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Abstract
Computation of the stability limit of systems with time delay 
is essential in many research and industrial applications. 
Most of the computational methods consider the exact model 
of the system, and do not take into account the uncertainties. 
However, the stability charts are highly sensitive to the change 
of input parameters, such as eigenfrequency and time-delay. 
Furthermore, the computation of the dense stability lobe 
structure is numerically intensive; however, in some cases an 
envelope of these stability boundaries would be sufficient. A 
method has been developed to determine the robust stability 
limits of delayed dynamical systems, which is insensitive to 
fluctuation of system parameters. It is shown, that the resultant 
robust stability limits form the lower envelopes of the stability 
lobe structure.
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1 Introduction
The determination of the stability of dynamical systems 

with time delay is of high importance for many industrial 
and research applications. The investigation of the dynamics 
of turning processes is such a typical industrial problem. In 
order to reach high process efficiency the material removal rate 
(MRR) has to be maximized. The major limitation for increas-
ing the MRR is the so-called chatter vibration. The origin of 
these self-excited vibrations is the surface regeneration effect, 
which can be described by linear delayed differential equations 
(DDEs) [1,2]. Another example is human balancing, which 
is often modelled by a simple inverted pendulum in the pres-
ence of reflex delay [3,4,5], which is a relevant issue to human 
motion control [6]. A similar problem is the remote control of 
periodic robotic motions, when the delay in the information 
transmission system is not negligible [7,8]. 

The most important qualitative property of the correspond-
ing dynamical system is the stability of the equilibrium or peri-
odic motions. This is usually presented in the form of the so-
called stability chart, that identifies those ranges of parameters 
where the linear system is stable. 

Many well-known computational techniques are available to 
determine the stability chart of DDEs [9,10,11,12,13,14]. 

In many cases, especially for machining operations at 
low spindle speed, the computation of the stability boundary 
requires very high computational effort and unnecessarily high 
resolution, due to the dense and sharp line segments of the sta-
bility boundary (see Fig. 1). In these cases, the computation of 
the lower envelope of the dense stability lobe structure would 
be adequate. 

In case of time-domain computations [10,13,15,16,17], 
really high degree of discretization is required for proper 
results. In frequency domain computations [14,18,19,20], the 
determination of the very dense lobe structure in the unstable 
domain is unnecessary and also high resolution is required to 
determine the chatter frequency parameter, which is also a 
required computational step. 

Traditional computational methods consider exact models 
of the system, and do not take into account the uncertainty of 
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the input parameters; nevertheless, the results of these compu-
tations are highly sensitive to the change of input parameters 
such as eigenfrequency and time delay. In engineering practice, 
these dynamic parameters of a system can only be determined 
with a given uncertainty [22,23], moreover, parameters can 
change during operation [24]. 

Some methods can be found in literature to determine the 
robust stability in which stability boundaries are computed 
for a large set of parameters, and the intersection of the sta-
bility ranges is determined. These algorithms lead to numeri-
cally intensive computations with many limitations, hence the 
„robust formulation cannot accommodate more than two vary-
ing parameters due to increasing model complexity” [25]. 

In the present study, a perturbation method is introduced to 
determine the robust stability limit. In Section 2, a well-known 
mathematical model, the delayed oscillator is used to introduce 
the method. In Section 3, the computation is applied to turn-
ing processes with process damping effect. The robust stability 
limits are determined in analytical form for both cases.

2 Stability of the delayed oscillator
Let us consider the second order delayed oscillator in the 

following traditional form [26]: 

( ) ( ) ( ) ( )x t x t x t bx tκ δ τ+ + = − , 

 

where the dimensionless time delay τ = 2π . The stability chart 
is published in [26,27,28]. 

In the followings, the main steps of the stability computa-
tion based on the D-subdivision method [9,29] are summarised 
briefly.

The characteristic equation D(λ) of the dimensionless 
delayed differential equation Eq. (1) can be found by substitut-
ing the trial function x(t) = e λt as follows: 

2( ) 0D be λτλ λ κλ δ −= + + − = .

The stability boundaries can be determined if the critical 
value of the root  λ = iωc is substituted: 

2( ) 0ci
c c cD i be ω τω ω κω δ −= − + + − = .

In this case, a co-dimension 2 problem is defined by the real 
and imaginary part of the characteristic equation: 

( )Re ( ) 0cD bδ ω, , =  

( )Im ( ) 0cD bδ ω, , =

in the three dimensional parameter space (δ, b, ωc). The 
so-called Multi-Dimensional Bisection Method (MDBM) 
[30,31] is designed for these types of root-finding problems. 
This robust technique is able to find the submanifolds of 
the roots of a system of non-linear equations in any high 
dimension and co-dimension. The MDBM can be used for the 
determination of multiple boundary curves and it can even find 
the closed curves of stable and unstable islands in the stability 
chart automatically.

The roots of Eq. (4)-(5) are determined by the MDBM and 
are presented in Fig. 2 for different values of the damping ratio 
κ. In the top view, the resultant lines determine the stable area. 

For the undamped system κ = 0, the stability boundaries 
are straight lines with slope +1 and -1. For κ > 0, the stability 
boundaries are not straight lines only. The δ = κ line is associ-
ated to saddle-node instability at ωc = 0, all other boundary 
curves represent Hopf instabilities (see [32]). 

2.1 Parameter uncertainty
Equation (1) can be considered as a dimensionless form of 

the governing equation of a mass-spring system with delayed 
control [7,9,26,32]. The previous computation method consid-
ers the exact model of the mechanical system, and does not 
take into account the uncertainty of the input parameters, such 
as eigenfrequency and feed-back delay. These parameters have 
large influence on the dimensionless time delay, which is the 
main source of the stability problem. Hence, small differences 
in these parameters could lead to significant change in the sta-
bility chart. To represent the effect of uncertainty in the delay 
parameter τ, numerous stability charts were calculated for a set 
of time delays in the range of [0,4π] and these were plotted 
together in Fig. 3. The intersection of the stability areas can be 
used as an approximation of the robust stability region [25]. 
See the resultant graph in Fig. 3.

Fig. 1 Stability diagrams for low spindle speeds range
 a) tool geometry optimization [17]

b) measured and computed stability limits with process damping [21].

(4)

(5)

(3)

(2)

(1)
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Fig. 2 Stability chart of the delayed oscillator system and their 3D view with 
the critical angular frequency. Black, blue and red lines denote κ = 0,0.1,0.2 

and the corresponding stable areas are shaded with gray, bright blue and pink, 
respectively.

Fig. 3 Stability chart of the delayed oscillator for a set of different time delays 
τ = [0,4π] (black lines). The original chart (τ = 2π) is denoted by red thick 

lines. In the δ − b plane the robust stability area is shaded with green.(κ =0.2)

2.2 Robust stability limit
The robust stability limit should be computed for a continu-

ous variation of the time delay, however, the computation for 
obtaining the results presented in Fig. 3 was time consuming 
even for 30 different τ values only. 

It was found, that this set of boundary curves can be con-
nected to form one surface by means of introducing an addi-
tional parameter. Let us define the regenerative phase shift
ϕ := τωc and consider this as an independent extra (time-delay 
perturbation) parameter in the exponential term in Eq. (3):

2( ) 0i
c c cD b i be φδ ω φ ω κω δ −, , , = − + + − = .

The usage of the MDBM is essential to solve the resultant 
co-dimension 2 problem in the extended 4 dimensional param-
eter space (δ, b, ωc, ϕ). The resultant surface is plotted in Fig. 4.

Fig. 4 Surface of the connected stability boundaries of the delayed oscillator 
system and their 3D view with the extra independent regenerative phase shift 

parameter ϕ. (κ = 0.2) The envelope of the surface, which forms the robust 
stability limit is also plotted with a thick black line.

The robust stability limit is defined by the envelope of this 
surface, where the surface segments are parallel to the ωc axis 
in the 3D representation in Fig 4. Based on the previous fact, it 
can be deduced, that in the vicinity of these parameter points, 
the real part of the roots λ of the characteristic equation (2) does 
not change as a function of the perturbation parameter. This 
condition can be described as follows: 

Re 0λ
φ

 ∂
= . ∂ 

 
(7)

(6)
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The left hand side can be determined by the implicit derivation 
of Eq. (6) [9] 

d

d

D λ
φ
( )

= 0,

( ) ( ) 0D Dλ λ λ
λ φ φ

∂ ∂ ∂
+ = .

∂ ∂ ∂

Now, the extra condition Eq. (7) for robust stability can be writ-
ten as follows: 

( )

( )Re Re 0
D

D

λ
φ
λ
λ

λ
φ

∂
∂

∂
∂

  ∂
= − = .  ∂   

During the numerical implementation, it is better to use a rear-
ranged form to eliminate the division 

( ) ( )Im 0c c

c

D Dω ω
ω φ

 ∂ ∂
= , ∂ ∂ 

in which the critical value λ = iωc  is already considered. 
Figure 5 shows the traditional stability chart and the robust 

stability limit which is determined by the MDBM as a co-
dimension 3 problem formed by Eq. (4), (5) and (11) in the 
extended 4 dimensional parameter space (δ, b, ωc, ϕ). In case 
of 65 grid points along each parameter dimension, the time of 
computing the traditional stability limits was 1.3 s, while the 
robust stability limit was computed in 4.4 s (Matlab 2013b; 
Intel Core i7-2620M CPU 2.70GHz, 4GB Memory). Compared 
to the much higher complexity of the robust stability computa-
tion, this slight growth in the computational time is negligible. 
The high computation efficiency of the MDBM is described in 
details in [30] and it is characterised by the efficiency number.

2.3 Analytic results
For the delayed oscillator, Eq. (4), (5) and (11) lead to the 

following system of equations: 
2 cos( ) 0c bω δ φ− + − = ,

sin( ) 0c bκω φ+ = ,

sin( ) 2 cos( ) 0cb bκ φ ω φ− − = .

This system can be solved analytically, and the results for the 
robust stability limits 

0 0cb d ω φ= = = ,

0cb d ω φ π= − = = ±

are straight lines, which correspond to fold-type bifurcations, 
while the solutions 

2 4b κ δ κ= ± − /

2 2cω δ κ= ± − /

2acos
4

κφ
δ κ

 = ±  − 

represent curves for Hopf-type bifurcations in case of δ > κ2 ⁄ 2.

3 Robust stability of the turning process
In the following section, the above method is applied to 

orthogonal turning with process damping effect (see Fig. 6) 
[2,21]. The governing equation of the system is given by:

1 0( ) ( ) ( ) ( ) ( ( ) ( ))mx t c C x t kx t k w f x t x tτ τ+ + + = − + − 

where the parameters are: mass m, damping c, process damping 
coefficient C, stiffness k, cutting coefficient k1, chip width w, 
feed per revolution f0, time delay τ = 2π ⁄ Ω and spindle speed 
Ω. The number of parameters can be reduced by using dimen-
sionless parameters (natural frequency n k mω = / , damping 
ratio ξ = c ⁄ (2mωn), dimensionless process damping coefficient 
C C k= / , dimensionless chip width 1w wk k= / , dimension-
less time delay τ πω= /2 n Ω) dimensionless spindle speed 
ˆ

nωΩ = Ω /  and dimensionless time nt tω= . Rearranging
Eq. (12), and separating the static tool deflection, the time-
delayed governing equation which describe the stability prop-
erties is written as follows [9]: 

( ) (2 ) ( ) (1 ) ( ) ( )) 0x t C x t w x t wx tξ τ τ+ + + + − − = .

   

     

(8)

(12)

(10)

(9)

(11)

Fig. 5 Stability boundaries of the exact model of the delayed oscillator (black 
line) and its robust stability limit (colored line) and their 3D view. In the δ − b 
plane the area of robust stability and stable area of the exact model are shaded 

by green and blue, respectively. (κ = 0.2)

(13)
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The corresponding characteristic equation with the critical 
value of the root  λ = iωc  is given by 

2( ) (2 ) 1 0ci
c c cD i C w we ω τω ω ξ τ ω −= − + + + + − = .



  

This equation describes the bifurcation lines in the ( ˆ
cw ωΩ, , ) 

parameter space. For a selected damping ratio ξ = 0.05 and pro-
cess damping coefficient 0 001C = . , the computational results 
obtained by the MDBM are plottedin Fig. 7.

Fig.7 Stability boundaries and their 3D view with the dimensionless chatter 
frequency. The stable area is shaded with blue. (ξ = 0.05, 0 001C = . )

In the next step, it is important to note, that the cτω  component 
is substituted by the perturbation parameter ϕ only in the expo-
nential term, which represents the time-delay. 

2( ) (2 ) 1 0i
c c cD i C w we φω ω ξ τ ω −= − + + + + − = .

  

The resultant surface in the extended 4 dimensional parameter 
space ( cw ω φΩ, , ,

 ) is plotted in Fig. 8. The robust stability limit 
is shown in Fig. 8, too, for which the condition in Eq. (11) is 
also considered.

Fig. 8 Surface of the connected stability boundaries and their 3D view with the 

extra independent regenerative phase shift parameter ϕ. (ξ = 0.05, 0 001C = . )

The final result of the stability computation should be given 
in the form shown in Fig. 9, where the traditional stability chart 
and the robust stability limit are represented in the same graph. 
This combined chart could be well applied in industrial practice, 
while the safe range of parameters is presented by the robust sta-
bility limit together with the stability pockets of the traditional 
instability-lobe structure. In these pockets large MRR [33] can 
be achieved, but one has to be aware of the risk of parameter 
uncertainty which can affect the position of the lobes. 

Fig. 9 Stability boundaries and the robust stability limit
and their 3D view. (ξ = 0.05, 0 001C = . )

Fig. 6 Orthogonal turning model with surface regenerative effect
and process damping effect.

(14)

(15)
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3.1 Analytic results
Analytical result can be evaluated for the turning model 

with process damping. The corresponding system of equations 
is given by: 

2 1 cos( ) 0c w wω φ− + + − = , 

(2 ) sin( ) 0cC wξ τ ω φ+ + = ,

 

2 2 0ω φ ξ τ φcw C w



 cos sin .( ) + +( ) ( ) =

This system can be solved analytically, and the result which is 
valid for positive chip width values is: 

(2 )(1 2)w C Cξ τ ξ τ= + + + / . 

  

In case of zero process damping coefficient 0C = , Eq. (16) pro-
vides a straight line along the spindle speed Ω̂ . This line con-
nects the minimum points of the lobes, which is at 2 (1 )w ξ ξ= +  
as shown in [9].

4 Conclusion
In the present study, I have developed a perturbation method 

for calculating the robust stability limits of delayed differential 
equations. The method eliminates the essential parameter sen-
sitivity of the stability charts. The determined curve forms the 
lower envelope of the lobe structure, thus it can be used in case 
of inaccurate input parameters, such as: natural frequency or 
time-delay. In the proposed computation method, an additional 
perturbation parameter must be introduced, which increases 
the dimension of the parameter space by one, nevertheless, the 
applied Multi-Dimensional Bisection Method can overcome 
this problem without significant increase of computational time.

In addition, in case of the turning process, the presented 
method also speeds-up the computation at lower spindle speed 
range, moreover, smaller resolution in the parameter space is 
sufficient.

The robust stability limit can be determined analytically in 
closed form equations in special mechanical models, as it is 
shown in this paper for the delayed oscillator and for the sin-
gle degree of freedom turning model with traditional process 
damping effect.

In the future, we plan to extend this method to dynamical 
systems with multiple and/or distributed delays. 
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