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Cross bracings are unsually applied if the opening to be spanned by the
bridge is large. The number of main girders exceeds in most similar cases two.
Lateral bracings acting in horizontal planes connect the main girders at the upper
chord or at the floor (upper lateral bracing) and at the lower chord (lower lateral
bracing) as shown in Figs. le and 1b. Cross bracings may be trussed girders
(Fig. 1b), statically determinate or indeterminate, and again frames which are
by nature statically indeterminate (Fig. la).

The investigation of transversal load distribution may be accomplished
by one of two methods, depending on whether the lateral bracings are considered
and designed to cooperate in the transversal load distribution produced by conti-
nuous floor beams and sway bracings, or only the main girders are considered.

Computation methods may further be distinguished according to whether
the floor beams are assumed as elastic or as of infinite rigidity, and whether
the torsion resistance of main girders are considered or neglected.

The present discussion will be restricted to the case when the torsion resist-
ance of main girders are neglected, whereas the contribution of the lateral brac-
ings are considered. Principles of the computation method making allowance
for the torsion resistance of main girders have been discussed in the paper pre-
sented at the Congress of the I. V. B. M. in 1948 and reference is made to other
literature on the subject.

A4 ) Bracings of infinite rigidity
1. General

Bridge structures built over long spans with two or more main girders
stiffened by lateral bracings and floor beams may be analyzed by assuming floor
beams (sway bracings) having an infinite rigidity. The accuracy obtainable by
this method is sufficient for most practical purposes. This generally encountered
fact is due to the favourable circumstance that the rigidity of the comparatively
short floor beams (bracings) are, relatively to that of the long main girders, very
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. great. Therefore the unit-load deflections (¢) and displacements characterising
the flexibility of the main girders are relatively great in comparison to that
of the deep, short floor beams (or bracings) applied between the closely spaced
main girders. The flexibility of the latter, v, is very small. Therefore, the grid-

L g e . . . o
work rigidity factor z = -— will be very great, i. e. practically infinite, or, conver-
v
- - ¥ Ad 1; 3 . -
sely the grid-work flexibility factor d = — will be very small, i. e, practically zero.
[
(See point B. 4.)

The agreement between results to be obtained by the computation method
base . upon infinitely rigid bracings and actual conditions will improve as the

distance between the main girders decreases and their span and rigidity of brae-
ings increases.

At long span bridges it is, naturally. not necessary to apply bracings at
every load-transferring vertical or floor beam. and the number of bracings may
substantially be reduced to three or five intermediate cross-sections. At other
load-transferring verticals the use of floor-beams of a rigidity inadequate for
load-distribution are practicable.

2. Basic principles of the methed

In order to develop general equations a simple bridge-structure will be
analysed, the general cross-section of which is shown in Fig. 2. This structure
iz composed of four main-girders. The main-girders may be trussed or plate-
girders, whereas the bracings may be trusses or frames.

Sign-rules are as follows (see Fig. 3):

a) Forces acting oy joints (X or R and Q) are positive as in Fig. 3 when
acting upwards or from right-to left.(i. e. forces acting upon bracings) and
when loads of main-girders act downwards of from left to right

b) Load-forces P are positive when acting in positive direction of Q forces;

¢) Couples due to external forces are positive when acting countre-clock-
wise in the plane of the bracing.
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Displacements in the plane of a girder, — working independently of brac-
ings — due to unitload acting at the intersection of the plane of the main-girder
and of that of the bracing should be denoted by “¢”” (dimension : em/t, — em/kg).
These measure the “flexibility of the main-girder”. The reciprocal value of “e”, —
that is a load acting at this point, and producing unit-displacement should be
denoted by “p” and represents the “‘rigidity of the main-girder” (dimension :
t/cm or kg/em). J

Of course

e=— nd p=—. (1)
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Thus, the actual displacement in the plane of the main-girder due to foree
“X* (R, Q) acting upon the joint will be
d=X.e= " . @)
p

According to these notations, the rigidity of the main-girders should be
P1» P2» P and p, and their flexibility e, e,, e,, ey, respectively.

The rigid cross-section under consideration will tend to rotate dise-like
when subject to any assumed bending couple M. Let us therefore determine the
center of gravity “0” of the system of main trusses illustrated.

With reference to Figs. 2 and 4, the distance of the centre of gravity mea-
sured from the planes of individual main trusses is :

ay == P p az = Ps l
P1+ P2 P3 - Pa
(3)
azz_L_B a; = p3——m [
P11+ p2 Ps + Py '

Let this centre of gravity, as centre of rotation, be the origo of an x, v
coordinate-system. Any vertical foree acting along the y-axis, will cause a dis-
placement A of the whole cross-section in vertical direction only, without any
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rotation about the centre of gravity. Therefore, according to this effect so-called
joint-loads will act only upon main-girders 1 and 2, these being the elastic sup-
ports of the bracing. The resistance of main-girders 3 and 4 are assumed to be
zero, because action is normal to their planes. Under a horizontal load acting
along the “x™ axis, only main-girders 3 and 4 will suffer displacement in their
planes, and these will carry the entire load. Main-girders 1 and 2 will only dis-
place in a direction normal to their planes; their corresponding resistance in
this direction is assumed to be zero, relative to that of the main-girders 3 and 4
in this case.

As the origo of the coordinate-system corresponds to the centre of gravity of
the system, the assumed rigid cross-section, i. e. the bracing subject to couple
M rotates around this centre of gravity by the angle **p”, and the main girders
suffer simultaneously, relative displacements A,, A,, A; and Ay, respectively.
The main-girders will, naturally, also rotate, yet their torsional resistance has
been assumed to be zero, and thus this rotation will be without influence upon
the load distribution. Movements of the main-girders are, therefore,

Alzr;wal Ag:lp-dg. = (4)
These are proportionate to the distances from the centre of gravity, i. e.,

Ady: 45 ... =ay:as: ... (4a)

Ordinates of influence-lines of transversal load-distribution (gq) will be next
determined. The problem will be solved by determining the effect of a “P*
force, which is parallel to the “¥” axis and aects at any arbitrary point defined
by the abscissa “x™ (see Fig. 4).

As rigidity of the bracing is infinite, force **P” will be transposed to the
centre of gravity of the cross-section (see Figs 4b and d).

Under the vertical force P — acting at the centre of gravity — the bracing
will suffer a parallel displacement A" = A; = A; (see Fig. 4¢). Therefore, the
vertical force acting along the gravity-line will be distributed on main-girders
I and 2 only (Xj and X;). These joint-forces will act as active loads (Q) upon
the main-girders, yet will act as reactions (R) upon the bracing. In the general
analysis, forces arising in the planes of main-girders can be assumed to be joint-
forces and denoted by <X Their absolute values will be inserted into the equa-
tions, and sign will practicably be determined by inspection. For the sake of
clearness it is deemed expedient to start from conditions of static equilibrium,
wherefore joint-forces have been drawn as passive forces acting upon the bracing.

‘Since the displacement of main girders I and 2 under force “P” acting at
the centre of gravity is equal, it may be written according to Equations (2) :

N =X o1 Xf ey X = X,
P P2
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.and as

X;,— P p Xp— P2 )

Subject to couple M = P- x, the rigid bracing will rotate around its centre
of gravity together with the rigidly connected main-girders (see Fig. 4d). There-
fore, in the planes of the main-girdes joint-forces will arise (X, X,”, X5”
X,”) according to the resistance due to rigidity,because rotation causes displace-
ments in the planes of main-girders (see Figs 4f and f). (As before mentioned,
forces induced by displacements normal to the planes of main-girders are neg-
ligible). Accordingly basic statical and deformation-equations will be :

Xia, -~ Xsa,~ Xza, -~ Xja,=P.x= M

Xi=p; & A =¢" a
X5 = py A Ay =@ " a,
X3 = p; A3 Ay =@ a,
X = Py A} Af = P a,

From these equations the absolute values are obtained as:

“ ay px @y p1 ,
o o w rd e, M
ai-py——as- P2+ Q3 Pz +— @y - Py 2 atp,
and

Joint-forces due to assimetrically acting force “P™ :

X1=Xi‘—X1=[ Pp AP, |p

pi+ps  ai-pr

X=Xy + X = | P2 2P .x)P
pr+p  @-p,

(6)
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In analogiam, joint-forces due to force “P" acting parallel to <2 -axis at
a point defined by ordinate ¢ will be:

Zatp, Latp,
X, = ‘ p3,, S :.3 5)3 ¥ ‘ P (6a)

P3P = a;p.
N P P

\p:s +ps Taip

Sign of “a” in preceding equations should be in accordance with that of
coordinate-axis “x” and *“y”, which again are in accordance with that of the
couple. In this case sign of “X” will correspond to the sign-rule adopted in the
foregoing.

In the general case, when a structure of “n” main-girders are analysed,
where *n,” and “n,” are the number of main trusses parallel to the “x”-axis,
and to the “y”-axis, respectively, and “k” denotes the main-girder considered.
The corresponding joint-force will be

in case of wvertical loading:

X, =X, — X = | P _%Pr x‘ P "
K X & {Zpr “Taop )

ny,

in case of horizental loading:

X, =X, + X} = }%‘ - v%&; y ’ P (7a)

where sign of “x” and “y” coincide with that of the couple’s sense of rotation,
and sign of a, corresponds to that of coordinate-system axes “x” and “y”. In
this case sign of X will be obtained by the sign-rule shown on Fig. 3.

3. Influence-lines of transversal-distribution t. e. of reactions (g, r;)

“These influence-lines will consist of a single straight line, because the rigid-
ity of bracings is infinite. Therefore, the determination of any two arbitrary
points, — for instance the ordinates of the two-end points or of one end-point.
and of that corresponding to the centre of gravity, will be adequate. The method
applied in the case shown in Fig. 5 is as follows :
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a) Joint-forces due to unit-forces P, and P, acting at the centre of gravity
shall be determined. According to notations adopted the transversal load-dis-
tribution factors will be:

in case of unit-force Py: q,;; ¢ua: gy (see Fig. 5b) -
y
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Fig. 4
where for instance
, P
==
Pi-r P21 Ps3

in case of unit-force Py : q.y; ¢ (see Fig. 3c¢)
where for instance

gx1 = Qa7 == B

Pi+ Ps
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b) Joint-forces due to unit-couple M shall be determined (see Fig.5d) :
For example :
ag P
qmic = i . (8)

2 i 2 i 2 ! 2 1 2.
aipi @z pP2 — A3 Ps — Ay ps T A5 Ps

By application of above determined **q” values, — load-distribution values
(gi) due to any arbitrary P; unit-force may be determined for any main-girder.
In general, for a unit-force P;, if x = a,,

qir = q11 —;" ay q"zlf (83)

Influence-lines of transversal distribution of the analysed system of main-
girders is shown on Figs. 5e—>5i.

Influence-lines of bracings coincide with ¢g-diagrammes, yet are of opposite
sign (r;, = ¢y)- In case of long spanned bridges, the bracings may be assumed as
infinite but rigid, not only at midspan, but also near the supports, because the
deflection of the main-girders at the latter point is still relatively much greater,
than that of the bracings. Therefore, the application of average influence-lines
of transversal load-distribution is justified in such cases. Yet, the relative rigidity
of bracings and especially of those near to supports is small, if 1. the span of
the bridge is short, 2. few main-girders are applied, and 3. the main-girders are
spaced wide apart. All these circumstaneces tend to increase the relative span of
the bracings. The relative rigidity of the bracings becomes small and the load-
distributing effect will considerably alter. The case of elastic bracings arises,
where the assumption of infinitely rigid bracings will not yield suitable results
any more. Therefore, elastic bracings must be considered. If it is further remem-
bered thatbracings over piers and abutments repose upon fix supports, and load-
distribution in such cases are identical with that of a normal continuous beam,
cven the determination of influence-planes may become indicated. It should be
noted, however, that in many cases, where the height of the main-girders and
bracings are small and especially if few main-girders are applied, the substitution
according to the Leonhardt-principle of the bracing by an ideal floor-beam may
be permitted. The flexibility factor “v** due to unit force of this beam may be
determined by considering a bracing of double span (double distance of main-
girders). Further computations may be carried out by taking these floor beams
into consideration, instead of the original bracings (Leonhardt-principle).

4. Numerical example

The bridge-structureis composed of three main givders and two wind-trusses
stiffened by bracings of the Vierendeel type (Fig. 6). Vertical main-girders are
marked 1, 2 and 3, lateral ones by 4 and 3.
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Rigidity of main-girders

pi=ps=10t/em; p, =08 t/em: p, = p; = L2 tfem.

Factors of transversal load-distribution :

gy
T CRTTIPN
o %o,
Pl 10 Py mlas A - |go™
@ Fe 12 e
185 255 345 L35,

0,8
2;3,2= == = 0.286
qi1,2;3 2.8
- 1,26
qi,4;34= T = =+
5,32

= 7+ 0,237
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2. For horizontal forces :

1,05
iiis1=— F == — T 0,197
5,32
gi2:52=0 = 0,00
Goaisn—— =32 0500 40,124 — | 6%
2 7 0.64 , | 0.376

Influence-lines of transversal load-distribution are shown in Figs. 6b,

c. d, e, 1.

B ) Elastic bracings
1. General

The exact analysis of multi-girder structures stiffened by several bracings
require much computation work, and in practice is hardly feasible. The analysis
will become extremely cumbersome, if the main girders are outwardly statically
indeterminate structures and the outwardly statieally indeterminate disposition
of bracings due to continuity is further complicated by their inwardly statically
indeterminate character.

In principle there is no obstacle of mathematically exact computations,
however, the evaluation of results obtained at load tests of existing structures led
to the conclusion that the introduction of certain simplifying assumptions are
permissible, without impairing the required accuracy.

The analysis including the elastic behaviour of the bracings, and to be
described subsequently, is based on the following assumptions :

a) Torsional resistances will be neglected.

b) The rigidity of main girders in directions normal to their planes is zero.

¢) The load-distributing effect of a single **ideal bracing™ will be analyzed
only, the ideal, equivalent rigidity of which will be increased according to
Leonhardt’s principle. The average value of this increasing factor is, in case of

one or two bracings = L0
three or four bracings = 1,6

2,0

I

five or more bracings

d) The rigidity of main girders (p) respectively their flexibility (e), — which
both depend on support-conditions of the main girders will be determined at
midspan by the unit-displacement or unit-load applied in the plane of the main
girders at the place of bracing.

¢) The effect of more than one bracing upon the behaviour of the main
girders will not be considered. Yet, if necessary, i. e. in case of short main girders
stiffened by a few bracings only, this will be allowed for by approximation.

.
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2. Basic principles of the method

Elastic supports of the bracings are the vertical and horizontal main gird-
ers, the ideal scheme of which in case of a four main-girder system is shown in
Fig. 7 where the conventional marking of elastic supports is also to be seen.

In order to avoid the direct solution of an inconventiently great number
of equations the computation will be resolved into several phases.

In the initial stage, the elastically supported bracing will be transformed
into a rigidly supported structure by an assumed supporting bar at the place,
and in the plane of elastic supports. Stress distribution of this rigidly supported
bracing can be determined for the acting external force by any known method.
This is the first phase of computation, the results of which will yield the M,
end-moments acting at fixed ends, and supporting axial forces R, acting in the




BEHAVIOUR OF BRIDGE STRUCTURES STIFFENED BY FLOOR BEAMS 205

assumed supporting bars and also axial forces S;. acting in the bars, when the
bracing is a trussed girder. (Index I marks the first phase of computation.)

A bracing of the Vierendeel-type will be analysed in the following (see
Fig. 7). The same principles logically apply to the investigation of trussed
bracings as well.

In the expression M, the index “k” will be replaced by symbols denoting
the two ends of the supporting bar, according to the support under consideration.
For instance at the cross-section joining the support “a” the notation M,
will be used, if the opposite end of the bar is denoted by “b”. In case of the sup-
porting force acting in the assumed bar, the latter, i. e. the replaced main girder
will be denoted by “k”. Correspondingly, in the present example, notations 1,
2, 3 and 4 (see Fig. Th) will be used. Supporting forces (R;) marked in this way,
represent those required to establish equilibrium conditions, i. e., reactions acting
upon the bracing. Forces contrary to the afore-mentioned ones will act as active
loads (Q,) upon the elastic supports i. e. upon the main girders.

In the second phase of computation, effects resulting from elastic displace-
ments of supports (M, ,R;;,Q;,)will be considered. Summation of forces obtained
in phases one and two of the computation will yield the final forces (M, R)
acting upon the bracings and also the loads (Q) acting upon the main girders,
according to the well-known equations

M=M,+ M,
R=R,+ Ry [ , (9)
Q=0;+Qu

Computation of the second phase will again be divided into two parts.
In the first part essentially preparatory investigations will be carried out on the
rigidly supported girder by calculating internal M,; and external supporting
(Rg;) forces due to unit displacement (A, = 1) applied upon the assumed support-
ing bar. In the analysed case the supporting forces of the bracing due to unit-
displacement of the assumed bars 1, 2, 3 and 4 can generally be expressed (see
Figs. 8b—e) as:

Rk}_: Rk2= RA:;', qu-,_

if the unit-displacement 4, = 1.

In the second part of computation the elastic behaviour of the supports
will be considered. For this end the actual displacements A; of the elastic supports
will be determined by the condition that the resulting foree R; at the support
will be the sum of force (R;;) acting on the rigidly supported girder and of
actual forces Ry; . acting on support ““i””, which are due to an actual displace- -
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ment k. Therefore
Riji =2 Ry~ 4, (10)
and R;=R;;+ 2Ry, " A, (11)

A further condition to be satisfied is that at places of redundant restraints

— i. e. at assumed supports — the sum of all forces due to external loads and
redundancy must be zero. Thus:

R;+~ SR, A —R,=0. (12)
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Due to the linear relationship R; = p; 4; between actual displacement

and actual supporting force, — e. g. for support 1 (see Fig. 8) — this may be
written as: (13)

Ry A+ Ry A + Ry 3+ Ry Ay + Ry—p =0 (11a)

where Ry, is the supporting force of the rigidly supported structure due to external
loads. I, this case four linear equations are necessary to determine the actual
A; values at the supports 1, 2. 3 and 4. Therefore,

(Ru — p1) i + Roy 45 + Ry A3 + Ry 4, + Ry =0
Rys Ay -+ (Roz — p2) 4o + Ry A3 + Rpdy+Ryp=0 (4
Riz 4y + Ry A2 + (Ryz — pa) 43 + Ryg Ay + Rz =0
Rysdy + Rosds + R34 4+ (Ryy — pa) 4y + Ryy =0

In these equations values of A; are the only unknown quantities.
Having determined values of A;, the joint-forces may be obtained from
Eqs. (13) or (11).

Internal forces acting upon the bracing may be directly determined by
the following expression bearing a strong resemblance to Eq. (11) :

My=My+ M =M;+ X My A, - (15)

The only load member differring from zero in condition Equations (14)
will occur at the support subject to unit load, if our aim is to compute influence
lines of transversal distribution only. In this case Eqs. (11), resp. (13) yield the
influence-factors (-gy;, ry;) directly. The symmetry of both bracing and rigidity
conditions of the main girders about the longitudinal axis, together with the
condition of statical equilibrium as regards forces acting upon the bracing, per-
mits the intoduction of considerable simplifications. Owing to the condition of
statical equilibrium, e. g. under the load P, = 1 in the case shown in Fig. 8,
by applying the theorem of projections :

=1
and emploving the double index also for A-s,

P g TP =1
and thus

A= —PLoy (16)

3 Periodica Polytechnica M 173,
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Furthermore,
rg+ ra=0
which means that
Ps A+ ps Ay =0,
whence .
A= — ) Az . (16a)
Ps

According to the theorem of moments and with due regard to the sign
convention adopted it may he written :

(qu—Dl—gym=0

or
Qo I+ g m=190
that is
Ayg = — I L P x. Ay (16b)
ps m p3 m
Or
Ay — P2 Loy (16¢)
ps m

Similarly in case of force Py;=1

Agg = — P A, (7
P2

434:~1——£3"4'33 (17a)
P Ps

from which

Applying the above equations of statical equilibrium and substituting
corresponding A-values into Equations (14), the number of independent equations
to be solved will always be reduced by three. Thus in the problem shown on Fig. 8
a single A is to be determined only, corresponding to the single Equation (14).
The others may be determined from the conditions of statical equilibrium. For
example in case of unit-load P,, with values A;, A;; and A;, having been deter-
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mined by applying Equations (16) from among equations of type (14) only the
first, — corresponding to point *“1” will be required for the computation of
Ay Having established A, values of Ay, Ay and 4y, may be computed by Equa-
tions (16).

o) A=t
a 2 {7 < . @‘ A
a, P, =he 4, 75.000 H
Jy=dy=Jy = |70.000 em*

@ Py = 1.0 @ Pp=0d @

g
2y qzz gs @
BE55 c288 2356
Fig. 1

3. Numerical example

The problem to be solved has been described in the foregoing under point
A. 3 (Fig. 9). Basic data:

3*
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I, =1,= I; = 70 000 cm*
I,== I, ="176000cm?!
py=p; = 10t/cm

ps = 0.8tfcm

py = ps = L2 t/em.

Both the main girders and the bracing are steel-structures. E = 2100
t/em?2,

Results of auxiliary computations belonging to second group of second
phase are to be seen on Figs. 9b, ¢ and are as follows :

— in Fig. 9b M, and R;; due to A =1
— in Fig. 9¢ My, and Ry, due to A; =1 and
— in Fig. 9d My, and Ry, due to Ay = 1.
Dimensions of M-values are tem and of R-values t.
The left side of condition equations of deformation — according to formula
(14) are:
—65,54 Ay -+ 82,67 A, — 18,13 A, — 44.20 A, 4+ 44,20 A, (1
82,67 A, — 166,13 A, + 8267 A, + 0 = 0 (2)
—18,13 A, + 82,67 A, — 65,54 .\, - 44.20 A, — 44,20 A, (3)
—44,20 A, - 0 -~ 44,20 A, — 85,59 A, 1+ 84,39 A 4)
44,204, + 0 —44.20 A; + 84,39 A, — 85,59 A; (5)
Actual displacements and forces due to unit-load P, = 1 (see Fig. 9e).
Actual displacements and forces due to unit-load P, = 1 (see Fig. 9)f.
Actual displacements and forces due to unit-load P, = 1 (see Fig. 9g).
Owing to symmetry and load-conditions :
Prdg Fpsdp=0
Pydy TP A =1

prAg 2l - (Q—p, Ay m=0.
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and accordingly
Ay =— Ay
dy; = 0.8333 — 4,

Ap =0
Ay = 08333 — 1,5909 A,

Thus, thecondition equation applying to point 1 assumes a form after rearrange-
ment :

188,05 4, = 36,84 .
whence

Ay = —0.196 g, = —1,0 0,196 = —0,196

Ap= 0 o= 0 - = 0
A= 0196 ¢,= 10-0196= 0,196
Agyg= 0521 ¢q,,= 12-0321= 0,625

A= 0312 g.= 12-0312= 0,375

Influence-lines of ¢;, g, and g, are shown on Figs. 9h, i, j, k, 1. As compared
to results comuted for a bracing of infinite rigidity the differences are insigni-
ficant,

4. Practical remarks

In order to obtain information as to whether the computation of an elastic
or of an infinitely rigid bracing will be necessary, it is advisable to determine
approximatingly the rigidity-factor *“z” or flexibility-factor “d” of the gird-work.

. e v
As already mentioned: s =-— ind d=—.
v e

The factor of flexibility of the main girder “e” is the reciprocal value of
its rigidity-factor “p”. Considering an average value of *e”

ey +es+ ...¢e, 1:1 1 1

T e e - = e e e -

n n \,pl i p-g_ I p;, '

In practical approximative computations of grid-works rigidity, ‘v, should
be determined by considering about twice the sum of the two chord’s moments of
inertia, or the average moment of inertia multiplied by four. According to defini-
tion ““v”” — the flexibility of the bracing — is the deflection of a girder of ,,2 I”
span due to unit-load (1 t) acting at midspan.

The case of an infinitely rigid bracing should be considered if the appro-
ximate value of the grid-work rigidity (z) equals or exceeds 10.
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Summary

The determination of transversal distribution-characteristics in multi-girder bridge-
structures stiffened by bracings and wind-trusses is discussed, and a method to enable the
computation of loads carried by individual main girders is given for cases of both infinitelv
rigid and elastic bracings.
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