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Abstract

The stability properties of the feedback control of a hydraulic

cylinder is analysed with an emphasis on the effect of the control

delay due to the discrete sampling. A simple theoretical model is

developed for low-load cases, i.e. if the forces acting of the pis-

ton are small compared to the pressure forces inside the cylinder.

It is shown that in the case of a traditional PI controller, there is

an upper and lower limit on the proportional gain correspond-

ing to significantly different mechanisms of stability loss. It is

shown that the frequency of the appearing oscillations at low

proportional gains is one range smaller than that the sampling

frequency. The theoretical results are confirmed by measure-

ments.
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e-mail: csaba.hos@hds.bme.hu

Balázs Kuti

Budapest University of Technology and Economics (BUTE) Dept. of Hydrody-

namic Systems (HDS), H-1111, Budapest, Műegyetem rkp. 3, Hungary
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1 Introduction

Hydraulic position servos are commonly used in industrial ap-

plications where large forces are to be exerted with high stiffness

and fast response. Although these systems are strongly nonlin-

ear, classic PI or PID technique is usually employed for feed-

back control, see [5] - especially in the industrial applications.

The drawback of the linear approach is not only that important

features are lost (dead zone, flow-through characteristics, etc.)

but also that it becomes cumbersome to tune the control param-

eters in the presence of strong nonlinearities. To cope with these

issues, several advanced control strategies were suggested, such

as sliding mode control (see e.g. [7]), integrator backstepping

(see e.g. [1]) or mixed fuzzy-PID/neural network compensating

schemes (see [2]), just to mention a few.

This paper focuses on the issue of controller time delay, i.e.

that the control output is computed with the help of the state

variables measured in the past. The origin of the delay can be

digital sampling (see e.g. [4, 8]), network control (as described

in [3,10]) or the wave effects in the transmission lines (see [11]).

Whichever type is present in the system, the stability of the con-

troller is affected in an undesired way; i.e., the stable domain

shrinks and oscillations emerge. The present study focuses on

the dynamics of the actuator, unlike the majority of the corre-

sponding literature, where the dynamics of the controlled object

(usually represented by an equivalent spring-mass system) plays

the central role.

We present the results of a series of measurements on the PI

control of a hydraulic cylinder together with a simplified math-

ematical model that gives reasonably good agreement with the

experiments, for low-load cases, i.e., if the forces acting on the

controlled object are negligible compared to the force exerted by

the piston. The rest of the paper is organized as follows. Section

2 describes the test rig and the implementation of the control

law. Section 3 presents the mathematical model, which, in a

nutshell, assumes linear relationship between the control signal

and the velocity of the cylinder. The resulting linear map is then

analysed with standard techniques and the stability boundaries

are given.
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Fig. 1. Sketch of the text rig.

Section 3.3 presents the comparison of the experimental and

theoretical results while Section 4 summarizes the work.

2 Experimental set-up

The sketch of the text rig is shown in Fig. 1. The hydraulic

aggregate (2) (consisting of a positive displacement pump and a

pressure relief valve) feeds the hydraulic cylinder (4) via a pro-

portional valve (3). The displacement of the piston is measured

by a capacitive displacement sensor. The signal of the displace-

ment sensor is fed into a PC (5), which computes the output

signal for the proportional valve. The tank (1) contains the hy-

draulic fluid and ensures its stable temperature.

The type of the cylinder is Bosch Rexroth CDM1Mp5 with

diameters D/d = 50/28mm and 150mm stroke. The type of

the proportional valve is Bosch Rexroth 4WRAE 10, whose in-

put signal is −10 . . . 10V with a dead zone (backlash) of width

−2 . . . 2V. The internal diameter of the connecting hydraulic

hoses is 12mm. The opening pressure of the relief valve was

set to 100 bar. The material properties of the hydraulic oil are:

ρ = 870 kg/m3, ν = 12.95 mm2/s and E = 1.9 GPa.

Classic PI control in a discrete form was implemented on a

standard desktop PC under LabView environment. Let ∆t and

f denote the sampling time and frequency, respectively, with

∆t = 1/ f . The continuous form the the PI control is

u(t) = −

(
Pe(t) + I

∫ t

0

e(τ)dτ

)
, (1)

where e(t) = x(t) − xd(t) with xd(t) being the desired position.

Due to the discrete sampling, we need the discrete version of

(1). Let t0 denote the initial time, ti the ith sampling time, i.e.

ti = t0 + i∆t and tN the last sampling. We have

u(tN + ∆t) := uN+1 = − (PeN + ICN) , (2)

with the update rule

CN = CN−1 + (eN−1 + eN)
∆t

2
, (3)

that is, the integral term is approximated with the help of the

trapezoidal rule. Note that no differential term is used as it is

rather cumbersome and inaccurate to differentiate a measured

signal.

Fig. 2. Characteristic curve of a hydraulic proportional control valve.

Finally, the flow rate Q is connected to the valve input sig-

nal u via the characteristics of the control valve (element (3)

in Fig. 1). This curve includes both dead zone and saturation

parts as shown in Fig. 2. Typically, below 20% of the command

signal, the flow rate is zero, which is followed by a slightly non-

linear curve up to the maximum value of the command signal,

beyond which, as the flow-through area is constant, the flow rate

remains constant for a given pressure difference.

Unless otherwise stated, we use the following parameter val-

ues: umax = 10 V, Qmax = 20 lit/min (maximum control signal

and flow rate at nominal system pressure), D = 0.05, d = 0.028,

AD = D2π/4, Ad = (D2 − d2)π/4 and we use the ’mean’ piston

area Ap = (AD + Ad)/2. Typical system pressure was ∆p = 50

bars, which gives Fp = Ap∆p = 8.28kN piston force. The mea-

surements were performed with a vertical cylinder which moved

an object of 60 kg mass.

Fig. 3. Qualitative stability chart, the stable region is shaded.

3 Theoretical study

3.1 Mathematical modelling

In this section we develop a simplified mathematical model to

capture the cylinder dynamics. We neglect the dynamics of the
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Fig. 4. Time histories started from the same ini-

tial condition x0 = [0.1, 0, 0], with P =0.6, 1.5, 9.0,

10.1. The sampling frequency and the integrator gain

are f = 10 Hz and I = 20.

Fig. 5. Stable control regions for (a) I = 0, (b)

I = 5, (c) I = 20, (d) I = 50. Solid line represent

measurement, dashed line stands for theory. The cir-

cles denote the point where the simulations in Fig. 4

were performed.

moved object as well as all the forces acting on it, notably fric-

tion and gravity. In other words, we consider cases with small,

negligible load compared to the piston force, which is computed

with the piston area and mean system pressure. Our first key

assumption is that the internal pressure dynamics of the cylin-

der chambers can be neglected, hence the flow rate through the

control valve and the velocity of the piston are coupled by the

algebraic equation

vpiston =
Q

Ap

, (4)

which, due to the discrete sampling, gives the displacement up-

date

xN+1 = xN +
QN

Ap

∆t. (5)

The flow rate QN is a function of the valve input signal u

as already described in the previous section and is depicted in

Fig. 2. However, in this study the second key assumption is that

both the nonlinearity and the dead zone can be neglected and the

valve characteristics can be replaced by a simple linear function:

Q = Ku = Qmax/umax u. We also neglect the computation time
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needed to evaluate the control law, hence we have

QN = KuN = −K (PeN + ICN) , (6)

where CN is given by (3). Putting together (5), (6) and (3), we

obtain 
xN+1

xN

CN+1

 =


α β γ

1 0 0

∆t/2 ∆t/2 1




xN

xN−1

CN

 (7)

with

β = −I
K∆t2

2Ap

, α = 1 − P
K∆t

Ap

− β and γ = β
2

∆t
, (8)

where xd = 0 was chosen.

3.2 Stability

System (7) defines a three-dimensional discrete-time system

(map) of the form

z̃ = Az, z, z̃ ∈ R3, A ∈ R3×3 (9)

with fixed point z0 = (0, 0, 0)T . The stability of the above sys-

tem is governed by the characteristic multipliers µ (eigenvalues

of matrix A) and there are three ways in which instability may

occur: either a positive or a negative multiplier crosses the unit

circle (µ1 = ±1) or a pair of complex multipliers cross the unit

circle and we have µ1,2 = e±iθ for some 0 < θ < π. For further

details, see e.g. [7].

Straightforward calculation reveals that the eigenvalues are

λ1,2 =
1

2

(
1 + α ±

√
(1 − α)2 + 8β

)
and λ3 = 0. (10)

The zero eigenvalue corresponds to the second equation in (7).

We have a flip (period-doubling) bifurcation if µ = −1, which

occurs at

P f lip = 2
Ap

K
f . (11)

Beyond this value, a period two cycle appears, with period 2∆t.

On the other hand, we have a Neimark-Sacker bifurcation if the

eigenvalues are complex numbers with unit magnitude, which

happens at

PNS =
I

2 f
, (12)

and the frequency of the appearing oscillation depends on the

phase angle of the eigenvalues, i.e. θ/2/π.

Note that the location of the flip bifurcation is independent of

the integrator term, while the Neimark-Sacker point linearly in-

creases with the integrator term. For a given integrator gain and

sampling frequency, the stable region is where PNS < P < P f lip

and this region shrinks if the sampling frequency is decreased,

as depicted in Figure 3. Moreover, these curves join at

fcrit =
1

2

√
KI

Ap

, and Pcrit =

√
ApI

K
, (13)

i.e. for f < fcrit, no stable motion is possible and the control is

unconditionally unstable.

Fig. 6. The frequency of the appearing oscillation on the Neimark-Sacker

border, for I = 5 (solid line), I = 20 (dashed line) and I = 50 (dash-dot line).

The temporal behaviour of the system is depicted on Fig. 4.

The corresponding numerical values were I = 20, f = 10 and

P = [0.6, 1.5, 9, 10.1]. The first simulation (left-upper corner) at

P = 0.6 is just beneath the Neimark-Sacker stability limit and

a low-frequency unstable oscillation can be seen. The next two

simulations (right upper and left bottom) are at P = 1.5 and

P = 9, respectively, both ones in the stable region, however,

the previous one close to the Neimark-Sacker border while the

latter one close to the flip boundary. The last simulation (right

bottom) was obtained with P = 10.1, which is already above the

flip limit and, indeed, the frequency of the limit cycle is twice

the sampling frequency.

3.3 Comparison with measurements

We present the comparison between the experiments and the

theory in Fig. 5, which depicts the critical P values as a function

of the sampling frequency for several integrator gains. Note that

during the experiments, those parameter values were marked

as ’unstable’, for which the relative valve displacement became

larger than 75% of the full stroke.

The theory suggests that the upper stability limit (correspond-

ing to flip bifurcation) does not depend on the integrator gain,

see (11). However, the measurements show that it slightly de-

creases with increasing integrator gain. The Neimark-Sacker

limit (lower bound) obtained experimentally changes with the

integrator gain in accordance to the theory, i.e. (12).

Fig. 6 depicts the frequency of the appearing oscillation on

the Neimark-Sacker line for several integrator gains. All curves

terminate at 1/2 at fcrit - given by (13) - where the NS and the flip

curves join. Note that the higher the sampling frequency is, the

lower the relative oscillation frequency ( f / fNS ) becomes. The

ratio of the two frequencies can be as low as 1/20. At the same

time, an increase in the integrator gain decreases the oscillation

frequency as well.
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4 Summary

We presented a series of measurements on the effect of sam-

ple time delay on the stability of the PI position control of a

hydraulic cylinder. A simplified flow control valve model al-

lowed the construction of a simple, linear three-dimensional

map, whose stability can be analysed by standard techniques.

These computations revealed that there are two mechanisms of

loosing stability. The first one is a flip bifurcation, were the

period of the appearing limit cycle is twice the period of the

sampling rate. This stability border increases linearly with the

frequency and is independent of the integrator gain. The other

instability mechanism is a Neimark-Sacker bifurcation, which

is present for low proportional gains and gives birth of low-

frequency oscillations. Moreover, the relative frequency f / fNS

of the oscillations further decreases with increasing the sampling

rate frequency but slightly increases with increasing integrator

gains. It was shown that there exists a critical sampling rate, be-

low which no stable control exists. It is worth mentioning that

these are exactly the same kind of mechanisms that arise in the

stability analysis of high speed milling, see [9].

We have found a good accordance with the experimental re-

sults, which is somewhat surprising given the simplicity of the

mathematical model. However, it shall be emphasised that we

analysed a low-load case, i.e. the cylinder is ’oversized’ in the

sense that the dynamics of the moved object can be neglected

compared to the piston force.

References

1 Chen J, Dixon W, Wagner J, Dawson DM, Exponential TRacking Control

of a Hydraulic Proportional Directional Valve and Cylinder via Integrator

Backstepping, In: Proceedings of IMECE 02, 2002 ASME International Me-

chanical Engineering Congress and Expo, Vol. IMECE2002-32076, 2002.

paper No. IMECE2002-32076.

2 Hong M, Lin C, Shiu B, Stabilizing network control for pneumatic

systems with time-delays, Mechatronics, 19(3), (2009), 399–409, DOI

10.1016/j.mechatronics.2008.09.008.

3 Li S, Tao B, Peng S, Zimming W, Sampled-data control of net-

worked linear control systems, Automatica, 43(5), (2007), 903–911, DOI

10.1016/j.automatica.2006.11.015.

4 Insperger T, Stépán G, Act-and-wait control concept for discrete-time sys-

tems with feedback delay, IET Control Theory and Applications, 1(3), (2007),

553–557, DOI 10.1049/iet-cts:20060051.

5 Jelali M, Kroll A, Hydraulic Servo-systems: modelling, identification and

control, Springer, 2004.

6 Kuznetsov Y, Elements of Applied Bifurcation Theory, In: Elements of

Applied Bifurcation Theory, Applied Mathematical Sciences, Vol. 112,

Springer, 2004, DOI 10.1007/978-1-4757-3978-7.

7 Liu Y, Handroos H, Sliding mode control for a class of hydraulic po-

sition servo, Mechatronics, 9(1), (1999), 111–123, DOI 10.1016/S0957-

4158(98)00044-0.

8 Stépán G, Vibrations of machines subjected to digital force control, Interna-

tional Journal of Solids and Structures, 38(10-13), (2001), 2149–2159, DOI

10.1016/S0020-7683(00)00158-X.

9 Stepan G, Hogan S, Szalai R, Global dynamics of low immersion high-

speed milling, Chaos, 14(4), (2004), 1069–1077, DOI 10.1063/1.1807395.

10 N van de Wouw, Nei D, Heemels W, A discrete-time framework for sta-

bility analysis of nonlinear networked control systems, Automatica, 48(6),

(2012), 1144–1153, DOI 10.1016/j.automatica.2012.03.005.

11 Wang Y-J, Characterization and quenching of friction-induced limit cycles

of electro-hydraulic servovalve control systems with transport delay, ISA

Transactions, 49(4), (2010), 489–500, DOI 10.1016/j.isatra.2010.05.002.

272013 57 2

http://doi.org/10.1016/j.mechatronics.2008.09.008
http://doi.org/10.1016/j.automatica.2006.11.015
http://doi.org/10.1049/iet-cts:20060051
http://doi.org/10.1007/978-1-4757-3978-7
http://doi.org/10.1016/S0957-4158(98)00044-0
http://doi.org/10.1016/S0957-4158(98)00044-0
http://doi.org/10.1016/S0020-7683(00)00158-X
http://doi.org/10.1063/1.1807395
http://doi.org/10.1016/j.automatica.2012.03.005
http://doi.org/10.1016/j.isatra.2010.05.002

	Introduction
	Experimental set-up
	Theoretical study
	Mathematical modelling
	Stability
	Comparison with measurements

	 Summary

