lvf sin a -+- e sin a cos n a (1 - kn) e cos a sin n a (n - k) 

it can be seen that the relatiol1~hip (f 

namely, in thi~ ca~t' 

90° .:.. 0. holds true when 11 = fr. 

tg (f = - cotg 0. (11 ) 

since 

- cot?: u. = cotg (-u) = tg (90~ -;- u) 

thus tg g- = tg (90~ 0.) 

i.e. 

rr = 90" + 0. 

It has been proyed by this, that the profile IS always determined by 
the point which is cut away from the mantle of the grinding disc by tht' 
straight line passing through the center of the disc parallelly to the minor 
axis of the elliptical path of the disc cent er. It is easy to see that the contact 
is brought about along a curye identical with tht; path of the center, yet 
shifted to the distance c (Fig. 7). 

When writillg the equation of the profile generated on the workpiece, 
Eqs. (7) and (8) are modified only in so far as the place of the constant Jf 
is taken by Ivf - c. 

As the minimum dimension of the \\"orkpiece (diametcr of the inner 

tangent circle to the profile) is determined by point a, and the maximum 
dimension (diameter of the outer tangent circle) by point b (Fig. 7), the 
constant Nf - c occurring in the equation is identical to the half of the mean 

diameter R of the profile, 

R = ..:::=::.:....-:::.:. 

2 
(12) 

At the same time 2R IS the nominal diameter of the profile. 
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,'I/hen k 11 then If 90° -i- c, a,. a COll,.equence the curye" are 110t equi-
di"tan1, and the diameter of the disc influences both the configuration and the 
,-ize of the profile. The p(IlIation of the profile doe" not coincide with that 
of the path of the grinding di,-c cmter. 

_"-ccording to the abon·, in cas(' k = 11 the equation of the profile 
b('comrs 

R cos u - e cos (J. cos 11 'I. - n (' "in 11';' sin u. 

y = R ,.in u, - e sin (J ('os 11 J, "7 11 e sin 11 7. cos U. 

~-, 

/ \ 

/ \ 

Fig. -

(13) 

(14) 

An analYE'is of the path of the grinding di~c cent er adyocates "imilarh- for 

the condition k = 11. 

A preliminary construction also sho"-8 t ha t the curve corrcsponding 
to the condition k = n goes the innermost path and thus has the shortest 
arc. The correctness of this statement can he checked mathematically. 

The equation determining the length of the arc of the ClUye is 

where Q denotes the radius of curvature connected to the respective points 
011 the curye, 
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di is the demen tary arc length belonging to the angular displacemen t du. 
Since 

dX d-{,-an .l 

da 

dY­

da 

hence, substituting X and Y- from Eqs. (9) and (10) 

dX = [-J·I sin 0, + e sin a cos WI. (I-kn) + e sin na cos u(n-k)] d'7. 

dY = [ Jl cos et - e cos Cl. cos n7. (I-kn) -1- e sin 11"1. sin a (n-k)] ch 

and performing the operations indicated 

thus the circumferenee 

2:7 

i = J VCi\{ e cos na (I - kn)t +'e2~in2 na (~-=-k)2 d'7. (15) 
o 

The computation proves the correctness of the construction, since the 
second term of the radical is positive in any case, consequently the smallest 
eireumferenee will be obtained when the factor of proportionality of the 
leyeI' is equal to the gear ratio beH\"een 'workpiece and driving eccentric. 

Then 11. = k, henc!' 

llnd according to the abo"e, if k = n the constant 1\1 occurring in the equation 
is equal to the mean radius of the profile (AI = R), thus the circumference 

becomes 

integrating 

2.;,-r [R - e C08 na (I - n2 )] da 
o 

2:r 

[ 
e (I - n

2
) I Ra - n sin na 

o 

~llld taking the limits into c0118ideration 

i = 2Rn 

(16) 

(17) 
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The result is worthy of attention: in case k 11 the circumference 
is independent both of the number of angles and the eccentricity, being equal 
to the circumference of the circlc of nominal diameter. The Case k = n is 
the most favourable also, according to this consideration, since, other things 
being equal, the shortest curve al80 implies the 8hortest time for procesi3ing. 

Fig. 10 

_As can be "een the selection of a yalue k = 7l is justified. In the fol­
luwing this partieular ca"e will be analysed. Since it is knU\nl that contact 
is brought about along an elliptical curye, it can be stated that the radius 
of the profile will be minimum at the instant when the angular displacement 

of the eccentric is lJ = 0.0 --L 2 a:7 (where a is all integer number, 0 < a 11), 
and maximum, when /3 = 180.0 ~ 2 ([:T. From the relationship hetween the 
angular displacement u of the ,,·orkpiec(' and angular di:;;placement of the 
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oc -;- 2a:r 
eccentric follov,-s that 0. = ----'---

1800 2a:r 
at r l11 in and (L = ------

n n 
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at rmax.' 

It can be laid down as a fact, furthermore, that for a profile of n angles, 
suitable for the connection of machine parts the number of the limit values 

is 2n. 
Polygon profiles constructed according to the method outlined above, 

with constant eccentricity e and number of angles f1, but 'with varying mean 
diameter are sho'wn: in Fig. 8 for n = 2, Fig. 9 for 11 = 3 and Fig. 10 for 

n = 4. 

n 1 
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Fig. 11 

Examination of these figures shows that in case of reducing the dia­
meter (or, 'which comes to the same thing, of increasing the eccentricity) a 
cusp is formed on the profile, then the profile branches intersect each other, 
as a consequence, a profile of a smaller diameter than wanted will be produced, 
since the disc cuts into the part processed during the first half swing. This 

fact motivates the kinematic analysis of profile generation. 

Kinematic analysis of profile generation 

Let the eccentric (4) rotate counterclockwise with a constant angular 
velocity w. The velocity of its geometrical center is then Vc = ew (Fig. 11). 

The center of the disc moves in a horizontal direction, with a velocity ihv 
'which is equal to the horizontal component of VC' Vkv = ew sin n7.. In a 
yertical direction the velocity is multiplied by the gear ratio of the lever, 
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Vkj = - 11Vcj' In case we consider the '·ectol' Vcj pointing dO'l"llward a" 
negati,-e, then Vkj = ne cv cos 11':1. 

The workpiece rotates clockwise with an 
(J) 

angular velocity 
~ • n The 

.-elocity components of tht' point which is in contact with the grinding di~c 

are: horizontal 
ru (J) 

sin nC/. = e cv Fin nO, yertical Vdj = - (R -'-
n n 

+ e cos no.). 
It can be seen that in caFe of any ch OF en angle 11 the horizontal yeIocity 

component of the points in contact on diEc and workpiece are identical ~ 

VJ.:v = Vd!" A relative motion betwt'en disc and workpiece is possible in a 
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yertical direction only. Therefore we can confine our investigation to t h(~ 

analysis of the variation of ,·ertical components of velocity. 

Vkj = n e (V cos 117. as a function of the horizontal stroke of magnitude 
(I) 

2e displays a linear distribution (Fig. 12). Vdj = (R .-;... e cos /10') n- a" a 

function of the radius also varies linearlv. 
Fig. 13 shows both velocity distributions. It can be seen that proces­

sing throughout the part of the stroke extending from 0 to e is continuous. 
since the disc and workpiece move convergently . .Through the part from 
e to 2e the two velocities art' of identical direction, thus procc8sing is sub­
jected to the condition that the vdocity of the point on the workpiece ii' thl> 
higher one, failing which the disc slips forward, loses contact with the work­
piece and processing comes to an t'nd. In the second half of the stroke, begir:-
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ning from the point of intersection of the -velocity distribution curve (point 
D) the disc has a no-load run. 

As is seen, a condition of continuous processing is that velocity dis­
tribution curves resulting from the rotation of the work piece and swinging 
motion of the disc should not intersect each other on the section of mag-

I· 
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nitude 2e of the stroke. In a limitation ease maximum yeloeity of the work­
piece is equal to the ydocit y resulting from the swinging motion of the disc. 

(R 
(I) 

e) 
n 

new (18) 

Fig. 14 shows three yariants of yelocity distribution curyes with eccen­

tricitye a constant and radii R yarying. Rotate the 'whole "'ystem with an 

__ --__ .2 

2 3/
1 

/ 
! 

a b c 

Fig. 15 

(J) 

angular velocity - n . The workpiece comes to a stillstancl, 'while the disc 

continues performing its swinging motion as described above, in a system 
w 

rotating with an angular yelocity n' Coneequently, its yelocity will he the 

resultant of the t'wo motions. In Fig. 15 the variation of relative velocities 

'He shown, also apart, for each of the three eases. 
Let us hy turn examine the three eases. 
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C'J 
a) Here (R + e) < new, thu~ 

11 

R < e (n2 
- 1) 

97 

(19) 

relative yelocity at point 2 is zero (Fig. 15a). Processing ili so far undisturbed. 
At this point the l"(,lati\-e yelocity reVeriie8 the signs, the disc has a dead 
center position in respect to the "workpiece and starts moving in the opposite 
direction, receding from the piece. Its yelocity increases as far as point 3. 
In the meanwhile the disc performs a half swing. Throughout the rest of the 
motion, the absolute value of the relati\;e velocity decreases up to point 2~ 
·where it reverses the signs again, the stone has a second dead cent er position 
and proct'ssing begins anew. The disc cuts into the profile processed through 
section 1-2, as a result of which tIlE' maximum radius specified cannot pos­
sibly be executed. The maximum radius of the truncated profile i::: delimited 

by point 4. 
I t can he seen that in cas~ R < e (nZ-I) the disc has an idle stroke, 

thc profile becomes truncated, and a::: a consequence of the incision, the 
arcs of the cun·e meet in an edge. The profile has a cusp and therefore is 
unsuitable to connection parts of machines. 

w 
b) Hel"e(R":"e) -=nrc'J.thus . , 11 

R=e(n2 -1) (20) 

Fig. Ljb ShOKS that here thp relatiye velocity does not reY"rse the 
signs. At point 2 the disc generates the 5pecifiecl maximum diameter. Relativ(~ 
velocity at this point is zero, i.e. the disc comes to a stillstand for an instant, 
then processing goes on ·without incision in the profilc. 

Therefore, in case R = e (n 2 - 1) the specified maximum radius can 
bc obtainerl. thc disc has no idle run, but still the condition of formation 
of cu"p'" on the maximum radius has to be examined. 

C') 

c) Here (R ~- e) -~; > ne (I), thus 

R > e (n2 -1) (21) 

The relatiye yelocity neither reyerses signs, nor drops to zero, therefore 
neither an inci"ioll, nor an idle run or formation of cusp can occur (Fig. 15c). 
According to the abo'·p. on profiles suitable for connecting parts of machines, 

the relationship 

R> e (n2 -1) 
holds true. 

7 Periodica Pulytechnicn :\1 III,'l. 
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The conclusions developed from construction can also be checked 
mathematically. Let us examine the extreme points of the cun·e. 

The vector equation of the profile is 

(22} 

where x and)' can be substituted from Eqs. (13) and (14). For determining 
the extreme values the vector 

is needed. At points where the scalar product T vequals zero, either r ...L V, or 

v = O. i.e. there is either an extreme value, or a dead center. 

TV = x:t' + yy 

Substituting x and y from Eqs. (9) and (10) and performing the operations 
set out, considering that k = n, we can write: 

TV = sin nu. [R-e (l-n 2) cos nu.] ne = 0 (23) 

The product is zero if one of the factors is zero, ne -;- O. sin nu. = 0 in caEe 
u. = 0° .L an, where a mav be any chosen integer number. Thus 

a -----
n 

which glyeS 211 extreme values. E. g. in case 11 = 3 

Further extreme values result from the condition 

After transpo!"ition 

R 
co!" nu. (2-1) 

Let us examine three cases again. 
a) when Rje < (1 - n2) [case of Eq. 19] C06 nU. < 1, and for ('aeh 

ratio of Rle there are in addition 21l extreme "alnes. 
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b) when R/e = (I - n2) [case of Eq. 20] cos n'J_ = 1. When 
cos no. = I, then sin w/. = 0, thus there is no further extreme value besides 
those mentioned above. 

c) when Rle > (I - n2) [case of Eq. 21], cos nu. > I, this cannot 
be, consequently, no further extreme value results under this condition either. 

As is seen, there are generally 4n extreme values, yet for Rle = I - 112 

a number of 2n of them will disappear. The difference in the signs between 
the results of the conclusions drawn from Fig. 15 and of the present dis­
cussion (n2 - I there and I - n2 here) follows from the fact that the senses 
of rotation of the workpiece and eccentric are opposite. 

A detailed mathematical analysis of the behaviour of the profile at 
f'xtrcme values is unneceEEary, as the eonstruction answers this question. 
Possibility of inflexiun does not even oecur. Minimum and maximum spot!" 
are unequivocal. E.g. in case of n = 3, the radius has minimum values at 
0. = 0°, 120°, 240°, and maximums at u. = 60°, 130c

, 300°. Only the cou­
dition of formation of cusp needs an examination apart. 

The profile has a cusp where the radius of curvature is zero. Tht:' radius 
of curvature can be dt:'termined from th" following relationship: 

"lHee 

and 

vI! dy' 
dx 

dy' 
CI(1 
dx 
d(1 

the radius of curvature i~ 

Q = 0 when 

y' - cotg (1 

R sin3 (1 r I 

1-
e 

COsn u. {I 
R 

R 
cos n (1 

-I 
e 

cosn(1 (l-n2) 

R 

(25) 
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The equation obtained is identical to Eq. (24) thm there are also three pos­
sihilities here: 

a) "when Rie < (1 - 1l 2) [case of Eq. 19] cos 117. < ], consequently 
21l cusps will result for each ratio Re. The stone has dead cent er positions 
at these spots. 

b) when Rle = (1- n2 ) [case of Eq. 20] cos n7 .. = 1, whence W.J.. 

= 0° a:r . The curve has three cusps at the spots of maximum radii. 
c) when R/e > (l - 112) [case of Eq. 21] the curve has no cusp. 
Thus computation ha;:; jmtified the conclusions drawn from Fig. 15. 
Figures 8, 9, 10 show set:- of curves. In Fig. 8 n = 2, here 11 - n2; = 

= 3. In Fig. 9 11 3. here 1 --.. /12: 8. In Fig. 10 n = 4 and r 1 - n2 ' = 15. 
In p~"actice an' answer if' generally expVected for the question' which 

eccentricity should be selected for a profile of a specified mean radius R. 
Increasing e causes the difference between minimum and maximum radii 
to increase, and increasing ecc{,lltricity results ill a tapering profile at any 
radius. Figures 16, 17 and 18 demonstrate the effect of increasing the eccen­
tricity for the case of R = const. 
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The cun-es in each set shown in Figs. 8, 9 and 10 are t:quidistal1t, and 
the functions of the radii of curvature show that the centers of curvature 

of the extreme value spots in case of any ratio of R/e lie at the cusps of the 
curve. Osculatory circles to the small and the big arcs facing the former can 
be drawn from these cusps. 

In case 11 = 2 there are two cusps only (on the major axis) from which 
the osculatory circle to the arc of small radius of curvatun~ can be drawn. 
The centers of curyaturc for the extreme yalue spots on thc minor axis of 

the ellipse lie at the point of intersection of this axis with the eurye including 
the cusps (Fig. 8). 

Furthermore, we have to decide the question: a polygon of how many 
angles should be chosen as the most suitable. 

Substituting n = 1 in Eqs. (13) and (14) of the profile 

x = R COSQ-e 

y = R sin Q 
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as a result, a polygon profile of 011E' angle is a circle with the cent er shifted 
to a distance e ( eccentric). By similar substitution of n = 2 the result is an 
ellipse. A further increasing of 11 gives the already known polygon formation, 
composed of a number of nares. 

One group of polygon profiles is characterized by constancy of dimen­
sion, i.e. when checking its dimension at any chosen spot the measurement 
result remains the same. For instance a circle has a constant dimension 

I 
/ 

-' 

R=1Se2 ----

Fig. 18 

whereas an ellipse has not. It is seen that this quality is not independent of 
the number of the polygon angles and it may be assumed that a profile is 
of constant dimension whenever the number of angles is an od d number. 

This problem may he examined as follows: 
By means of an external caliper gauge or any other device having 

parallel measuring surfaces, the distances between such points of the profile 
can be measured, the tangents of which are parallel to each other. Yet to 
such points helong angular displacements no. and 11 0. + 11:T, respectively. 
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Let n be an even number: Fig. 19 demonstrates that while the driving 
eccentric rotates through an angle no., the working point of the stone arrives 
at position A. The point on the workpiece which is processed at this instant 
by the stone can be determined by turning off the triangle OAA l by an angle 

0.. The point on the profile is A', the direction of the tangent A'A'l' When 
the angular displacement of the driving eccentric grows to no. + n7l:, the 
working point on the stone again coincides ·v.-ith point A. Point A" on the 

workpiecc can be determined by turning the triangle 0 AAl through an angle 

Fig. 19 

0_ 71:. The tangent to point A" directed along AI" A" is parallel to the tan­

gent to point A'. The distance measured is A'lA"l' The distance OA l ' can 
be expressed as 

OA1 = R + e cos n:t. 

(26) 

It can be seen that the distance measured is a function of 0, and therefore 
in case when n denotes an even number, the profile cannot possibly be of 
constant dimension. 
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::\ow let 71 be an odd number. By following the conEtruction in Fig. 
20, we see that "t an angular diEplacement 11"7. the working point on the disc 
comes to position A, and at an angular displacement no. T 11:7 to position 
B. The points on the profile can be determined by turning off the triangles 

0--4A 1 and OBB1 • The points on the profile are A' and B', the directions 

of the tangcnts t and 1', the measured distance A'B'. 

Fig. 20 

and 

where 

and 

OB; = R + e cos (rn. + 11:7) 

since 
cos nO. = - cos (11"7. + n:-c) 

hence 
(27) 
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This order of ideas appiies to any angle nu.. It follows that polygon 
profiles ,dth odd numbers of angles have a constant dimension, identical 
with the mean diameter. Also the sum of the two radii of curvature at points" 
A' and B' i" equal to the mean diameter, since 

eA' = R - e (1 - n~) cos n7. 

QB, = R - e (1-n 2) cos (117. + nn) 

whence 

This analysis advocates for application of polygon profiles with odd 
numbers of angles, because a constant dimension renders a55embling and 
gauge testing of the pieces simple, furthermore such profiles are self-centering. 
Out of the polygon profiles with odd numbers of angles, the case n = 1 gives 
a profile unsuitable for connection, thm; n = 3, 5, ... etc. can be taken into· 

consideration. 
If we possess two specified profiles of identical dimensions, one "with 

n = 3 and the other with n = 5 as number of angles, the question is, which 
number of angles is more serviceable in practice can readily be answered_ 
Pro"deled the eccentricity is the same for both cases, the minimum nominal 

radius where no cusp is produced will be R = ge for n = 3, and R = 25e 
for n = 5. Thus, if the nominal diameter of the profile is 25e minimum radii 
of curvature will be 

for n 3 

for n = 5 

Qmin = [25 + (1 - 71 2)] e = 17e, and 

Qmin = [25 + (1 - n 2
)] e = e 

1.e. other things bein g equal, the increase of the number of angles results 
n a very substantial reduction of the minimum radius of curvature. 

This fact is particularly important for the processing of inner profiles_ 
Namely, inner profiles can also be produced by broaching, yet, if an execution 
of high accuracy is needed, or production of a pun broach is not economic, 
the inner surface has to be ground (a hardened surface cannot be finished 
by broaching, either, but only by grinding). What was said holds true also 
for processing inner surfaces, yet the maximum diameter of the disc is 

limited: 

dmax < 2 Qmin (Fig 21a and 21b) 

where 

!?min = t ~ + (1 - n2)] e 
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This condition :::ets an upper limit to the grinding disc diameter, whereas 
the lower limit results from the conditions of metal cutting. 

The above considerations demonstrate that the most serviceable are 
polygon profiles of three sides. 

t 
! 

.L-,""i 
! ~I 

! 

Fig. 21a 

Fig. 21b 

So as to render representation simpler, we have delineated the profiles 
as composed of arcs. The course of the construction runs as follows (Fig. 22a) : 
Dra"w a circle of a radius 7,643e. This circle intersects the radii inclined at 
1200 to each other. From these points, the arcs of radii rand R can be drawn. 
These arcs meet on the straight lines joining the points A, Band C. (An 
approximate construction method for elliptical profiles is shown in Fig. 22b.) 
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Fig, 22a 

Fig. 22b 

Generating polygon profiles with epicyclic gear 

The same profile can aho be produced by a rolling movement. It is 
known that when inside a stationary circle of radius R another circle, of 
radius R!2, rolls without sliding, the points on any chosen diameter of the 
rolling circle move on elliptical paths, with the exception of the points lying 
on the circumference and the centre of the small circle, the paths of which 
degenerate in a straight line and a circle, respectively (Fig. 23). A point at 
a distance a from the center of the rolling circle describes an ellipse and by 
variation of the parameter (( the shape of the ellipse, i.e. the ratio of the 
major and minor axes can be varied. 



lOS 

/ 

Fig. 23 

Fig. :24 
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The elliptical path of the stone center can also be derived from the 

rolling "without sliding of the circle (4) inside the circle (3) (Fig. 24). T3 2 T4 • 

In case the circle of radim T4 is not at stillstand, but rotates about a point 

D, then, in fact, the ellipse described by the point determined by the (li~­

tance ([ '\-\--ill rotate as compared to the workpiect' being at ~tillstand. 

According to Fig. 13. we can write 

where 

T.! sin (n'l. - u) J 

C[ a cos (n'l. - ,_) : a sin (n! ..L 0) J 
,.-nbstituting 

where 

a sin (1l7. -;- 0) 

:substituting the function .. 

co" (71 J. - ~ ) =~ cos 71 '1. cos Cl. 

sin (n f - :) .-in 11 /. cos 7. - co::. 7/.'f, sin 0. 

cos (11 J. ..L ).) = co~ 71 J. cos /. "in n Cl. sin CI_ 

;;in (/1 Cl. ..L :;) = sin 11 J. co:" O. - cos n'!. sin :f. 

after transposition wc get 

TZ) sin 'l. - (T! - a) cos 11 J. ;;in :J. (Tl ~ a) sin 11 '. co:' '1. (2q) 

,A. comparison of the ahoy!" t:"qnation:, with tho,,\:, of the polygon profile: 

x = R cos Cl. - e co;; 11 :'. cO:':J. - 11 e sin nCl. sill Cl. 

.'\-" R sin u -" cos 11 ., sin Cl. -;- 11 e sin nU. cos Cl. 
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suggests the values to be selected for the radii Tl' T2' T3 and T 4 of the circles 
and for the distance a. These values are determined through the following 
relationships : 

ne = T4 + a 

2 

3 

T 

~ 
~ 

Fig. 2.5 

lnoreover~ Tl == n T2~ transfornlatiol1 glyeS 

71 e + e = 2T.] 

71 e - e = 2a 

From these relationships the parameter" of the epieyclic gear can 1}<' 
determined. 



III 

The sketch of the epicyc1ic gear is given ill Fig. 25. In case the whole 
~ystem rotates with an angular velocity - (J)3 the wheel (3) comes to a still­
;;tand, the workpiece rotates about its o·wn axis, and only the axis of the 
grinding stone has the swinging motion, discussed above. The shaft of the 
grinding dise has to be mounted in the ·wheel (4) in such a way that it could 
he shifted radially. For each number of polygon angles the distance (i can 
he determined: 

if 11 = l. Cl 0 

11 2. Cl 1· 
T! 3 

11 = 3" (/ 1/ 
2 r 4 

n 4. Il 3. 
T4 

Processing polygon profiles with apparatus to be mounted on grinding machine 

To transform a grinding machine in hand is a rather difficult task, 
hecause the shaft of the grinding stone is mounted in bearings set in the 
frame. In a polygon grinding machine the shaft of the stone has a swinging 
motion, whereas the axis of the work piece is at stillstand. The idea arises 

that the two motions could be interchanged. In order to generate the desired 
profile, a relative motion between work piece and stone is needed. This can 
come about also when the axis of the workpiece has a swinging motion and 
only the stone rotates about its own axis (Fig. 26). 

:'iotatiollS in Fig. 26: 

1. Grindstone. 
2. \Vorkpiece' clanlping head_ 
3. Swinging parts, 
1. Driying eccentric. 
~. Gear b'ox of rati~s 1: 1, 1 : 2, 1 : 3. l:·L 
6. Synchronizer of workpiece and ecce:ltric motions. 
,. :\lultiplying lever for shifting axis of workpiece Yertically, 
8. \Vorkpiece, 
9. Slide for transmIttmg horizontal motion of eccentric, 

10. Slide for transmitting vertical motion of eccentric. 

The driying eccentric (4) has a kinematic connection with the il-ork­

piece (8) only. The slides (9) and (10) tog~ther with the leyer (7) compel 
the workpiece to execute a motion similar to that of the grindstone in the 

polygon machine. The gear box (5) (which is only symbolically noted as a 
gear drive) caUEes the shaft of the workpiece to execute 11 swings at each 
rn-olution. Thus, all parts of the deyice constructed according to the aboye, 
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except the stone, can be assembled in one body, 'which can be fixed to th!> 
bench of the grinding machine. 

The relative motions of the workpiece compelled to move with its axi" 
swinging, and of the grindstone turning about a fixed axis result in the same 
polygon profile, the equation of which is already known. 

2 8 9 5 4 

~ ----- _.-

Fig. 26 

Kinematic problems for generating polygon profiles have been :-oh-ed 
in the aboye. It will be the task of the machine tool designer to crcal f' a proper 
constructional device for practiced realisations. 

Summary 

The ab)Y~ paper offers a synth~tic investigation of yarions polygon profiles on th,: 
basis of the kinematic sketch of a polygon grinding machine. shows ways of gell€rating 
polygon profiles and finally points out how such profiles can be processed by mean:,; of an 
equipment which can be mounted on grinding machines at disposal. 
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