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1. Introduction

This paper deals with the theory of elasticity of structures bounded by
two parallel planes (slabs, discs), hereafter referred to as plates. The theory of
elasticity generally deals with such structures on the basis of the following
simplifying assumptions [1], [2]:

a) Points located, prior to deformation, on lines perpendicular to the
middle plane of the plate, will lie even after deformation on lines at right angle
to the deformed middle plane :

b) Normal stresses generated on planes parallel to the middle plane may
be disconsidered in relation to siresses arising on cross-sectional planes ;

¢) The middle plane of the plate deforms under load to a developable
surface, or to a surface differing but Iitile from such one.

In the following the problem of plates of uniform thickness, with plane
middle surface, will be treated without the above-mentioned conventional
simplificating suppositions of applied elasticity. The basis of treatment will
be a system of particular solutions of the basic equations of the theory of elas-
ticity, elaborated by the author [3].

2. The problem to be solved

For the investigatiions a rectangular co-ordinate system O {x, ¥, z) is used
whose plane xy coincides with the middle surface of the plate. Boundary planes
of the plate parallel to plane xy are called faces, boundary surfaces perpendicular
to the former are called edge surfaces of the plate. Thickness of the plate is
denoted by symbol 2¢

It is supposed that only distributed loads are acting on the plate. Unit
values of the loading forces referred to faces of the plate are desecribed by load
components of direction x, v, z. Load components of direction %, y, z acting on
face z = - t are denoted by symbels p,, p,. p:, and these are taken as positive
if their directions coincide with the positive directions of the axes. Axially
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directed components of loads distributed on face z = — t are denoted with
symbols gx, gy, g.. The latter are regarded as positive if their sense is opposite
to the positive directions of the axes. .

The aim is to determine the system of stresses generated by the load system
acting on the plate. In the course of this procedure the following conditions
are to be observed on the faces of the plate

o (%, 5, 1) = p=(x, }’) » o: (x5, — t) = g: (x, .)’) E (1>
Tex (0,5, 1) = px (2. ¥) T (2, — 1) = g« (2, %), (2)
Tey (2. 32 1) = Py (. ) 5 Ty (Y, — 1) =gy (% 3) . (3)

On the edge surface of the plate very variable initial conditions are possible
and therefore no closer stipulations are made here in relation to the latter.
The method to be presented, however, yields no possibility of satisfying
any initial conditions relative te the edge face.

3. A system of particular solution of the basic equations of the theory of elasticity

For the solution of the problem. a system of particular solutions of the
basic equations of the theory of elasticity, elaborated by the author [3],
is used, according to which
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In the above formulae £, 7, {, are displacements of direction x, ¥y, »

of points of the plate, m is Poisson’s ratio, F and H are functions,

tween which the following relations subsist :

52 B2

2 F2j=F2j+2-,

be-

(M

The series figuring in the formulae must be convergent, so as to meet the follow-
ing condition : either of the first two partial derivatives of the series can be

produced by differentiating member by member.

The above system of displacements may be written with some simp-

Iification thus:
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The stress system corresponding to this system of displacements is
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Formulae of stress components o, and 7., are not written here and will
not be written later either, because these can be produced immediately from
formulae ¢, and 7., by interchanging the vole of symbols x and y.

4. Four characteristic groups of functions H

Before embarking upon the solution of the problem proper. four charac-
teristic groups of functions have to be learned. Characteristic data of these four

cases are @

Case I.
C(x vy, + )= — o (x. ¥, — 1),
Tox (%, 7. & =0,
Ty (%, ¥, = t) = 03
Case I1.
oy (x,y, + 1) =0, {x, ¥, — 1),
T (2 y, =0 =0,
Tyz (x~, Y, t) =10;
Case 111, (10)
o (x,y, £ 1) =0,
T, ¥+ 1) = — 1o (x,y, — 1),
T\:(A,."), —Ji- t) = T;J: ("x: 3": — i) s
Case IV,

With the proper designation of the H functions figuring in formulae (8)
it can be easily attained that the £, 7, { system of displacements results on
faces z = -~ ¢ in the stress system corresponding to the cases stress I, II,

III and 1IV. For this the H functions are to be assumed as follows :



Case I.

Case I1.

Case II1.
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Case IV.

H, =0

H, =1

H, — -

T

- z2 12

s 21 6

oSt 5 (14)

31 6 1!

i t:'.’. :2 ‘ti
H =" — o v
4 6 21 360
H__:5_t2_:3~_7ti 2
T 51 6 3t 36 1!

In the H functions (11), (13) and (12), (14), respectively, the coefficients

are in easily recognizable relation to coefficients figuring in the power series

L8 st

cht 2 24
and

S ST

sht 6 360

5. Plates loaded on their faces

Let plates loaded on their faces be dealt with first. In this case one eigen-
function of the differential equation

32 (-\'e }») iR ARG ('xe _T) LY} (x? }) =0; J2 — const (15)

3 x? l 3 y>
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vanishing at the edge line is chosen for function Fj. For the sake of brevity,
the eigenfunction in question is denoted by symbol @, the eigenvalue pertaining
to it by symbol A2, In this case, considering (6),

F, =0,
F,=— 120,
F, =+ 130, (16)

For functions F_o, F_,, F_;. ... no nearer data are given,

The next step is to investigate what shape the formulae of displace-
ment functions (4) will assume if for functions F values (16) and for func-
tions H, in the same order, values (11) — (14) are substituted therein. In
the course of these investigations some endless series will be regrouped with
omission of the examination of the necessary convergence, and also other
transformations will be made on the series. Therefore it will have to be
ascertained whether or not the displacement functions obtained as the results
of calculation satisfy the basic equations of the theory of elasticity.

Calculations are executed seperately for the four special cases men-
tioned in the previous chapter.

Case I. The values of S, figuring in formulae (4) is determined in the first
place. For this the values of (11) and (16) are to be substituted into formula
(5). Thus with notations

Z=lz, T

il
4

it (17)
the following formula is obtained :

i

i

3! 2 |

sazchz[1+ z[

7z T )
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By re-grouping members of this series the following series may be produced:

, T2 5 T4 T :
Sa=f’-@2[—1- 1o g2 g olr —-)-
1t 2 24 720
e LR e LTI |+
311 2 24
4 T2
%-‘2{3—4‘ e )——
511 2
76 \
e — -
T B

the known formulae of development into series .
SOZXQZ[L(' 2 TshT')+
2 1VhT ch?2T
AN TshT ) N

BT EY Y
Lzt 6  TshT)
1 5!{;chT ch?T } i

c( 8 TshT’\_;,..]e

or by re-grouping of members, the formula

)».(DZ[ 11 (224 47¢ | 625 | 87 ‘)_

8= ST 55 ; ;
2 |ehT 2z 1! 31 5! 71

TshT 1(Z z¢ 7 I l

ch®T 2(1"3t SR T

is obtained. Instead of this formula with reference to ihe known formulae of

development into series the formula

S, =

AT 1 - d (ZshZ)— TShT—~ShZ‘I
2 |chT dzZ ch®T )

4

and by further transformation of the formula, we obtain

A
a= :‘iT (ch-T-shZ +ZchT -e¢chZ —~TshT-shZ)- (18)
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A similar method may be applied in the case of S; figuring in formulae (4).
On this occasion by substituting values of (11), (16) and (17) into formula (5)
of expression S, it is found that

Sb:).®Z[1+(£:—-E‘+
3! 2 |
Z5 T2 zr 5T
157 2 31 24 |
L {zv T* ozt 5T z: 61TS\
i[ﬂ 2 50 24 3! 720 ) B
or
y 2 ooTd 76
S =, ..Z_< ________.D_T __E}J___i_ )___
1! 2 24 720
o zpfT* 5T L
J 3!( T )
75 T2
T-—{l——_—— .................... ]~
511 9
—;-T'(1~ ......................... ]-—J
mence
»
S5=-"% 9T ez (19)
2¢ch2T '

With knowledge of (18) and (19), instead of formulae (4) of the dis-

placement functions, the following formulae may be written

f=ua

o .
1 88@ (’” = chT-shZ+ZchT-chZ—TshT~shZ),

m

chT-shZ—;-ZchT-chZ—-TshT-shZ), (20)

S 3D ("m—'l

8y \ m
. 2—2m
Z:al LD |

i n

chT-chZ+ZchTshZ—TshT‘chZ) .

In these formulae
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If the above values found for the displacement functions are substituted into
the basic equations of the theory of elasticity, it becomes evident that the
functions satisfy those equations.

With the displacement functions known, the stress formulae can also

be easily determined:

2

6o =26a 0 (hT.chZ+ZehT-chZ—TshT-<hZ)+

3 x?
2 2

196at 2P 2 W7 .z,
3y m

o:=26Ga' 2D (—chT-shZ+ZchT. chZ—TshT. shZ), (21)

+ZchT chZ— TshT-shZ|,

Tp=2Gal 2 (ZchT-shZ —TshT-chZ)-

Formulae of stresses o, and 7,., here not presented, can be produced from
formulae of o, and 7., by substituting ¥ for x, and « for y.

Case I1. In this case after calculations, similar to the above, the following
formulae, similar to those of case I, are obtained for the displacement functions:

—9
5:an.§f"3( m shT-chZ—iZshT-shZ—TchT-chZ),
dx \ m
s —‘2 .
L shT-chZ+ZshT-shZ—TchT-chZ}, (22)
dy m )
2—2m )
f=all 1O (_.» shT-shZ—i-ZshT-chZ——TchT~shZ) :
. m )
In these formulae
ol mAi
2sh2T

The above displacement functions satisfy the basic equations of the theory of

elasticity in every respect.
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In possession of the displacement functions the stress formulae can also
be given :

6, = 2Gall Z-? (shT .chZ+ZshT -shZ —TchT-chZ)+
2
na c)
cocat E2 2 T ehz,
3y m
6. =2Ga'! 20 (—shT-chZ-+ZshT -shZ—TchT chZ),
2 ‘m— 2
re =26 22 [(M=2 47z (23)
dx -0y ‘ m
+ ZshT . -shZ—~TchT . -chZj,
f::czzcall_aa—?i(zshz"-chz—TchT-shZ).

Formulae of o, and 7,. can now again be produced from those of 6, and 7
by interchanging the symbols of x and y.

X

Case III. The formulae now valid can be produced, by using functions H
under (13) in the same way as the formulae of case I, from functions H with
symbol (11). However, since functions H with symbol (13) are equal to the differ-
ential quotients of those under (11) according to z, the formulae valid for the
present case can be more simply deduced from the formulae of case I. by differ-
entiating with respect to 5. The displacement functions thus produced correspond
in every respect to the basic equations of the theory of elasticity.

Case I'V. The displacement functions sought for are derivatives of those under
I1. with respect to z. These displacement functions also satisfy the basic equations
of the theory of elasticity in every respect.

6. Plates not loaded on their faces

It will now be investigated how the functions F figuring in formulae (8)
of the displacement functions are to be designated, if the following is stipulated :

0. (v,y, =1 =0,
Tax (x,y, = t) =0,
Ty (¥, =8 =0.

This investigation leads to different results according to which one of the groups
of functions (11)—(14) is chosen for functions F. Accordingly, four cases are
distinguished :
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i

Case I.: If the group of formulae (11) is chosen for functions H, then, according
1o (9), 0. (x, ¥, 4= t) and 0., (x, y, &=t} are equal beforehand to zero, and the
formula of stress ¢, takes the following form

G2,y 2) = 26Gm (— FyH, ~ 2 FgHy— 3 F ) Hy -+ ...).

Tc make also 6, vanish on the plate faces, a triharmenic function has to be
chosen for function Fj,. Then

. 3 F ] 23 i’z
€=——? 2~+(2nz~1)—€' s —’
dx ) 8x \ 6 2
8 F, 8 F, [z 2z
7] = — 2 :+(2rn—1)o 4(————— ’e (24)
Oy ay 16 2
22 2
{=F,+ F ——
2 f4( 5 2'

6. =26 —m 8-[12:_ ®F .
3 3 x? 8 y?
-~(2m—1)~o—F4- _'"___[:_:,)
x> 1 6 2
6. = 0 (25)
®F
Toy=26|—(m—1) .
Qx-By
RF, (3 2
L@2m—1)-—4 2 )'
9x-8y | 6 2

T..=26Gm

8F, [z P2
dx {

Case II.: Let now the values included in group of fermulae (12) be chosen for
functions H. In this case, according to (9), 6.x (x,y, = 1) and o, (x, v, & 1)
are beforehand of zero value and the value of stress

0. (%,y,2) =26m(F,Hy— FeH, -2 F;H, —3F,Hy+ ...)-
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To make also 5. vanish on the face of the plate, it is necessary to choose a tri-
harmonic function for F,. Then

F,=F,=F,=...=0,

and, accordingly, formulae (8) of the displacement function take the form

3 F

£ _ =0
- kd
Ox
3F
7o — 2 (26)
3y
i=20.
The formulae of stresses, on the cther hand, are the following :
52 52
Gy = — ZG.O Fﬂ_ — zci_F_Oﬁ
3 x? 3 y®
o, =0, (27)
2 F
Tyy == ~— 2 G—S———O—- .
dx - Oy

Tox = 0.
From the above formulae it appears that in the present case the stress
and deformation states are two-dimensional. The function F) figuring in the
formulae is 2 G-times the Airy stress function.

Case II1.: Now functions of formula group (13) are chosen for functions H.
In this case o, (x, ¥, == 1) is equal beforehand to zero and the values of stresses
7. and 7., are

sz(x,y,z)_—:ZGm( OF: g 28 Fs g 388 -

9 Sy oy

rz}-(x,“',z):IZGm(aF‘~1 H,—2 O F, H,+ 3 S Fy H. — ] .
dx 3 x dx

To assure that 7, and 7, vanish on faces of the plate it is necessary that
F, (x.y) = ¢ = const. In this case

8F4:8F4:0; F(;:FSZFI():"':O’
dx 3y
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and the displacement functions are of the following simple form :

3 3 F,

b:—-—(ﬂL—l) ax ®
F,

7]~_—_——(m——1)————-8 =, (28)
8y

{=cz,

and the stress formulae take the shape

oy =26 (m—l)—:FQ—c]z?.-G
9 x? ,

L 8_)2
o, =0, (29)
T = — 26 (m—1) &F |
’ Bx - 3y
T = 0.

Itis evident that, in the case onhand, too, a plane stress state is dealt with.

Case I'V.: If functions figuring in group of formulae (14) are chosen for H
functions stress 0, (x,y, & ) beforehand becomes of zero value, and the for-
mulae of stresses 7., and 7., take the following form :

'E_,.x(x,y,z)zsz{ 8F4-H3—~2 o F, H,+3 8 Fy H, — )
dx dx dx

uqnyﬁyzogm(°p4Hy_dﬁﬁiH{+38FiH}~.”y
- % 89» a:y 8), )

To make 7., and 7., equal to zero on faces of the plate it is necessary that

In that case

8 F 3 F
4:‘_—4: N F6=F8:F10="‘:07
dx oy
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so that the formulae of displacement functions :

. 8 F,
E=—(m—1 =z,
( ) e

3 F,

= —(m—1)—321x, (30)
oy

e meNF,tE_E

T 2T 6)

And the stress formulae in turn

Oy :'?,G{(m— 1) 8~F;2 —mc]:?

8}"'
(7_,:0, (31)
8 F,
Ty =—2C — 1 =
g ( ) Ox - Oy
T:.\’ZO

Evidently, in this case, too, there subsists a plane stress state.

7. Solution of the problem

In posession of formulae learned in Chapters 5 and 6 the problem can be
solved in two steps. In the first step through use of formulae learned in Chapter 5,
a system of displacements &*, #*, {* is produced which satisfies only initial
conditions (1)—(3). In the second step this displacement system is completed
with the application of formulae presented in Chapter 6 by a displacement
system &¥* p**  [** which enables the united solution

f:

=T+,

e
*
ey
i
#

- Sk ) EE
£ I L

to satisfy all other stipulations of the problem.

Since initial edge conditions of the plate may be very variable, the deter-
mination of the displacement system £*, ¥, {* alone will be dealt with here.
This displacement system will also be composed of two parts.



First a displacement system £, '™, £ is sought to satisfy on plate

faces the conditions

Gz (x-, )'e t) = p:*, [ (x,y, - t’) == q::‘
Tox (xe Y. t) =0 » Trx (-U_. Y. — t) =0,
Ty (2.7, 8) = 0, Ty (0, — ) =0.

Then this displacement system is completed by a displacement system
b ot . . . . . o
EP i, 2P hich assures compliance with the following conditions

o (%.y, 1) =0, o. (x,y, —1) =0,
T (z v, t) = p, To (2, vo —1) = g .
Tey (%32 1) = Py Ty (.7, —1) =gy .

With knowledge of the two displacement systems

£ glay o by
= k-1 - b
% aafa 7 NEd
7% = @ oy
FE o Hay i f

; . «{) (a)  ef =(5) (B ={D)
The displaceeent systems &P, 57, ' and &7, 47, I are deter-

mined according to the following instructions :

a) Determination of displacement system £, #'¥, 7. This problem can
be traced back tc the problem treated in Chapter 5 if the loading systems
p: (x. v) and ¢. {x, ¥) given are resolved inte the two loading systems appropriate
to cases I and II respectively, dealt with in Chapter 5. One loading chtam
(with symbol I) is assumed to have at pomt (x,y,1) an intensity of 7' (x, y)

and at point (x, y, — ) an intensity of — ' (x. ). where

o

Thus, the second (with symbol I1) loading sysiem’s intensity, at points (x. y, 1)
and (x, v, — ) alike,

) = (pe = @)

Of these two loading systems the first corresponds to case I and the second to
case II, both presented in Chapter 4.

To make possible the application of the formulae of Chapter 5 to the
above loading systems, the afcre-written functions r' (x, y) and N CA)



ELASTICITY THEORY OF PLANE PLATES OF UNIFORM THICKNESS 119

are developed inseries according to the eigenfunctions of the partial differential
equation (15) provided these developments in series are possible. Thereby the
series

M) = 2 k) = 2 ().

=1 P
(32)
rit (.Xf. ,’,V) = Z TIIcI (.1’,}") - Z CII\'I Pr (x: ,\)
Fems ] k=1

are obtained. Here ¢ (x, v). @ (. ¥). ... @ (¥, ¥). ... representthe normalized
. . . . 1.
eigenfunctions while the meaning of factors ¢, and ¢ is

o= [ gy (r.y)-dd.

(A

il = ! @r (. y) - (2, ) - dA .

(A4j

that is to say, if A is the area of the middle plane of the plate. With the
use of the development into series (32) loading system I is resolved into

loading systems composed only of forces of direction z, whose intensities
. . 1 ! .
at points (x, y, - ) ave ri, rs, ... ry ..., and at points (x, y. —i):
I 1 1 . . . .
~~¥i, —T2, ... —Tp ..., while loading system II is resolved into compo-

nents again only of direction z, whose intensities at points (x, v, = t) are
oo 1 .
Ty 2. oo Tie oo .
. . 1 1§
Having denoted the stresses generated by loading systems r; and r; by

I 1 1 i
symbols 6y Gy po.... and oy o

3

3 e -+, Tespectively, and the corresponding
displacements by £l 77;:, Zp and Lol Z1l let us determine their values.
We start from formulae (20)-—(23). Functions @, figuring in these formulae,
and expediently denoted by @y in the first case, and by @} in the second case

are to be designated so that

Gg, k (.\', ,V: : [) = : rII °

and

Ggl k (x: Y. = t) = * TII{I

This stipulation is easily complied with since functions @,{. and @,If are pro-
. 1 I . .

portionate to stresses ¢.; (x, v, + 1), and o§ (%, y. + &), respectively. With

knowledge of this a simple calculation may confirm that the following are to be

) I I .
used for functions @' and @'. In this case :
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DL (x.y) = ¢ 7 (%, Y)
ST 2Ga'22(T —shT-chT)

BL (v, ) = o g (+. )
T G a 2(— T —<hT - chT)

. . o . 1 I . . . > <
Bv substituting funciions @y, and @, for @ figuring in formulae (20)
. . . , I TR G
and (22), we obtain the displacement systems &, f”//I = and &L ol ol
respectively. Hereafter the sought displacements &%, #'¢, @

are calculated
by fermulae

7D = >+l

;‘(a) — S‘ (;,:II__ £li

b) Determination of displacement system &, 7P, . This displace-

ment system is determined by formulae of cases III and IV of Chapter 5 in the

same way as the displacement system £, 59, @

was established above.
Therefore it is superfluous to deal with the probhlem here.

Remark. The application to a specific problem of the afore-outlined
principles will be demonstrated in a subsequent issue of this pericdical. The
problem to be treated there will give a comparison how far the results of the
afore-outlined, more exact calculations diverge from results computed with

the simplifying assumptions mentioned in the Introduction.

Summary

The Kirchhoff theory of plates of uniform thickness (slabs, discs) uses simplifying assump-
tions, besides of the hypotheses of the classical theory of elasticity. Based on a system of solution
of the basic equations elaborated by the author [3], this paper indicates a way by which the
problem in question can be handled without those simplifying assumptions.
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