
48 Period. Polytech. Mech. Eng. Gy. Béda, P. B. Béda

Conditional Lagrange Derivative
with Gibbs Function

Gyula Béda1, Péter B. Béda2 *

Received 30 October 2013; accepted after revision 17 January 2015

Abstract
In forming constitutive relations a method of Mindlin was 
used. By introducing the conditional Lagrange derivative and 
by using the laws of thermodynamics a formula is obtained for 
ε. In the first law Gibbs function is used. This formula should 
be satisfied in case of constitutive relation.
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1 Introduction
In solid mechanics equations containing material properties 

are called the constitutive relations. Constitutive relations play 
an essential role in most problems of the mechanics of con-
tinua. On the one hand such equations are used to take into 
account all observations and tests on the physical behavior of 
materials. On the other hand they are needed to complete the 
set of basic equations to perform the necessary computations. 
There are equations which are successfully used for several 
cases in applications. For example Hooke’s law is suitable to 
metallic materials in most problems and we have accepted test-
ing methodology to measure its material constants. However 
there are problems, when dissipation plays important role and 
such model cannot be used.

While contitutive relation is necessary and there is no gener-
ally accepted way to find it, the aim of this paper is to find a 
method which forms a basis for tests and experimental studies.

2 Variational principles and Lagrange derivative
The method we use goes back to Mindlin. In [3] stress and 

strain and the higher order derivatives of them are used to form 
a constitutive relation. Mindlin uses the variation of strain, his 
study is based on the virtual work and on the variation of inte-
grals of some function W with respect to the strain tensor. Vari-
ational principles of solids contain expressions

σ δε
Vt

dVdt∫∫ : ,

where stress, strain and the variation of strain are denoted by σ, 
ε and δε , respectively. This expression can also be written in a 
generalized form

t V t V t V

dVdt WdVdt D dVdtσ δε δ δε: = + : .∫ ∫ ∫ ∫ ∫ ∫

Symbol double dots denotes the scalar product of matrices as 
usual. The first term in the right hand side contains the potential 
part of the stress while the second term refers the remaining 
(for example dissipation). Function D is not known generally, 
it is used to consider all virtual work effects.
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Mindlin has investigated equation [3]

( )
V V

dV U dVσ δε δ ε ε ε: = , ∇, ∇∇ .∫ ∫

By using elastic potential U he determined stress σ as a func-
tion of the strain ε, the first and the higher gradients of ε . Then 
he derived a new constitutive relation in such a way, which can 
be used for high gradient dependent elastic materials. The first 
term on the right hand side of (1) can be written in form 

( )
t V

L W dVdtε δε: ,∫ ∫

where Lagrange derivative [1] is denoted by Lε( ) . For the uni-
axial case

( ) ( )
x

d dL
dt dxε ε ε ε

 ∂ ∂ ∂
= − − , ∂ ∂ ∂ 

where dot and index denote derivatives, for example

ε ε ε ε
=
∂
∂

=
∂
∂
.

t xxand

Then strain tensor can be expressed as a Lagrange derivative Lε 
with respect to ε, 

( )L Wεσ = .

In mechanics we may use several types of variational princi-
ples. These contain virtual work 

t V

dVdtσ δε∫ ∫

and complementary virtual work

t V

dVdtε δσ: .∫ ∫

From (2) we have for (3)

( )L uεσ δε δε: = :

and for (4)

( )L wσε δσ δσ: = :

When there are additional equations describing further 
material properties instead of Lagrange derivatives we should 
use conditional Lagrange derivaties. Assume that the additional 
equations have forms

1 2 1 20 0 0 0u u … w w …= , = , = , = ,

for (3) and for (4). 
Then the conditional Lagrange derivatives in cases (3) and 

(4) are 

( )0 1 1 2 2L u u u …ε λ λ+ + + ,

and

( )0 1 1 2 2L w w w …σ λ λ+ + + ,

where λ1, λ2,... are scalar Lagrange multipliers.

3 Conditional Lagrange derivative with the first law 
of thermodynamics

Take the first law of thermodynamics in form 

( )1 0xu e h rε ϑ ρ σε ρ, ≡ − + − = 

as the ”additional” condition. The notations are: ϑ – tempera-
ture, e – internal energy, ρ – mass density, h – heat flux, r – heat 
source intensity, hx = ∂h / ∂x. Let us study the uniaxial case. 
Then from (5) 

( )0 1L u uεσ λ= + ,

where

( ) ( )0 0u u aε ε= = .

In this case we derive [2]

σ ρ
ε

ϑ
ε ε

ρϑ
ϑ
ϑ ρ

ε
=

∂
∂

+
∂
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Here and later on small strains are assumed. Further notation 
are: a – strain energy, S – entropy

Then we will use of complementary conditional Lagrange 
derivative. Now similarly to the previous case take from (6) 

( )0 1L w wσε σ λ 
 
 

= +

and assume that the condition is the first law of thermodynamics 

1 0w =

by using Gibbs function it has the form

( ) ( )1 0xw h rG Sσ ϑ ρ εσ ρϑ ., ≡ − + − = .+  

Now from (9)

( )1 0L wσλ =

we substitute w1 into (8)

( )( ) ( )( )0 1L w L wσ σε σ λ σ ϑ= + ,

is obtained. Then we derive 

( )( )1
x xG G h h rσ ϑ σ ϑε ρ σ ϑ σ ϑ ρ

σ
= + + + − .





We have two equations, multiply (10) by 

E σ
ε

≡




and add to (7). The result is 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)



50 Period. Polytech. Mech. Eng. Gy. Béda, P. B. Béda

( )1
x x

a S G S GE E h h
al ε σ

ϑσ ε ρ ϑ ρ ϑ ε σ
ε ε σ ϑ ϑ ε ε
∂ ∂ ∂ ∂ ∂   + = + − + − + −   ∂ ∂ ∂ ∂   



 

For constant temperature

d a S G d
d d
σ σσ ε ρ ϑ
ε ε ε σ ε

∂ ∂ ∂ + = + − ∂ ∂ ∂ 

is obtained because then 0hϑ = =  and 

dE
d
σ
ε

≡ .

In the widely used standard tensile test one end of the speci-
men of length 0  is fixed while the other is pulled with a small 
constant speed v0. Then strain rate is apporimately 

0

0

0vε ≈ ≠ ,



that is, strain rate is cosidered to be small and constant. While 
in tensile test constant temperature is also assumed, Eq. (11) 
should be satisfied. 

4 Summary
Based on Mindlin’s paper a method is suggested to calculate 

the possible forms of constitutive relations. By introducing con-
ditional Lagrange derivatives stress and strain was calculated. 
Stress comes from our previous result [2] and strain was deter-
mined using Gibbs function. At the end a differential equation 
was obtained, which is available to analyze tensile test. 
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