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Abstract
The lateral instabilities of vehicles are well-known phenom-
ena, see for example, the shimmy motions of bikes, motorbikes 
or the steered wheels of cars. Another interesting phenomenon 
is the snaking motion of the skateboard-skater system that is 
analyzed in this study. A mechanical model of the downhill 
skateboarding is constructed in order to consider the effect of 
the slope angle on the stability. The equations of motion are 
obtained with the help of the Gibbs-Appell method. The linear 
stability analysis of the rectilinear motion is carried out ana-
lytically using the Routh-Hurwitz criterion. The influence of 
different realistic parameters of the skater and the board are 
investigated. A critical position of the skater on the board also 
is determined.
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1 Introduction
The history of skateboards goes back to the early 20’s of 

the former century, when the first skateboard was constructed 
from wooden board and metal wheels. Although, the first com-
mercially produced skateboard appeared in the 50’s, the most 
important dates of the skateboard history relate to the 70’s. On 
the one hand, polyurethane wheels were introduced, which 
allowed higher speeds than the metal ones. On the other hand, 
the first scientific papers [1] and [2] on skateboard dynamics 
also date back to that time.

The early publications of Hubbard on the skateboard 
explained the behaviour at low speed, namely, he proved that 
the special wheel suspensions of the board have a positive 
effect on the linear stability of the rectilinear motion. Thus, 
the skateboard became a very fascinating example of non-
holonomic systems, and the investigation of the motion of 
the skateboard is a popular field among researchers even 
nowadays. Methods developed for non-holonomic systems 
can be tested and compared by means of the analyses of the 
skateboard dynamics. For example, in the paper of Ispolov 
and Smolnikov [3], the Gibbs – Appell method was applied in 
order to determine the equations of motion. Moreover, another 
interesting behaviour of the skateboard can be discovered by 
means of nonlinear analyses, see, for example, the studies of 
Kremnev and Kuleshov [4, 5] for the low speed motion.

The investigations of the high speed dynamics became rel-
evant after the appearances of the first polyurethane wheels and 
the so-called longboards. In the recent publications (e.g.: [6] 
and [7]), researchers focused on the loss of stability at high 
speeds, where the effect of the human control system is also 
considered. Some of these studies have identified that the reflex 
delay of the skaters can have a key role although none of these 
studies operate with complex control scheme like McRuer’s 
approach for drivers in [8]. The presence of the reflex delay 
also gives explanation for instabilities in case of many other 
applications, like the simple human balancing (Stepan [9]) or 
the balancing on a balance board (Chagdes et al. [10]). Since 
the control strategy of the human control in case of skateboard-
ing is unknown, the analysis of the interaction between the 
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skateboard dynamics and the human control can be an interest-
ing research topic for future works.

In this study, the down hilling motion of the skateboard is 
in focus. In practice, longboards are usually used for such sce-
narios since this type of boards has better behaviour at high 
speed. The positive effect on the stability of the longer boards 
is also confirmed in theoretical studies e.g. [7]. But, there is no 
mechanical model for the case when the skateboard runs on 
a slope, however, the effect of the slope of the ground can be 
important in point of view of stability, too. Moreover, during 
downhill skateboarding, the slope of the road is non-negligible, 
for example, the world speed record was set on with 18% grade 
[11]. In the wider literature, one can find related articles, in 
which the downhill skateboarding is analysed from different 
viewpoints. For example, the aerodynamics was investigated 
by Hart et al. in [12].

In our study, we focus on the effect of the slope of the road 
while we use a simplified drag force model and we also neglect 
the human control. The standing position of the skater is one of 
the intricate parameter of our investigation.

2 Mechanical model
The mechanical model in question (see Fig. 1) is based 

on [2] and [4], where a similar model is investigated in case 
of the movement on a horizontal plane. Here, we investigate 
the motion of the skateboard on a slope, but we simplified the 
geometry (i.e. we neglect the mass of the board and the mass 
moments of inertia of the board and the skater) in order to have 
less parameters.

Fig. 1 Mechanical model of a skateboard

2.1 Description of the model
The model consists of two massless rods. One of them mod-

els the skateboard itself between the front (F) and rear (R) 
points. The other massless rod (between points S and C) with a 
lumped mass m at the end point C represents the skater. Hereby, 
the connection between the skater and the board is assumed 
to be rigid. The so formed rigid body has no mass moment of 

inertia with respect to its centre of gravity C, which makes the 
derivation of equations of motion simpler. Namely, the motion 
of a lumped mass has to be described only, although the skate-
board moves in the three dimensional gravitational field on the 
slope that is characterized by the inclination angle  α. For con-
venience, the coordinate system (X,Y,Z) attached to the slope is 
used for the description of the motion.

In this paper, we do not consider the loss of the contacts 
between the wheels and the ground. Due to the fact that the 
longitudinal axes of the board is always parallel to the plane 
of the slope, one can choose four generalized coordinates to 
describe the motion: x and y are the coordinates of the point S; 
ψ  describes the direction of the longitudinal axes of the skate-
board; and finally,  φ  is the inclination angle of the skater’s 
body from the normal direction of the slope. Due to the rigid 
connection between the skater and skateboard, the deflection 
angle of the board is equal to  φ. 

The geometrical parameters of our model are the follow-
ing: the height of the skater is 2h; the length of the board is 
2l; parameter a characterizes the skater’s location on the board 
(a > 0 means skater stands in front of the centre of the board); 
m represents the mass of the skater; while parameter g stands 
for the gravitational acceleration.

We consider that the free motion of the skater-board system 
is obstructed by a torsional spring, which models the stiffness  
st  of the wheel suspension system. We also consider a drag 
force, which models the braking effect of the aerodynamic 
forces. The drag force formula can be given as

F C A V
D D D
=
1

2

2ρ ,

where  ρ  is the density of the fluid,  CD  is the dimensionless 
drag coefficient,  AD  is the normal cross section area and V is 
the speed of the body relative to the fluid. Here, we use a sim-
plified model, namely, we assume that the direction of the drag 
force is opposite to the longitudinal speed  x ycos sinψ ψ+  of 
the board, and instead of using the formula  its magnitude is 
calculated by

F k x y
D
= +( )1

2

2
 cos sin ,ψ ψ

Where the coefficient k of the drag force is introduced to 
describe the combined effect of the parameters  ρ,  CD  and  AD. 
Moreover, we assume that the drag force acts at the centre of 
gravity C. A sophisticated aerodynamic analysis was presented 
in [12], where the geometry of the skater’s helmet and his posi-
tion were also the part of the numerical investigation of the 
flow around the skater. But our goal is different, we focus on 
the stability of the rectilinear motion, so the simple analytical 
expression of Eq. (2) is an appropriate choice.

(1)

(2)
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2.2 Kinematic constraints
Regarding the rolling wheels of the skateboard, kinematic 

constraining equations can be given. Namely, the directions of 
wheel axes depend on the deflection angle  φ  through the steer-
ing angle  δS  (see Fig. 1). The connection between this steering 
angle and the deflection  φ  can be expressed:

sin tan tan ,ϕ κ δ=
S

where  κ  is the complementary angle of the so-called rake 
angle in the skateboard wheel suspension (for the derivation 
of this relation please see [4] or [6]). Based on this, two sca-
lar kinematic constraining equations can be constructed for the 
velocities  vF  and  vR  of points F and R:

cos sin tan sin

sin sin tan cos ,

cos

ψ ϕ κ ψ

ψ ϕ κ ψ ψ

ψ

−( )
+ +( ) + −( ) =



 

x

y l a 0

ssin tan sin

sin sin tan cos .

ϕ κ ψ

ψ ϕ κ ψ ψ

+( )
+ −( ) + +( ) =



 

x

y l a 0

These constraints are linear in terms of the generalized veloci-
ties, hence, the Gibbs – Appell method can be straightforwardly 
applied (see in [13]).

2.3 Equations of motion
In order to apply the Gibbs – Appell equations, pseudo veloc-

ities have to be chosen, by which the kinematic constraints can 
be eliminated. In our case, two pseudo velocities are required 
since the difference of the numbers of generalized coordinates 
and the kinematic constraints are two. These pseudo veloci-
ties can be produced as linear combinations of the generalized 
velocities. An appropriate choice can be the longitudinal speed 
of the board and the angular velocity of the skateboard around 
its longitudinal axis:

σ ψ ψ σ ϕ
1 2
= + =  x ycos sin .and

Now, the generalized velocities can be expressed with the 
generalized coordinates and the pseudo velocities by using the 
kinematic constraints:
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According to the Gibbs  –  Appell method, the so-called 
energy of acceleration (  ) is needed. In this model, where we 
have one lumped mass only, this quantity can be computed as:

 = ⋅
1

2
ma a

C C
,

where  aC  refers to the acceleration of the lumped mass. One 
can obtain:
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The parts of the energy of acceleration, which do not depend 
on the pseudo accelerations ( 1σ  and 2σ ), are not necessary to 
calculate since the equation of motion can be obtained with the 
help of

∂
∂

=

σ i

iΓ .

The right hand side of this formula is the pseudo force  Γi  
related to the ith pseudo velocity  σi , which can be determined 
from the virtual power of the active forces, i.e. the gravitational 
force, the torque produced by the spring and the force of the 
drag force:

δ δ δ δP = ⋅ + ⋅ + ⋅F v M F v
g C st D C

ωω ,

where  δ  refers to the virtual quantities. We obtain:

δ α ϕ α ϕ ψ ϕ δσ
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wherefrom  Γi  can be identified as the coefficient of  δσi .
Based on the Gibbs – Appell Eq. (9), the equations of motion 

can be expressed as:




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1 1
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1 2 2
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,

where the parameters are:

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(11)

(8)

(12)
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Equations in (12) are connected to the expression of the gen-
eralized velocities in (6). Thus, our system can be described in 
a 6 dimensional state-phase.

Let us note here, that x and y are cycles coordinates, so 
Eq. (12) and the last two equations of (6) describe the motion 
uniquely. Only these four equations can be used for the stability 
analysis, consequently, the zero characteristic exponents will 
not emerge in our analysis. The zero characteristic exponents 
are not relevant in practical point of view while they can limit 
the use of classical stability criteria.

3 Stability analysis
The rectilinear motion of the mechanical model corresponds 

to the case when the skateboard moves parallel to the X direc-
tion along the slope. We are interested in the linear stability of 
this rectilinear motion with special respect to the effects of the 
standing position and the grade.

3.1 Linearized equation of motion
The values of the state variables in case of the rectilinear 

motion with constant longitudinal speed V  are the following: 
both the pseudo velocities are constant: σ1 ≡ V ,  σ2 ≡ 0 ,  the 
positions of the board on the slope are  x ≡ Vt  and  y ≡ y0 , while 
the angle of the board on the slope and the deflection angle of 
the skater are zeros, i.e.   ψ ≡ 0  and  φ ≡ 0.

Substituting these values into the equations of motion, we 
obtain a condition from the first equation of (12):

0
2

2

= − +
kV
m

g sin ,α

wherefrom the longitudinal speed can be calculated as a func-
tion of the mass, the inclination angle of the slope and the coef-
ficient of the drag force:

V mg
k

=
2 sin

.
α

It can be shown, that this is the maximal reachable speed of 
the skater.

The equation of motion linearized around the rectilinear 
motion can be determined assuming small perturbation in  σ1 , 
σ2 , ψ and φ. The linear system can be written as

X J Xt t( ) = ⋅ ( ) ,
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.

3.2 Linear stability of the rectilinear motion
The stability analysis of the linear ordinary differential 

equation system (16) can be carried out with the help of the 
Routh – Hurwitz criterion (for details see [13]). The so-called 
Hurwitz matrix can be constructed from the coefficients of the 
characteristic function:

(14)
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The Hurwitz matrix can be composed as
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where ak refers to the coefficient of λk. The ith sub-determinant 
of the Hurwitz matrix can be denoted by  Δi  and the investi-
gated equilibrium, in our case the rectilinear motion, is asymp-
totically stable if and only if all of the sub-determinants  Δi  
are greater than zero. This criterion can be rephrased according 
to the Linéard  –  Chipart conditions (see in[13]), which state 
that all the roots of the characteristic equation  D(λ) = 0  have 
negative real parts if all of the coefficients of the characteristic 
polynomial have the same sign and the condition

∆
3
0> .

is also fulfilled. These conditions in our case can be expressed as:
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The following assumptions can be taken into account: all of the 
parameters are real and only the parameter a can be negative. 
Moreover the angles  α  and  κ  are less than  π ⁄ 2. Furthermore, 
during the derivation of the last two inequality for a in expres-
sion (22) from inequality (21), we have used another assump-
tion, namely the spring stiffness is larger, than a critical value s

t

cr:

s mgh m
klt

cr = −





cos tan sin .α κ α2

If the spring stiffness is less than this value the rectilinear 
motion is linearly unstable. Or from different point of view, 
a critical grade (gradecr = tan α

cr) can be expressed also for a 
given spring stiffness based on

α
κcr =
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This means, that if the grade is less than this critical value, 
then the rectilinear motion is unstable. Although this statement 
is contrary to our physical sense, the result is in good agree-
ment with the speed dependence of the stability of skateboards 
(see in [2]). Namely, the higher the speed, the more stable the 
skateboard. And in our model, the grade determines the speed 
of the stationary rectilinear motion.

Considering the critical spring stiffness and the positivity 
of the parameters, the first two conditions of (22) are auto-
matically fulfilled, and the remaining ones can be rearranged 
as conditions for the positon of the skater on the board. The 
relevant condition is provided by the last expression of (22):

a mgh kl
mgh m kl kl t

>
−( ) +

2

2

sin

sin tan cos
.

α
α κ α s

Thus, we have a lower boundary for the position, in which 
the critical value is always greater than zero, except the case  
α = 0. Since the slope angle determines the stationary speed 
for a given coefficient  k  of the drag force, the stability can be 
investigated by means of stability charts in the space of  α  and  
a. The structure of the stability charts can be qualitatively dif-
ferent depending on the spring stiffness, namely, two different 
main cases can be considered. First, when the spring is stiff 
enough  (st > mgh)  to stabilize the skater-skateboard system 
even at zero grade angle (i.e. at zero speed), the stability bound-
ary is shown in Fig. 2a. The asymptotically stable domain is 
shaded. The local extremum of the stability boundary can be 
calculated in closed form, namely:

α *

t
s

=








arccos .

mgh

In the other case, when the spring is not stiff enough (st > mgh) 
at zero grade angle, the stability boundary is plotted in Fig. 2b. 

Fig. 2 Structure of the stability chart a) the spring is stiff enough even at zero 
grade angle, b) spring is not stiff enough at zero grade angle

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Whereas the boundary of the stable domain is expressed ana-
lytically (see (25)), the stability limit at infinite grade, which 
corresponds to the slope angle  α = π ⁄ 2 , can be computed too:

a mgh kl
m gh kls

cr

t
α π

κ→
=

+2

2

2
2 tan

.

4 Case study
In this section we are going to investigate a skater - skate-

board system with the realistic parameters of Table 1.

Table 1 Parameters of a skateboard

h [m] m [kg] g [m/s2] st [Nm/rad] l [m] κ [o]

0.85 75 9.81 100 0.3937 63

Our analysis also requires a realistic value for the coefficient 
of the drag force. To determine it, we based our calculation on 
the data of a word speed record.

4.1 Estimation of the coefficient of the drag force
The greatest skateboard speed achieved in standing position 

is 129.94 km/h (see in [11]). It was achieved by a Canadian 
skater in 2012 at Les Éboulements (Quebec, Canada), where 
some parts of the road has 18% grade. Based on these data, k 
can be computed numerically by the expression (15) assuming 
m = 90 kg. So, the drag coefficient is k = 0.335 Ns2m-2. This 
value can be considered as the possible smallest drag coeffi-
cient. Obviously, in normal cases, this value is not realistic, so 
for further investigation we consider it as k = 0.52 Ns2m-2. It 
was chosen based on [14], where the dimensionless drag coef-
ficient was measured for clothed humans, both from sided and 
facing directions in case of small, average and large subjects. 
For the investigation of skateboarding, the sided setup is rel-
evant, and we used the value of the average subjects  (CD = 1.11 
and  AD = 0.38 m2 ). Furthermore, we considered the density of 
the air as 1.225 kg/m3 and we can get this value based Eq. (1).

4.2 The effects of the parameters on the stability
In the following, we are going to focus on the effect of the 

parameters, namely the effect of the height h, the mass m, the 
length 2l of the board and the stiffness  st  of the suspension 
system.

The effects of these parameters are illustrated in stabil-
ity charts in the plane of the grade and the relative standing 
position a/l. The thick solid lines, in Fig. 3, Fig. 4, Fig. 5 and 
Fig. 6, belong to the original parameters (see Table 1), while 
the dashed lines belong to the modified ones.

First, let us look the influence of the skater’s parameters. 
Although, the skater can tune the parameter h easily by means 
of changing his/her pose on the board, this parameter has 

minor effect on the stability boundary. See Fig. 3, where the 
stability chart is very similar for extremely different heights 
(2h) of the skater. But we can say that the stable domain is 
larger when the skater is smaller. This result has good agree-
ment with practical observations, namely, skater often couches 
down instinctively in order to ride faster and safer. Let us note, 
that the height does not have effect on the critical grade, but it 
allows the rider to stand closer to the center of the board.

Fig. 3 Effect of the rider’s height on the stability of the rectilinear motion

One can see in Fig. 4 that the effect of the mass is inverse. 
The higher the mass, the larger the stable domain. Moreover 
the critical grade become smaller. This result has good agree-
ment with the results of previous studies ([2] and [4]), namely, 
the speed makes the skateboarding to be more stable. If the 
mass is higher, the speed of the stationary motion is higher too 
(see expression (15)).

Fig. 4 Effect of the rider’s mass on the stability of the rectilinear motion

Now, we can see that it is more difficult to ride on a skate-
board on a slope if the skater is a child because the mass has 
stronger effect on the size of the stable domain than the height.

Let us focus on the parameters of the skateboard. As it was 
mentioned before, longboards are recommended in practice 

(27)
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for higher speeds, thus, one of the main questions of this study 
is about the effect of the length of the skateboard. Figure 5 
shows the stability boundary for different lengths. One can 
see, that the length of the board has effect only at low grades 
and it is not significant even there. This means, that longer 
boards do not have any advantage in point of view of the linear 
stability at higher speeds.

Fig. 5 Effect of the size of the board on the stability of the rectilinear motion

The most radical effect on the stability chart is generated by 
the stiffness parameter of the board. As it was shown in Fig. 2, 
the structure of the stability chart changes at the critical stiff-
ness value mgh. In Fig. 6, this can be observed too. If the spring 
stiffness is greater than the critical value (st = 250.155 Nm/rad) 
then the rectilinear motion can be stable at very low speed. 
Or from another point of view, the expression for the critical 
spring stiffness  gives positive value for very small slope angles 
in case of realistic parameters.

Fig. 6 Effect of the stiffness of the board suspension system 
on the stability of the rectilinear motion

5 Conclusion
The mechanical model used here can be regarded as an 

extension of the simplest model of the skateboard-skater sys-
tem. The equations of motion were obtained for the downhill 
motion by means of the Gibbs  Appell method and the linear 
stability of the rectilinear motion was analysed with the help of 
the Routh – Hurwitz criterion. 

As it was already discovered in the first paper [1] of the 
topic, the position of the skater has key role and the rectilinear 
motion can be stable if the skater stands before the centre point 
of the board. Here, it was shown that there is a criterion for the 
standing position, which is even stricter, namely a non-negative 
lower limit for the parameter a exist. This stricter criterion is 
valid if the torsional spring stiffness of the suspension system 
is not stiff enough to stabilize the system at zero grade, what is 
the typical case in practice.

In order to obtain a more complex picture, the effects of other 
parameters were also investigated. It was shown that the effect 
of the height of the skater is negligible relative to the effect of 
the mass of the skater. Let us note here, that in our model the 
mass has also effect on the speed of the corresponding station-
ary motion but this effect is not highlighted in the constructed 
stability charts. For example, a kid (with lower mass) can reach 
lower maximal speed on the same slope than an adult if the 
same drag force coefficient is considered. But larger grade can 
lead to such a speed that can stabilize the rectilinear motion.

The parameters of the board were investigated separately. 
It was found, that the centre of gravity must be more ahead in 
case of longboards. Nevertheless, longer boards can be benefi-
cial with respect to other aspects that are not considered in our 
model. For example, the actuation of the board by the human 
control system can be carried out easier, or the position on the 
board can be modified more unlimitedly. This latter aspect can 
also be relevant from aerodynamic viewpoint, i.e., the skater 
can balance against the aerodynamic drag force comfortably.

The stiffness of the suspension system has a qualitative 
effect on the stability of the rectilinear motion. But, this effect 
is important at small grade only.
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