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Abstract
This paper is intended to reveal some new aspects of the prin-
ciple of work and energy in its differential form. A theorem is 
given to state the principle of work and energy in differential 
form that can be applied alone to build up all the dynamical 
equations of a special class of MDOF mechanical systems. 
Some illustrations and discussions are presented to demon-
strate the refined applicability of the principle of work and 
energy in its differential form through the comparison with the 
Lagrange equation method.
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1 Introduction
As well known, the principle of work and energy for a parti-

cle system states that the change in the kinetic energy of a par-
ticle system between the initial instant and end instant is equal 
to the work done by all the internal forces and the resultant 
external forces acting on the system during this time interval, 
and usually is formulated as

T T W Wi e2 1
− = +

where T1 and T2 represent the kinetic energy of the initial instant 
and the end instant, respectively, and Wi and We represent the 
work done by the internal forces and resultant external forces 
acting on the system, respectively.

Indeed, Eq. (1) is the principle of work and energy of inte-
gral form, and there also exists in its differential form, which 
is formulated as

dT W= δ

where dT is the differential of the kinetic energy, and δW repre-
sents the elementary work done by inner forces and the result-
ant external forces.

The principle of work and energy of integral form is fre-
quently used to derive the first integral of the dynamical sys-
tem, which is sometimes related to the conservation principle 
of mechanical systems; while the principle of work and energy 
in differential form is rarely used independently, and most of 
the illustrating examples of its application involve only single-
degree-of-freedom (SDOF) systems. This is essentially because 
for the multi-degree-of-freedom (MDOF) system, the differen-
tial of kinetic energy is the linear combination of small real dis-
placements that are not independent of each other, which means 
the front coefficient terms cannot vanish. Therefore, in general 
we have to resort to the Lagrange equation method to deal with 
MDOF systems.

In this study, we will gain an insight into the principle of 
work and energy in differential form and present a new result 
on its application. The key point is that by comparing with 
the Lagrange equation, we find a suitable restrictive condition 
on the system under which all the dynamical equations of the 
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mechanical system can be derived by applying only the differ-
ential form of the principle of work and energy alone. Examples 
which do not satisfy this restrictive condition are also presented 
to illustrate the limitation of this method and the necessity of the 
restrictive condition on the system.

The article is organized as follows. In Section 2, a theorem 
is given to show that under certain restrictive conditions for a 
mechanical system, all its dynamical equations can be derived 
from only the differential form of principle of work and energy 
alone, with the application to a practical problem presented as 
an illustrative example. Section 3 carries out an in-depth dis-
cussion on a tricky case and a total failure case of the applica-
tion of this method in the absence of the restrictive conditions.

2 The condition for application of kinetick theorem 
of energy of differential form to mdof systems

Theorem1. For a MDOF system with bilateral, scleronomic, 
holonomic and ideal constraints, if the expression of kinetic 
energy does not contain the position variables of the general-
ized coordinates, then all the dynamical equations of the system 
can be derived only from the differential form of the principle 
of the work and energy alone, i.e. by collecting the items in the 
equation according to differential generalized coordinate items 
and then vanishing the front coefficients.

Proof: Suppose a MDOF system is composed of n particles 
and is of k degrees of freedom. Let q1, q2, ···, qk be the general-
ized coordinates of the system. Then, every particle’s position 
can be expressed as

r ri i q q i n= ( ) =
1 2

1 2, , , , , qk

Thus, the velocity ri  and the kinetic energy of the system T 
can be expressed respectively as
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given condition in the theorem, mjl is constant, i.e. mjl does
not contain any generalized coordinates, generalized veloci-
ties and time variable. Meanwhile, it is easy to check that mjl = 
mlj . Furthermore, we have
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the dynamical equations are given by Lagrange equation of 2nd 
class as following
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Employing the differential form of principle of work and 
energy, the following relationships can be obtained.
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Letting the coefficients of the differential generalized coor-
dinate items be zero will straightforwardly lead to
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which is the same as the result obtained by Lagrange equation 
method. #

Theorem 1 reveals that for a special class of MDOF system, 
the principle of work and energy of differential form can be 
applied alone to derive all the dynamical equations of the sys-
tem. Thus, this theorem extends the application of the principle 
of work and energy. But, it must be pointed out that letting the 
coefficients terms of the differential of the generalized coordi-
nates be zero doesn’t mean that dqi is independent, and this is 
just a formal technique.
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Example 1. (Human balance model [5]) Homogeneous bars 
OB and CD are linked smoothly as shown in Fig. 1, where 
bar OB represents the human body, and bar CD represents the 
two arms. Determine the differential equations of the system. 
OA l OB l CD l= = =

0 1 2
, , .

Solution: The constraints of the system are obviously bilat-
eral, scleronomic, holonomic and ideal constraints. If the rotat-
ing angle φ of bar OB and the relative rotating angle ψ are cho-
sen as generalized coordinates of the system, then the kinetic 
energy of the system reads

T J m l J

m l m l
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By the principle of work and energy in its differential form, i.e. 
dT = δW, one gets
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According to Theorem 1, letting the coefficient terms dφ and 
dψ be zero will lead to the dynamical equations of the system.
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It is easy to check that the result is the same as derived by 
Lagrange equation.
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3 Discussions of the failure in the
absence of the restriction condition

This section provides a detailed discussion about the appli-
cation of the principle of work and energy in differential form 
when the restrictive conditions given in the theorem are not 
satisfied. Two case studies are presented here to show that 
when the conditions are not satisfied, the application of the 
principle of work and energy in differential form as shown 
in Example 1 will generally give the wrong results, although 
sometimes gives right answers through the use of some tricky 
combination techniques.

Example 2. Homogeneous disk A of mass m1 and radius r 
rolls without slipping over the ground. Bar AB of mass m2 and 
length l is connected with disk A by a pin joint at point A as 
shown in Fig. 2. Try to build the differential equations of the 
system.
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Fig. 2

Solution: Obviously, the constraints of the system are obvi-
ously bilateral, scleronomic, holonomic and ideal constraints. 
If the displacement of centre A of the disk and the rotating 
angle of the bar AB are chosen to be the generalized coordi-
nates of this system, then the kinetic energy theorem of the 
system will read

T m m x m lx m l= +( ) + +
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It can be seen that the generalized coordinate φ is present 
in the expression of T, so the condition of theorem 1 is not 
satisfied. However, carrying on with the same procedure as in 
Example 1 will lead to

(9)
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Applying dT = δW and simplifying the equation, one can obtain
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Letting the coefficients of dx and dφ be zeroes gives
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It is easy to verify the above results with that obtained 
by Lagrange equation method, which shows that the above 
procedure could also work even when the conditions of the 
theorem are not satisfied. But, it is important to note that if 
m lx t
2

2
 ϕ ϕsin d  is simplified to m lx

2
 ϕ ϕ ϕsin d , the above pro-

cedure will lead to the following equations.
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which is proved wrong by the Lagrange equation. Hence, it is 
very tricky as to how to simplify the terms involving the prod-
uct of two or more generalized velocities to obtain the correct 
dynamical equations of a system. The improper combination of 
the generalized velocity with  dt  will lead to the wrong results.

From the above discussion, it seems that the proposed method 
could be applicable to some problems which do not satisfy the 
restrictive conditions. In what follows, an example is given to 
show that this method could totally fail with any combination 
technique when the constraint conditions are not satisfied.

Example 3. The Homogeneous bar OA of mass m1 and 
length l rotates about the fixed horizontal axis Oz in the vertical 
plane and is acted by an external moment Tθ , as shown in Fig. 
3. The collar B of mass m2 slides along the smooth bar OA. Try 
to build the dynamical equations of the system.

Solution: Obviously, the constraints of the system are bilat-
eral, scleronomic, holonomic and ideal constraints. If the rotat-
ing angle of the bar OB and distance ρ between B and O point 
arechosen to be generalized coordinates of this system, then the 
kinetic energy of the system reads

 

Tθ 

θ 

m2 

y 

O 

ρ 

x 

m1g

m2g

A 

B 

Fig. 3

T J m m l m m= + + ( )




= + +

1

2

1

2

1

6

1

2

1

2
0

2

2

2
2

1

2 2

2

2

2

2 2




 



θ ρ ρθ θ ρ ρ θ

dd d d d dT m l m m m

m l m

= + + +

= +

1

3

1

3

1

2

2 2

2

2

2

1

2

2

2





 

 

θ θ ρ ρ ρθ ρ ρ θ θ

θ ρ 



θ θ ρ ρθ ρ





 + +( )d dm m

2 2

2

δW T m g l

m g m g

T m g l

= ⋅ − ⋅ ⋅

− ⋅ ⋅ −

= − ⋅

θ

θ

θ θ θ

ρ θ θ θ ρ

d d

d d

1

2 2

1

2

2

cos

cos sin

cosθθ ρ θ θ θ ρ− ⋅





 −m g m g

2 2
cos sind d

Applying  dT = δW and simplifying the equation, one can obtain
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Comparing the result with what is obtained by Lagrange 
equation method shows that the above equations are not cor-
rect [4]. No technology like in Example 2 seems applicable to 
solve the problem. Actually, because dθ and dρ are both real 
displacements, they are not independent in the evolution of the 
dynamics of the system. Hence, the linear combination of them 
equate zero doesn’t imply the corresponding coefficients are 
zeros. This example also shows that the restrictive conditions 

(10)
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in Theorem 1 are necessary when employing the principle of 
work and energy alone for a MDOF system.

4 Conclusions
This study discusses the applicability of Principle of Work 

and Energy to MDOF systems. It is well known that the prin-
ciple of work and energy can be used to derive the dynamical 
equation of an SDOF mechanical system, but must be employed 
with some other principles of mechanics together to build up 
all the dynamical equations of a MDOF mechanical system. 
The conclusion of this paper refines this common sense. That 
is, the principle of work and energy in differential form can 
be employed alone to derive all the dynamical equations of a 
MDOF mechanical system in the case that the kinetic energy 
of the system does not contain the position variables of the 
generalized coordinates. This discovery suggests a new way 
other than the Lagrange equation method to build the dynami-
cal equations for some special class of mechanical systems. It 
is simpler and easier to apply than Lagrange equation method 
in this case. However, it is important to point out that the Prin-
ciple of Work and Energy only deals with the real displace-
ment instead of the virtual displacement. The routine provided 
in Theorem 1 will no doubt lead to the right dynamical equa-
tions of the systems of that class, but does not mean that in the 
physical sense the real displacements which are represented by 
the differential of generalized coordinates are independent of 
each other in the system. That is also why this method can only 
apply to some special class of mechanical systems. Finally, we 
have to emphasize that even it is shown by an example that 
through the use of some tricky combination techniques, this 
method can also apply to the systems which do not satisfy the 
restrictive equation, it is strongly recommended not to use such 
tricks in any of such cases, at least before somebody else will 
give an exact proof as to the use of the tricks in general.

Acknowledgement
This work is supported by the National Natural Science 

Foundation of China (Grant No. 11172126) and the Hungarian-
Chinese Bilateral Scientific and Technological Cooperation 
Fund under grant no. TET_12_CN-1-2012-0012. We also would 
like to thank the referees for their comments and suggestions.

References
[1]	 Hibbeler, R. C. "Engineering Mechanics: Dynamics." 12th Edition. 

Prentісе Hаll. 2009.
[2]	 Meriam, J. L., Kraige, L. G. "Engineering Mechanics: Dynamics." 5th 

Edition. Wiley. 2001.
[3]	 Awrejcewicz, J. "Classical Mechanics, Dynamics." Springer. 2012.
[4]	 Wang, H. L., Su, Z. C. "The pseudo-linear Matrix-Form Dynamical 

Equation of Systems under Scleronomic, Holonomic and Ideal Con-
straints." Mechanics in Engineering. 35 (1). 2013, pp. 74-77 (in Chi-
nese). DOI: 10.6052/1000-0879-12-032

[5]	 Stepan, G. "Delay effects in the human sensory system during balanc-
ing." Philosophical Transactions of The Royal Society A – Mathematical 
Physical and Engineering Sciences. 367 (1891). pp. 1195-1212. 2009. 
DOI: 10.1098/rsta.2008.0278

http://dx.doi.org/10.6052/1000-0879-12-032
http://dx.doi.org/10.1098/rsta.2008.0278

	_GoBack
	1 Introduction
	2 The condition for application of kinetick theorem of energy of differental form to mdof systems
	3 Discussions of the failure in the absence of the restriction condition 
	4 Conclusions
	Acknowledgement
	References

