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Abstract
Regenerative machine tool chatter is investigated for milling 
operations with helical tools. The stability of a two-degrees-
of-freedom milling model is analyzed, where the cutting-force 
is modeled as a force system distributed along the rake face 
of the tool. Introducing a distributed force system instead of a 
concentrated cutting-force results in an additional short, peri-
odically varying distributed delay in the governing equations 
of the system. It is shown that the additional delay significantly 
affects the stability of the machining operation, especially at 
low spindle speeds. This phenomenon is referred to as the short 
regenerative effect, and is studied by computing the stability 
lobe diagrams of milling operations via the semi-discretization 
technique. The sensitivity of the stability charts to the shape of 
the force distribution and the contact length between the chip 
and tool is investigated.

Keywords
milling, stability, machine tool chatter, regenerative delay, 
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1 Introduction
The occurrence of harmful vibrations (chatter) during metal 

cutting processes is an important problem in manufacturing 
technology. Machine tool chatter has many unfavorable effects: 
it reduces the productivity and the surface quality, causes noise, 
enhances tool wearing, and even leads to tool damage in some 
cases. Therefore, avoiding or suppressing chatter is highly 
important for the machine tool industry. In the past few dec-
ades, a significant amount of research was conducted to find the 
governing physical phenomena behind chatter in order to under-
stand its nature and describe methods to avoid or suppress it.

One of the most widely accepted explanations of machine 
tool chatter is the theory of surface regeneration introduced 
by Tobias [1] and Tlusty [2]: the vibrating tool leaves a wavy 
surface behind, which results in a varying cutting-force in the 
consecutive cut. Accordingly, delay effects appear in the mod-
els of metal cutting operations since the cutting-force exciting 
the tool motion is determined by the chip thickness, which 
depends both on the actual tool position and the delayed posi-
tion at the previous cut. Hence, machine tool vibrations can be 
described using delay-differential equations, and the regenera-
tive machine tool chatter can be considered as the manifesta-
tion of self-excited oscillations in a time-delay system.

Following the works of Tobias and Tlusty, a large effort has 
been put lately into the more accurate modeling of machine 
tool chatter. In this paper we follow the model of [3], where the 
stability of turning processes is investigated taking the distribu-
tion of the cutting force along the tool’s rake face into account. 
The concept was experimentally verified in [4]. Extension to 
interrupted turning operation was presented in [5]. Here, we 
will extend the distributed cutting-force model to milling pro-
cesses and perform the stability analysis.

The outline of the paper is the following. Section 2 presents 
the mechanical model of the system, the description of the 
cutting-force expression, and the final form of the governing 
equation. In Section 3, the semi-discretization technique [6] 
is applied to analyze the stability of the system numerically. 
Some numerical issues regarding computational efficiency are 
also highlighted. Section 4 considers the special cases of the 
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investigated milling model, and a comparison to previously 
published results is given. Finally, the main results of this paper 
are shown in the form of stability lobe diagrams in Section 0, 
where the sensitivity to the size of the contact region between 
chip and tool as well as to the shape of the cutting-force distri-
bution is also investigated.

2 Mechanical model
In this work we analyze the stability of end milling opera-

tions with helical tools. The corresponding mechanical model 
can be seen in Fig. 1. The model construction follows [7], 
where single- and two-degrees-of-freedom milling models 
are discussed assuming concentrated cutting-force. In many 
machining operations, including milling, the most compliant 
part of the machining system is the machine tool. In this case, 
we consider the workpiece as rigid, whereas the mill itself is 
modeled as a cantilever beam. This allows us to describe the 
dynamics of the machine tool-workpiece system by a two-
degrees-of-freedom model. Accordingly, the equation govern-
ing the motion of the tool assumes the form

Mq Cq Kq F ( ) ( ) ( ) ( )t t t t+ + =

where M, C and K denote the 2 × 2 modal mass, damping
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are the vector of general coordinates and the cutting-force vector.
Let us formulate an expression for the force components 

Fx(t) and Fy(t). Since a helical tool is used, the cutting force var-
ies in the axial direction z along the cutting edges. Therefore, 
the cutting-force can be calculated by dividing the mill into 
elementary disks with height dz and integrating the elementary 
cutting-force acting on them. Hence we can write
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where ap is the axial depth of cut. The quantities dFx(t, z) and 
dFy(t, z) denote the elementary cutting-force components act-
ing at axial immersion z, and they can be obtained as the sum 
of forces exerted on the different teeth of the tool,
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where j = 1,2, ..., N is the index of the teeth assuming an 
N-fluted tool.

Let us model the cutting-force on each tooth as the result-
ant of a force system distributed along a finite contact region 
on the rake face, that is, along the interface between the chip 
and the cutting edge. The length of the contact surface on the 
jth flute at a given axial coordinate z is denoted by lj(t, z). Note 
that the contact length is time dependent. In milling operations 
the cutting is intermittent, since the teeth of the mill enter and 
exit the workpiece material repeatedly. Therefore, the contact 
length lj(t, z) varies periodically. As the flute engages in cut-
ting, the contact region evolves gradually over a finite amount 
of time, and then it drops down to zero when the cutting edge 
leaves the material.

Since the particular cutting edge segments of the different 
teeth do not enter the material at the same time, the contact 
length depends on j and z. However, now we assume that apart 
from a shift in time, the contact length lj(t, z) evolves accord-
ing to the same law regardless the tooth index j and the axial 
position z. We suppose that for every cutting edge segment it 
increases linearly from 0 to the final value l during σ time, and 
then it remains constant until the cutting edge exits the work-
piece. The linear increase is valid if the chip slips along the 
rake face with constant speed. Given the tool diameter D, the 
angular position φj(t, z) of the jth cutting edge at axial immer-
sion z, the entrance and exit immersion angles φen and φex, the 
corresponding contact length reads

Fig. 1 Two-degrees-of-freedom mechanical modell of milling operations with helical tool.
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where mod is the modulo function. We can calculate the location 
φj(t, z) of an elementary cutting edge segment using the function

ϕ π π
j t z t j

N
z( , ) ( ) ( ),= + − −

2

60
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2Ω
Ψ

where Ω denotes the spindle speed, which is traditionally meas-
ured in rpm. The function Ψ(z) is the twist of the particular cut-
ting edge. Assuming a uniform helix angle β, we can express 
the twist in the form

Ψ( )
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z
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where lp = Dπ / (N tan β) is the helix pitch [8]. The entrance and 
exit immersion angles depend on the direction of rotation of the 
tool. The case when the cutting edge moves opposite to the feed 
direction at the entrance position is called up-milling, for which
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where ae is the radial immersion, and ae / D is called radial 
immersion ratio.

Whereas in case of down-milling, when the tool counter-
rotates and the flute enters the material in the feed direction, 
the angles become
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The contact length variation (5) in case of up-milling is illus-
trated in Fig. 2.

Knowing the contact length, we choose the local coordinate 
s Î [−lj (t, z), 0] to describe the force distribution along the rake 
face, see Fig. 1. Denoting the distributed force components by 
Pj,x (t, z, s) and Pj,y (t, z, s) we can write
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Fig. 2 The variation of the chip-tool contact length and the corresponding 
length of the delay distribution.

In order to treat the magnitude and the shape of the cutting-force 
distribution separately, we use the multiplicative decomposition
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The function Wj (t, z, s) characterizes the shape of force distribu-
tion, and assumes a normalized form such that
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The expressions d TF t z sj x, ( , , )  and d TF t z sj , ( , , )y  account for 
the cutting-force magnitude, and will be given later in this sec-
tion. Prior to that, for convenience, let us transform the spatial 
description of the cutting-force into time. Assuming a constant 
spindle speed Ω, the cutting speed v = DπΩ/60 is also constant, 
and it is reasonable to assume that the chip slips along the face 
of the mill teeth with the same speed. Hence let us introduce the 
temporal coordinate θ = s/ν, which characterizes the time that 
elapses during a certain particle of the chip slip along the active 
face of the tool. The domain of θ is θ Î [−σj (t, z), 0], whence σj 

(t, z) = lj (t, z)/ν. According to Eq. (5), we can write
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Recall that σ denotes the time it takes for a particle of the chip 
to slip along the tool face. Using the temporal coordinate θ, we 
can rewrite Eqs. (10)-(11) in the following form

d d d
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where wj (t, z, θ) = νWj (t, z, νθ). According to Eq. (12), the fol-
lowing criterion applies to wj (t, z, θ):

w t zjt zj−∫ =
σ

θ θ
( , )

( , , )d .
0

1

Now we need to choose the function wj (t, z, θ), which character-
izes the shape of cutting-force distribution along the rake face. 
We can make a proper choice on wj (t, z, θ) via taking experi-
mental data into account. In the past decades several measure-
ments were performed to determine the distribution of stresses 
along the rake face of the tool. According to [9-13], there are 
two kinds of widely accepted shapes for both the normal and 
the shear stress distributions. Namely, some of the above meas-
urements showed that the normal stress peaks at the tool tip 
and decays exponentially to zero at the end of contact. Alterna-
tively, the other experiments reported a plateau in the normal 
stress distribution near the tool tip, and an exponential decay to 
zero after a certain length of the plateau. Whereas the experi-
mental data on the shear stress distribution either followed the 
plateau-and-decay tendency, or featured a function that starts 
from a small value at the tool tip, increases to a maximum, 
and then decays to zero. In our model, we will approximate the 
latter function by a half sine wave, and we will also analyze 
exponential and constant distribution shapes to investigate the 
exponential and the plateau-and-decay distributions. In addi-
tion, considering Dirac delta force distribution yields the spe-
cial case of concentrated cutting-force, which was analyzed in 
[7]. Therefore, in this paper we assume that wj (t, z, θ) takes one 
of the following forms
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Using these functions we assume that the shape of the force dis-
tribution is essentially the same for the different cutting teeth 
and axial immersions. The dependency of wj (t, z, θ) on j, t and z 
reflects only the fact that the same shape is scaled according to 
σj (t, z). Therefore, we can introduce the scaling θ θ = σ j t z( , ) ,
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where σj (t, z) ≠ 0. This way we can represent the pure shape of 
the force distribution without considering the contact length. 
From (16) we get
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Besides, let us define w� �θ( )  in a way that w� �θ( ) ≡ 0  for 
θ∈ −∞ − ∪ ∞( , ) ( , )1 0 , which implies that the cutting-force is zero 
outside the contact region. Functions (17) can be seen in Fig. 3.

Now let us focus on the force magnitude d TF t zj x, ( , , )θ and 
d TF t zj , ( , , )y θ . In machining the cutting-force magnitude is influ-
enced by several factors, among which the most important ones 
are technological parameters like the depth of cut, the cutting 
speed, and the chip thickness. In the last century many cutting 
experiments were performed with the purpose of exploring the 
relation between the cutting-force magnitude and the above tech-
nological parameters.
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ŵ
(θ̂

)

θ̂

w(θ)=δ(θ)ˆ ˆ ˆ
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Fig. 3 The investigated force distribution shapes along the rake face.

The most well-known expressions are the power law introduced 
by Taylor [14] and the cubic polynomial used by Shi & Tobias 
[15], but other kinds of force characteristics also exist, see e.g. 
[16] and the references therein. The cutting experiments usu-
ally provide measurement data on cutting-force components in 
the radial and tangential directions. Correspondingly, let us use 
the decomposition
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where subscripts t and r indicate the tangential and radial 
components, respectively. We can calculate the tangential and 
radial cutting-force components based on the above mentioned 
empirical relations with the technological parameters. In this 
work we will use Taylor’s formula, the superscript T stands for 
Taylor as well. The Taylor expression reads

d

d
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r
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where Kt and Kr are the tangential and radial cutting-force 
parameters obtained via measurements, and hj (t, z, θ) is the chip 
thickness along the rake face of a particular cutting edge. The 
cutting-force exponent q is usually assumed to be q = 3/4 lead-
ing to the well-known three-quarter rule. Note that sometimes 
a factor of ν−0.1 is also included on the right-hand side of formu-
lae (19) in order to account for the dependence on the cutting 
speed. However, we neglect this term in our model. The coef-
ficient gj (t, z, θ) is a screen function, which determines whether 
the jth cutting edge is engaged in cutting at axial immersion z:
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Now the expression of all important quantities are available, 
and finally we can calculate the cutting-force F(t). Substituting 
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Finally, let us formulate the chip thickness as a function of the 
tool position. According to the theory of regenerative machine 
tool chatter, as the cutting edge vibrates, it leaves a wavy sur-
face behind. In the next revolution, the waviness of the surface 
changes the chip thickness, and hence modifies also the cutting-
force, which excites the tool motion. This results in the regen-
eration of the surface waves and the emergence of self-excited 
vibrations in the tool-workpiece system, also known as the 
machine tool chatter. Therefore, as the tool vibrates relatively to 
the workpiece, the actual chip thickness depends on the actual 
tool position and the position at the previous cut. Considering a 
circular tooth path approximation, the instantaneous chip thick-
ness along the rake face of the jth cutting tooth reads
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It is important to remark that this formula neglects the displace-
ment of the chip in the z-direction. In (22), fz denotes the pre-
scribed feed per tooth, from which the actual feed per tooth dif-
fers due to the relative vibrations between tool and workpiece. 
In fact, the parameter τ is called the regenerative delay, which 
now equals the tooth passing period τ = 60 / (NΩ). Correspond-
ingly, σ is often referred to as short regenerative delay, and its 
influence on the system dynamics is called the short regenerative 
effect. In this work we assume that the ratio of the two delays is 
constant: σ = ετ. If we multiply this relation by the cutting speed 
ν = DπΩ / 60, it becomes clear that the constant ε is equivalent to 
the ratio of contact length l and the arc length Dπ / N between the 
neighboring teeth. Since this ratio is usually small, it explains the 
origin of the terminology short regenerative effect.

To sum up, the vibrations between the tool and the work-
piece are governed by Eqs. (1), (21), and (22), which form a 
system of nonlinear delay-differential equations. The equations 
include a τ point delay, and an additional periodically varying 
distributed delay of maximum length σ. The kernel of the delay 
distribution is wj (t, z, θ), which originates from the shape of 
force distribution along the rake face of the tool. The coeffi-
cients of the differential equations are τ-periodic, whereas the 
period of the delay variation σj (t, z) is Nτ. Thus the overall 
period of the system is τ. Let us assume that we can decompose 
the q(t) solution of the governing equations into a sum of a 
τ-periodic solution qp(t) = qp(t + τ) and a perturbation (t),

q qt t t( ) = ( ) + ( )p  .

The periodic solution qp(t) = (xp(t) yp(t))
T corresponds to the 

ideal chatter-free machining operation with constant feed per 
tooth fz, whereas the perturbation (t) = (ξ(t) η(t))T represents the 
machine tool chatter. Substituting q(t) = qp (t) into the governing 
nonlinear differential equation yields the delay-free system
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Equation (24) is an ordinary differential equation with 
τ-periodic forcing, hence it indeed has a τ-periodic solu-
tion, justifying that it is reasonable to assume the form (23). 
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Expanding F(t) into Taylor series with respect to q(t) around qp 

(t) and neglecting the higher-order terms yields the linearized 
system in the form 
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The 2 × 2 matrix Gj (t) is called the directional factor matrix 
given by
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3 Semi-discretization
In this section we use the first-order semi-discretization tech-

nique introduced in [6] to perform the stability analysis of Eq. 
(26) numerically. Note that other techniques can also be used to 
determine stability of systems with distributed delay, see, e.g., 
[17-19]. As a result, stability lobe diagrams (or stability charts) 
are created, which identify the chatter-free domains in the plane 
of the spindle speed Ω and the axial depth of cut ap. In order to 
depict the stability charts, we use a fixed grid in the investigated 
region of the parameter plane, and in each gridpoint we deter-
mine the stability of the system via semi-discretization.

The main point of the semi-discretization technique is to 
approximate the solution operator of the infinite-dimensional 
delayed system by a large but finite-dimensional matrix. This 
is achieved through a piecewise constant approximation of the 
delayed terms in the governing equation. This way the delay-
differential equation is approximated by a sequence of discrete 
maps, and the stability analysis reduces to the eigenvalue com-
putation of a linear map given by the so-called monodromy 
matrix, which describes the evolution of the system along its 
principal period τ.

The steps of the semi-discretization are discussed in [7]. In 
that work, systems of the following form are considered

x Ax W u

u Dx
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Hence we rewrite system (26) in the first-order form
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with 0 and I indicating the 2 × 2 zero and identity matrices, 
respectively.

Therefore, in order to apply the semi-discretization tech-
nique, we need to approximate (30) to reach a similar form as 
in (29). The two main differences between the above equations 
are the integral over z and the periodic variation of the length 
σj (t, z) of the delay distribution in (30). Hence as the first step 
of the discretization, we replace the z-integral by a numerical 
quadrature using the rectangular approximation

W u
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where m is the number of elementary disks the mill is divided 
into, and the following notations are used σj,l (t, z) = σj (t, zl), 
Wj,l (t, θ) = Wj (t, zl, θ). The parameters of the numerical quad-
rature read zl = (l − 1/2)Δz and Δz = ap / m.

Secondly, we use a piecewise constant approximation of the 
delay variation σj,l (t). The semi-discretization technique itself 
also approximates the delayed terms by taking them piece-
wise constant along the intervals t Î [ih, (i + 1)h], i Î . Here
h = τ / p denotes the time step of the semi-discretization cho-
sen in a way that the period τ is resolved into p intervals. In 
order to remain consistent with the semi-discretization tech-
nique, we approximate the σj,l (t) delay variation in the same 
manner, namely we consider it as constant along the same t Î 
[ih, (i + 1)h) interval. Hence we write

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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where the approximating constant delay σj,l,i is defined as
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System (30) with the approximations (32)-(33) is now suit-
able for the semi-discretization method. Regarding the applica-
tion of the semi-discretization we will highlight some impor-
tant numerical issues, by which the computational time of the 
numerical stability analysis can significantly be reduced.

First of all, it is important to clarify that during semi-dis-
cretization we fix the period resolution p and not the time step 
h. This way it is possible to calculate several approximate 
quantities independently of the delay τ and hence of the spin-
dle speed Ω. Therefore, we do not need to calculate them indi-
vidually in each gridpoint of the stability charts, and a notable 
amount of computational effort can be saved. Accordingly, we 
introduce the dimensionless time ˆ /t t τ= , use the delay ratio 

( ) ( ), , /ˆ ˆ
j l j lt tε σ τ τ=  instead of the delay σj,l (t), and approximate 

it with εj, l, i along ( ) )1ˆ / , /t i p i p∈ +  in the following manner
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Note that introducing t̂  allows us to express ( ),ˆj t zϕ  indepen-
dently of τ, since
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Consequently, using the relations σ = ετ, τ = 60 / (NΩ), and 
(13), it can be shown that ( ) ( ),

ˆ , /ˆ
j l j lt t zε σ τ τ=  becomes also 

τ-independent, as well as the approximation εj, l, i. In a similar 
manner, the coefficient Gj,l (t) = Gj (t, zl) in Wj,l (t, θ) also has a 
τ-independent piecewise constant approximation Gj, l, i.

Besides, the semi-discretization requires the approximation 
of the kernel function wj,l (t, θ) − wj,l (t, τ + θ) in Wj,l (t, θ). It can 
be done using the integral
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with k Î . Once again, a piecewise constant approximation of 
(37) is required. Using ( ), , ,/ˆ

j l j l itσ τ τ ε≈  we can write the wj,l,k,i 
approximation of (37) over t Î [ih, (i + 1)h) in the form
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Therefore, not only the periodic delay σj,l (t) and the periodic 
coefficient Gj,l (t) can be treated independently of τ, but also 
the kernel wj,l (t, θ). As a final remark, we must mention that 
the τ-independency could be reached only due to the fact p was 
fixed instead of h, and owing to a special property of the σj,l (t), 
Gj,l (t), and  wj,l (t, θ)  functions. Namely, as τ varies these func-
tions should only be rescaled in time. Note that the depend-
ency on the axial depth of cut ap cannot be transformed out in 
a similar manner.

Another important issue in the time-efficient computation 
of the stability charts is the construction of the monodromy 
matrix. In the course of semi-discretization, the evolution of 
the system over its principal period τ is given by p subsequent 
linear maps taking the system from t = ih to t = (i + 1)h, i = 
0,1,..., p−1. Therefore, the monodromy matrix is constructed 
by multiplying p matrices. Since they are special sparse matri-
ces, the monodromy matrix can be obtained in ‘one step’ as dis-
cussed in [7]. In fact, we can build up the monodromy matrix 
recursively row-by-row using row operations instead of multi-
plying whole matrices. This also saves a considerable amount 
of computational time.

Finally, it is more reasonable to strive towards the computa-
tion of stability boundaries rather than determining the stability 
in each point of a large grid. The stability of the system is deter-
mined by the eigenvalues μs of the monodromy matrix, also 
called as the characteristic multipliers. The system is asymp-
totically stable provided that each characteristic multiplier lies 
within the unit circle of the complex plane. Therefore, the sta-
bility boundary is defined by

max .
s sµ − =1 0

Consequently, the stability analysis reduces to the root finding 
problem (39), where the semi-discretization technique provides 
the μs eigenvalues. In order to find all solutions of (39), one can 
use the multi-dimensional bisection method introduced in [20], 
which is available in a Matlab package. This is an interval-
halving method initiated on a rough grid and supplemented by 
a continuation algorithm. With a sufficiently fine initial mesh 
the method is able to find all the stability boundaries.

(33)

(34)

(35)

(37)

(38)

(36)

(39)

.
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Fig. 4 Figures 9, 11, and 12 from [3] (left) and their counterpart obtained via 
semi-discretization (right).

4 Special cases
In order to verify the results of the stability analysis, we can 

compare the stability charts to those of the previously studied 
cases with known solutions. Substitution of the Dirac delta 
kernel in (17) leads to the special case of concentrated cutting-
force. Whereas assuming β = 0, i..e., Ψ (z) ≡ 0  gives back the 
case of straight fluted tools. Besides, considering a symmetric 
system with M = mxI, C = cxI, K = kxI, and substituting Gj (t) 
= Gj,xx (t)I yields a single-degree-of-freedom milling model. 
Finally, if we assume a symmetric system with zero helix angle, 
consider a ( ) 1

1G I Iq
j zt Kqf k−≡ =  constant coefficient instead of 

the periodically varying one, and keep the delay also constant 
σj (t) ≡ σ, we end up with the single-degree-of-freedom model 
of turning. Running the semi-discretization code with the above 
assumptions, we checked the following special cases. First, the 
single-degree-of-freedom milling model with straight fluted and 
helical tools and the two-degrees-of-freedom model of milling 
with straight fluted tool assuming concentrated cutting-force in 
each case, which was also investigated in [7]. Furthermore, we 
also computed the stability charts of the single-degree-of-free-
dom turning model with distributed cutting-force, which were 
derived analytically in [3]. All these results were subject to com-
parison, and the stability charts obtained via the semi-discretiza-
tion of system (30) agreed well with those of the special cases.

An example is presented in Fig. 4, where the first column 
shows the analytical results of [3] for the stability lobe diagrams 

of the single-degree-of-freedom turning model, whereas their 
numerical counterpart obtained using the semi-discretization 
is presented in the second column. The different rows of the 
figure assume Dirac delta, cosinusodial and sinusoidal force 
distributions in this specific order. The Dirac delta and the sinu-
soidal kernels are given in (17), while the cosinusoidal reads 
( ) ( ) 1ˆ ˆˆ cosw θ πθ= + . The stability charts were computed on a 

400x200 grid with the same parameters as those of the analytical 
stability lobes in [3]. As can be seen, the agreement between the 
stability boundaries in the presented parameter range is good.

5 Stability lobes of milling
Figure 5 shows a series of stability charts for up-milling pro-

cesses with radial immersion ratio ae / D = 0.05 using a two-fluted 
helical tool (N = 2) with helix pitch lp = 25 mm. The cutting-
force exponent is q = 0.75, whereas the cutting-force coeffi-
cients are Kt = 107 · 106 N / m1.75 and Kr = 40 · 106 N / m1.75. 
The nominal feed per tooth is fz = 0.1 mm, thus the linearized 
cutting-force coefficients are K qf N mz

q
t

− = ⋅1 6 2800 10 /  and 
K qf N mz

q
r

− = ⋅1 6 2300 10 / . The modal matrices are
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The corresponding undamped natural frequency and damping 
ratio of vibrations in both the x and the y directions are fn = 
907 Hz and ζ = 0.02, respectively. The different rows of Fig. 5 
correspond to the exponential, constant and sinusoidal kernels 
in (17), while the different columns assume delay ratios ε = 
0.05,0.1 and 0.2. The special case of concentrated cutting-force 
with Dirac delta kernel is also presented at the top of the figure. 
In the top right corner an unusually large range of spindle speed 
and axial depth of cut is depicted in order to show the stability 
lobes at the highest spindle speeds as well. In the meantime, 
in the top left corner and in the 3 × 3 stability chart series only 
that parameter region is shown, which is feasible and usual 
from technological point of view. As for the discretization, we 
resolved the period τ by p = 200 points, the parameters m = 
100, Nh = 20, Nk = 100 were used, and the stability charts were 
computed on a 600x300 grid.

The resulting stability lobes exhibit some interesting prop-
erties. First of all, in [8] and [21] it was shown for a single-
degree-of-freedom model that the mill helix induces additional 
unstable islands in the stability charts of milling processes. 
Moreover, it was also discussed that the helix-induced islands 
at highest spindle speeds are separated by horizontal lines 
where the axial depth of cut is an integer multiple of the helix 

(40)
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pitch. According to the top right corner of Fig. 5, these unstable 
islands appear in case of the two-degrees-of-freedom milling 
model as well, although they look like open curves when other 
stability lobes intersect them. Besides, the islands are still sepa-
rated by horizontal lines (indicated by dashed lines) at integer 
multiples of the helix pitch. The stability lobe diagrams at the 
top also show that helix-induced islands appear at lower revo-
lution numbers, too.

The effect of the cutting force distribution can be observed 
in the 3 × 3 stability lobe diagram series. The most impor-
tant phenomenon owing to the short regenerative effect is the 
upward shift of the stability lobes at low spindle speeds. Some-
times this phenomenon is explained by the so-called process 
damping effect, see e.g. [22-24]. The process damping is often 
introduced to account for the fact that the tool flank might 
interfere with the wavy surface of the workpiece. This way 
an additional force is produced, which pushes the tool away 
from the workpiece, and thus works as an additional damper 
with damping inversely proportional to the spindle speed Ω. 
This results in the upward shift of the stability lobes at low cut-
ting speeds. An alternative explanation of the process damping 
uses the dependence of the instantaneous chip thickness on the 
vibration velocity of the cutting tool [13]. However, based on 
Fig. 5 the expansion of the low-speed stable region can also 
be explained by considering a distributed cutting-force along 

the rake face instead of a concentrated one. It is important to 
note that contrarily to the process damping effect, the short 
regenerative effect also modifies noticeably the stability lobes 
at high spindle speeds. Therefore on the one hand, as the lobes 
change, the helix-induced islands tend to get outside the stable 
region and hence disappear from the stability charts. On the 
other hand, the stability boundaries intersect at lower depth of 
cut values, which suppresses some high-speed stable peaks of 
the stability charts. Therefore, we can conclude that although 
the additional short distributed delay stabilizes the system at 
low spindle speeds, it may also destabilize the process at cer-
tain high-speed parameter regions.

As a series of stability charts is presented in Fig. 5, it also 
reflects the sensitivity to the shape of force distribution charac-
terized by ( )ˆŵ θ , as well as to the length of the chip-tool inter-
face measured by ε. The first two columns of the figure clearly 
show that the parameter ε, or equivalently, the contact length 
has a much stronger effect on the stability lobes than the shape 
of the force distribution. The short regenerative effect becomes 
more significant for large contact regions between tool and 
chip (large ε values), and is more pronounced in the case of 
the constant and the sinusoidal force distribution shapes. How-
ever, comparing the second and third column of Fig. 5 we can 
see only very slight differences between the related stability 
charts. It reveals the fact that above a certain limit value εlim, 
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Fig. 5 Stabilty lobe diagrams of the two-degrees-of-freedom mechanical model of milling with helical tool.
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an additional increase in ε does not change the stability lobes. 
It can be explained as follows. As we increase ε, we assume 
that the contact region between chip and tool becomes larger. 
However, our model accounts for the fact that the chip needs a 
certain amount of time to slip along the active face. If the chip-
tool interface is supposed to be too long and the radial immer-
sion is small, the chip does not have time to slip along the entire 
contact length, as the cutting edge leaves the material before the 
particles of the chip would reach the end of the contact region. 
In other words, the time the cutting edge spends in the material 
is not enough for the contact region to fully evolve. The size of 
the contact region cannot exceed a limit length - the arclength 
between the points where the cutting edge enters and exits the 
material. A division by the arclength Dπ / N between two suc-
cessive cutting teeth gives the following limit value for ε:

ε
ϕ ϕ

πlim

ex en=
−

2 /
,

N

which is determined by the radial immersion ratio ae / D and 
the number N of cutting teeth. In our particular example the 
radial immersion ratio is quite small, ae / D = 0.05, and the 
mill is only two-fluted, N = 2. It yields εlim = 0.144, which 
means that the assumption ε = 0.2 implies a contact length 
longer than what could actually evolve. Also, the condition in 
the third row of (5) and (13) is never fulfilled for ε > εlim, the 
nonzero constant part of the contact length function in Fig. 2 is 
missing in this case. Therefore, above a limit value εlim further 
increase in ε affects neither the actual contact length nor the 
system delay, i.e., results in the same stability charts for any
ε > εlim. Of course, this effect becomes significant only in case 
of very low radial immersions.

6 Conclusions
We considered a two-degrees-of-freedom mechanical model 

to describe machine tool chatter in milling operations with 
helical tools. We modeled the cutting force as a force system 
distributed along the tool’s rake face, and applied the theory 
of regenerative machine tool chatter to compute the stability 
lobe diagrams of milling processes. The distribution of the cut-
ting force results in the so-called short regenerative effect. We 
showed that the short regenerative effect influences the stability 
lobes at low spindle speeds in a similar manner as the process 
damping effect. Therefore, it can serve as an alternative expla-
nation of the upward shift of the low-speed stability boundaries.

However, contrary to models with process damping forces, 
the short regenerative effect may alter stability lobes signif-
icantly also at high spindle speeds. As the two explanations 
yield some interesting differences in the behavior of the result-
ing stability charts, studying the structure of stability lobes in 
the case of a distributed cutting-force system and investigating 
the relevance of the short regenerative effect compared to the 
process damping effect will be subject of future research.
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