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Abstract
This paper presents the fundamental frequency analysis of 
functionally graded (FG) nanobeams using Ritz method sub-
jected to different sets of boundary conditions. The vibration 
analysis is based on the classical, the first-order and different 
higher-order shear deformation beam theories while includ-
ing rotary inertia. The material properties of FG nanobeams 
are assumed to vary through the thickness according to the 
power-law exponent form. Based on the nonlocal constitutive 
relations of Eringen, the frequencies equations are obtained by 
the weak forms of the governing differential equations. In this 
study, the effects of material distribution, nonlocal parameter, 
beam theories, slenderness ratios and boundary conditions 
on the fundamental frequency are discussed. The analysis is 
validated by comparing the obtained results with the available 
results from the existing literature.
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1 Introduction
Metal and natural materials were commonly used by human 

since epochs. by the time, the need to produce special prod-
ucts for special condition led to the need to develop special 
materials, where rose what is called today composite materi-
als, these materials have significant advantages over ordinary 
materials, they considerably increased the performance of the 
structure (beam, plate, tube, etc...), these multi layered prod-
ucts are a combination of two or more materials with different 
properties to withstand specific conditions but unfortunately 
the effect of some severe conditions such as heat and pressure 
onto materials with different physical properties induce to a 
high level of stress concentrations at the interfaces between 
the altered layers. Research for developing new materials with 
more specific properties has not stopped, in the late of the 80s 
a group of scientists succeeded to discover a way to gather par-
ticles of a structure according to a special method leading to a 
very specific product with a very specific properties that vary 
continuously as a known function of the spatial position, they 
called them Functionally Graded Materials FGM, as their name 
describe, they are materials usually associated with particulate 
composite where the volume fraction of particles varies in one 
or several directions.

The initial development of FGMs is designed to serve as a 
thermal barrier [1]. Typically, these materials are made from 
a mixture of metal and ceramic, or a combination of materi-
als. Where the ceramic component provides high temperature 
resistance due to its low thermal conductivity.

Recently, researches on understanding the dynamic behavior 
of structural elements with FGMs is increasing and FGMs have 
known a large expansion in almost all domains of the indus-
try and are used in very different applications of engineering 
such as in automotive, aerospace, defense industries, and more 
recently in, electronics, nuclear reactors and biomedical.

In order to properly understand and control the material 
properties it is very important to analyze and study the effect of 
free vibrations on mechanical systems, the knowledge of fun-
damental frequencies allows us to avoid resonances by control-
ling the frequencies of the affecting forces [2]. 
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Many theory are applied to study and describe beams behav-
ior, Euler-Bernoulli beam or classical Beam theory (CBT) is 
one of the first well-known theory, in this theory the trans-
verse shear deformation is neglected because it assume that the 
median planes are perpendicular and straight to the section of 
the beam after bending. But this theory is applied only for thin 
beams and does not provide specific solutions for thick beams. 
One other famous beam theory is that Timoshenko beams 
or first-order shear deformation theory (FSDBT), in which 
straight lines perpendicular to the median plane before bend-
ing does not remain perpendicular to the median plane after 
bending, the stress distribution of transverse shear relative to 
the coordinates of thickness is assumed to be constant. Thus, a 
shear correction factor is required to compensate this assump-
tion. However, this theory provides satisfactory results and is 
very effective to study the behavior of beams. Several higher 
order shear deformation theories have been developed in the 
last years considering warping sections and satisfying the zero 
transverse shear stress state of the upper and lower fibers of the 
cross section without a shear correction factor. The well-known 
higher-order beam theories are Parabolic Shear Deformation 
Beam Theory (PSDBT) [3], Trigonometric Shear Deformation 
Beam Theory (TSDBT) [4], Hyperbolic Shear Deformation 
Beam Theory (HSDBT) [5], Exponential Shear Deformation 
Beam Theory (ESDBT) [6], and A New Shear Deformation 
Beam Theory (ASDBT) [7].

Many researchers are interested on the basis of molecular 
dynamics and continuum mechanics. The nonlocal theory of 
Eringen [8-11], which is one of continuum mechanics load size 
models, is widely used. Wang et al. [12] concerned with the use 
of the Timoshenko beam model for free vibration analysis of 
multi-walled carbon nanotubes by using differential quadrature 
method. Reddy [13] applies the Nonlocal theories for bend-
ing, buckling and vibration of Euler-Bernoulli, Timoshenko, 
Reddy and Levinson beams theories. Lu et al. [14] studied 
nonlocal beam models of wave properties of single and double 
walled carbon nanotubes. Reddy and Pang [15] reformulated 
theories of Euler-Bernoulli and Timoshenko for the analysis 
of carbon nanotubes using differential relationship Eringen 
nonlocal model. Aydogdu [16] proposed a generalized nonlo-
cal beam theory to study bending, buckling, and free vibration 
of nanobeams based on Eringen model. Pradhan and Murmu 
[17] developed a single nonlocal beam model to investigate the 
bending and vibration characteristics of a nanocantilever beam. 
Ansari et al. [18] derived the governing partial differential 
equation for a uniform rotating beam incorporating the nonlo-
cal scale effects. Thai and Vo [19] applied a sinusoidal theory 
of non-local shear deformation. Eltaher et al. [20] studied the 
free vibration nanobeams using the finite element method. 
O. Rahmani et al. [21] examined the size effect on vibration of 
functionally graded nanobeams based on nonlocal Timoshenko 
beam theory.

Direct resolution of complex equation system is difficult. A 
typical approach is to seek a solution by approximating the dis-
placement field from several functions that satisfy the bound-
ary conditions. This is called the Ritz method. Algebraic poly-
nomials functions have been employed on the basis of different 
beam theories. It is interesting to note that this technique has 
not been used by researchers to study the vibration problems of 
FG nanobeams.

The objective of this work is to present an analytical model 
of the fundamental frequency of functionally graded (FG) 
nanobeams using Ritz method subjected to different sets of 
boundary conditions. The vibration analysis is according to 
all beams theories, CBT, FSDBT, PSDBT, HSDBT, TSDBT, 
ESDBT and ASDBT, while including rotator inertia. The mate-
rial properties of FG nanobeams are assumed to vary through 
the thickness according to the power-law exponent form. Based 
on the nonlocal constitutive relations of Eringen, the system of 
equations of motion are derived using virtual work’s principle. 
The frequencies equations are obtained by the weak forms of 
the governing differential equations where the displacement 
components of the nanobeam cross-sections are expressed in a 
series of simple algebraic polynomials. The numerical results, 
such as fundamental frequencies, are illustrated in graphical 
and tabular form. The analysis is validated by comparing the 
obtained results with the available results from the existing lit-
erature. In this study, the effects of material distribution, nonlo-
cal parameter, beam theories, slenderness ratios, and boundary 
conditions on the fundamental frequency are discussed.

2 Functionally graded materials
A straight FG nanobeam of length L, width b and thickness 

h, with Cartesian coordinate system (O, x, y, z) having the ori-
gin at O is considered, as shown in Fig. 1.

Fig. 1 Schematic of the FG nanobeam 

We suppose that the effective material properties FG nano-
beam i.e., Young’s modulus (E), Poisson’s ratio (υ) and mass 
density (ρ), vary along the thickness direction (in the z direc-
tion) according to a function of the volume fractions of the 
constituents.

Based on to the rule of mixture, the effective material prop-
erties (P) can be expressed as:

P P V PVU U L L= + (1)
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Where:
PU ,  PL ,  VU  and  VL are the corresponding material properties 
and the volume fractions of the upper and the lower surfaces of 
the nanobeam related by:

V VU L+ = 1

In this study the effective material properties of the FG 
nanobeam are defined by the power-law form introduced by 
Wakashima et al. [22]. The volume fraction of the upper con-
stituent is assumed to be given by:

V z
hU

k

= +






1

2

k  is the power-law exponent  (0 ≤ k ≤ ∞)  which determines the 
material variation profile through the thickness of the namo-
beam as shown in the following Fig. 2.

Fig. 2 Power low variation of the volume fraction Vc of the ceramic  
constituent through the thickness of the FG nanobeam

Using Eqs. (1), (2) and (3), the effective material properties 
of the FG nanobeam can be given as: 

P z P P z
h
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3 Nonlocal beam theory
According to the nonlocal elasticity theory, the stress at a 

given point depends on the strains of the whole continuum [8]. 
This assumption may be written as:

1
2− ∇  =µ σ εC :

Where σ  is the stress tensor, C  is the Hookean elasticity 
tensor, and ε  is the strain tensor. The symbols  ∇2  are the 
Laplacian operator and double dot tensor product. The nonlocal 
parameter  μ = (e0a)2  is a scale factor that depends on the ma-
terial and geometric features. The coefficient  e0  is estimated 
such that the non local elasticity matches the atomistic lattice 
models, and a is the so called internal characteristic lengths [8] 
and [23]. Thus, the general nonlocal constitutive relation for 
nanobeams takes the following form:
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The reduced elastic constants are defined as follows:
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and

where  is the elasticity modulus,  υ  is the Poisson’s ratio,  σxx  is 
the axial normal stress,  σxz  is the shear stress,  εxx  is the axial 
strain and  yxz  is the shear strain. If the nonlocal parameter  is 
zero, we obtain the constitutive relations of the classical beam 
theories.

4 Mathematical modeling
Based on the general shear deformation theory, the axial dis-

placement  u, and the transverse displacement of any point of 
the beam  w  are given as:

u x z t u x t z
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Where  u0  and  w0  represent the axial and the transverse dis-
placement of any point on the neutral axis respectively, while  
φ0  is an unknown function that represents the effect of trans-
verse shear strain on the neutral axis.  f (z)  is the shape function 
which characterizes the transverse shear and stress distribution 
along the thickness of the beam. Different beam theories can be 
obtained by choosing as follows:

CBT f z

FSDBT f z z

PSDBT f z z z
h

TSDBT f z

:

:

:

:

( ) =
( ) =

( ) = −










( )

0

1
4

3

2

2

== 







( ) = 





 −









h z
h

HSDBT f z h z
h

z

ESDB

π
π

sin

: sinh cosh
1

2

TT f z ze

ASDBT f z z

z h

z h ln

:

:

/

/ /

( ) =

( ) = =

− ( )

− ( )

2

2

2

2

3α αα
with

The strain-displacement relations of the general beam theo-
ries are given by:

ε ϕ
xx

u x z t
x

u
x

z w
x

f z
x

=
∂ ( )

∂
=
∂
∂

−
∂
∂

+ ( ) ∂
∂

, ,
0

2

0

2

0

γ ϕxz
u x z t
z

w x z t
x

df z
dz

=
∂ ( )

∂
+
∂ ( )

∂
=

( ), , , ,

0

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)



212 Period. Polytech. Mech. Eng. A. Elmeiche, A. Megueni, A. Lousdad

The governing equations will be obtained by applying vir-
tual work principle:
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Where  NC,  MC,  Msd  and Q are the stress resultants defined as: 
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The resultants denoted with a superscript ‘c’ are the con-
ventional ones of the classical beam theories, where as the 
remaining ones with superscript ‘sd’ are additional quantities 
incorporating the shear deformation effects. By substituting the 
stress–strain relations into the definitions of the force and the 
moment resultants of the present theory, the following constitu-
tive equations are obtained:
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The extensional, coupling, bending and transverse shear 
rigidities are given as follows:
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The work of the external forces when the effect of rotary 
inertia is taken into consideration is written as follows:
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Using principle of virtual work, following governing equa-
tions of the beam are obtained as:

∂
∂

=
∂
∂

−
∂
∂ ∂

+
∂
∂

N
x

I u
t

I w
x t

I
t

c

1

2

0

2 2

3

0

2 3

2

0

2

ϕ

∂
∂

−
∂
∂

=
∂
∂ ∂

−
∂
∂ ∂

+
∂
∂ ∂

+
∂2

2 1

2

0

2 2

3

0

2 4

4

0

2 2 5

3

0

2 3

M
x

I w
t

I u
x t

I w
x t

I
x t

I
c ϕ 22

0

2

ϕ
∂t

∂
∂

− =
∂
∂

−
∂
∂ ∂

+
∂
∂

M
x

Q I u
t

I w
x t

I
t

sd

3

2

0

2 5

3

0

2 6

2

0

2

ϕ

For Ritz method, the amplitudes of vibration are expanded 
in terms of algebraic polynomial functions by the following 
series.
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Where  uj ,  wk  and  φp  are the unknown constant coeffi-
cients to be determined.  ω  is the natural frequency of the FG 
nanobeam and  φj ,  ψk and  Φp  are the admissible functions, 
which must satisfy the essential boundary conditions and can 
be represented as:
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Where  n  is the number of polynomials involved in the 
admissible functions and  p0 ,  q0  as per the six boundary condi-
tions as stated in Table 1.

Table 1 Admissible function indices for different boundary conditions

BCs p0 q0

C–C 2 2

C–S 2 1

C–F 2 0

S–S 1 1

S–F 1 0

F–F 0 0

Using principle of virtual work, following governing equa-
tions of the nanobeam are obtained as:
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The weak forms of differential Eqs. (20), (21), and (22) are 
obtained by integration of these equations with the weighted 
function respectively  φi (x),  ψi (x)  and  Φi (x) (i = 1,2, ...)  
which must satisfy the boundary conditions.

These weak forms are a generalized eigenvalue problem and 
that written as the following form:

K M q[ ] − [ ]( ){ } =ω2
0

Where  [K]  and  [M]  are the stiffness and inertia matrices 
respectively, their order is  [3n×3n],  {q} is the column vec-
tor of unknown coefficients of Eq. (23) of order  {3n×1}. The 
eigenvalue  ω  are solution of the following equation:

det K M[ ] − [ ]( ) =ω2
0

5 Numerical results and discussion
The fundamental frequencies of FG nanobeams subjected 

to different sets of boundary conditions , Clamped–Clamped 
(C–C), Clamped–Simply (C–S), Simply–Simply (S–S), and 
Clamped–Free (C–F) are presented with varying nonlocal 
parameter (μ), material distribution (k), beam theories, slender-
ness ratio (L/h) and boundary conditions.

The shear correction factor is considered as ks = 5/6 for 
FSDBT. Fundamental frequencies are non-dimensionalized 
according to the following relation:

ϖ ω ρ
= L A

E I
U

U

2

Where:
I = bh3

 / 12 is the moment of inertia of the cross section of the 
nanobeam.

In this study the FG nanobeams are made of a ceramic and 
metal mixture whose the properties varies through the thick-
ness according to power-law. The upper side of the nanobeam 

(z = + h/2) is pure ceramic (Alumina), while the lower side 
of the nanobeam (z = − h/2) is pure metal (Aluminum). The 
material properties which used in the present study are given in 
Table 2 and the thickness (h) of FG nanobeam is 1 nm. 

Table 2 Material properties of the FGM constituents

Properties Unit Aluminium (Al) Alumina (Al2O3)

E GPa 70 380

ρ kg/m3 2700 3800

υ - 0.23 0.23

In Table 3 and Fig. 3, the convergence studies for first fun-
damental frequency of C–C FG nanobeam are performed with 
various number of polynomials (n) using different beam theo-
ries with  k = 1  and  μ = 3  for  L/h = 10. It is seen that in 
the Ritz method, the increased number (n) in the displacement 
functions plays a major role in the convergence of the fre-
quencies. The numerical accuracy of fundamental frequency 
is satisfactory when the number of terms in the displacement 
functions is set to 16.

Table 3 Convergence study for C–C FG nanobeam  
with k = 1 and mu=3 for L/h=10

n CBT FSDBT PSDBT ESDBT

2 16.3237 16.3237 16.3237 16.3237

4 15.1393 14.6080 14.6087 14.6120

6 15.0045 14.4087 14.4096 14.1434

8 14.9450 14.3235 14.3246 14.3286

10 14.9147 14.2800 14.2814 14.2856

12 14.8971 14.2548 14.2564 14.2608

14 14.8860 14.2374 14.2410 14.2443

16 14.8785 14.2338 14.2360 14.2406

18 14.8732 14.2325 14.2315 14.2375

Fig. 3 Convergence study for C–C nanobeam 
with k = 1 and mu = 3 for L/h = 10

(20)

(22)

(21)

(24)

(23)
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The non-dimensional fundamental frequency of S–S FG 
nanobeam is calculated and compared with those of Uymaz 
[24] and Thai [25] based on different order beams theories 
(CBT, FSDBT, PSDBT and ASDBT) for the nonlocal param-
eters (μ = 0, 2, 4) with  k = 0. The side of FG nanobeam L is 
assumed to be 10 nm and Poisson’s ratio (υ) is taken as 0.3. 
Comparisons are presented in Table 4 without considering the 
role of Poisson’s ratio in the expression of reduced stiffness 
coefficient (Q11). Good agreement has been observed for all 
values of comparisons.

Table 4 Comparison of non-dimensional fundamental  
frequency (ϖ1) for simply supported FG nanobeams

μ (nm2) Source CBT FSDBT PSDBT ASDBT

0

Ref. [24] 9.8290 9.7159 9.6938 9.6948

Ref. [25] 9.8293 9.7075 9.7075 -

Present 9.8293 9.7134 9.7138 9.7147

2

Ref. [24] 8.9822 8.8791 8.8588 8.8594

Ref. [25] 8.9826 8.8713 8.8714 -

Present 8.9826 8.8769 8.8773 8.8781

4

Ref. [24] 8.3222 8.2267 8.2079 8.2085

Ref. [25] 8.3228 8.2196 8.2197 -

Present 8.3228 8.2250 8.2253 8.2261

In Tables 5-8, the effect of change of power exponent (k) 
and nonlocal parameter (μ) on non-dimensional fundamental 
frequency for different boundary conditions is reported with 
L/h = 10 using different order beam theories (CBT, FSDBT and 
PSDBT). These tables indicate that the maximum fundamen-
tal frequency values are obtained for C–C support conditions. 
Furthermore, the lowest frequency values are obtained for C–F 
support conditions.

The fundamental frequency decreases with increasing the 
power exponent (k). The lowest fundamental frequency values 
are given by a nanobeam pure metal (k → ∞) and the highest 
values are given by a nanobeam pure ceramic (k = 0). 

The fundamental frequency increases with the non local 
parameter (μ) decreasing for boundary conditions C–C, C–S 
and S–S, as shown in Table 5 and 7; except for C–F, the funda-
mental frequency is slightly proportional to non local param-
eter (μ), as confirmed in Table 8.

Table 5 Variation of non-dimensional fundamental frequency (ϖ1) of 
Clamped-Clamped FG nanobeam for L/h = 10

Theory μ k = 0 k = 0.5 k = 1 k = 5 k = 10
Full  
metal

CBT

0 22.8726 19.3912 17.4932 15.0858 14.5083 11.6462

1 21.5521 18.2703 16.4795 14.2079 13.7359 10.9738

2 20.4321 17.3198 15.6203 13.4647 13.1627 10.4035

3 19.4674 16.5012 14.8805 12.8249 12.4184 9.9123

4 18.6254 15.7868 14.2351 12.2668 11.8789 9.4836

5 17.8825 15.1566 13.6659 11.7751 11.3984 9.1053

FSDBT

0 21.6181 18.4319 16.6708 14.2348 13.6883 11.0065

1 20.4058 17.3948 15.7297 13.4322 12.9200 10.3894

2 19.3714 16.5103 14.9275 12.7482 12.2633 9.8629

3 18.4760 15.7451 14.2338 12.1562 11.6944 9.4070

4 17.6916 15.0750 13.6266 11.6377 11.1973 9.0077

5 16.9973 14.4822 13.0895 11.1793 10.7582 8.6543

PSDBT

0 21.6217 18.4507 16.6753 14.0866 13.5237 11.0056

1 20.4088 17.4113 15.7331 13.2957 12.7691 10.3888

2 19.3740 16.5252 14.9302 12.6210 12.1243 9.8625

3 18.4782 15.7587 14.2360 12.0368 11.5657 9.4068

4 17.6934 15.0876 13.6285 11.5250 11.0760 9.0076

5 16.9990 14.4939 13.0911 11.0722 10.6425 8.6542

Table 6 Variation of non-dimensional fundamental frequency (ϖ1) of 
Clamped-Simply FG nanobeam for L/h = 10

Theory μ k = 0 k = 0.5 k = 1 k = 5 k = 10 Full  
metal

CBT

0 15.7675 13.4245 12.2069 10.5824 10.1607 8.0284

1 14.9239 12.7068 11.5540 10.0161 9.6169 7.5989

2 14.2006 12.0911 10.9943 9.5305 9.1506 7.2306

3 13.5718 11.5559 10.5076 9.1084 8.7453 6.9104

4 13.0188 11.0852 10.0796 8.7372 8.3889 6.6288

5 12.5275 10.6673 9.6994 8.4075 8.0723 6.3787

FSDBT

0 15.2720 13.0400 11.8779 10.2352 9.7782 7.7611

1 14.4657 12.3513 11.2497 9.6947 9.2637 7.3515

2 13.7726 11.7592 10.7099 9.2301 8.8212 7.0006

3 13.1689 11.2436 10.2398 8.8255 8.4354 6.6939

4 12.6370 10.7893 9.8258 8.4691 8.0947 6.4241

5 12.1639 10.3856 9.4577 8.1521 7.7929 6.1838

PSDBT

0 15.2688 13.0466 11.8776 10.1750 9.7192 7.7811

1 14.4626 12.3574 11.2493 9.6390 9.2086 7.3697

2 13.7697 11.7647 10.7096 9.1781 8.7694 7.0163

3 13.1661 11.2487 10.2396 8.7764 8.3865 6.7084

4 12.6345 10.7942 9.8256 8.4224 8.0488 6.4372

5 12.1614 10.3902 9.4575 8.1075 7.7486 6.1961
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Table 7 Variation of non-dimensional fundamental frequency (ϖ1)
of Simply -Simply FG nanobeam for L/h = 10

Theory μ k = 0 k = 0.5 k = 1 k = 5 k = 10
Full 

metal

CBT

0 10.1000 8.8090 8.2582 7.3049 6.8045 5.1427

1 9.6357 8.4039 7.8780 6.9683 6.4913 4.9063

2 9.2301 8.0499 7.5459 6.6743 6.2177 4.6997

3 8.8717 7.7372 7.2526 6.4147 5.9761 4.5172

4 8.5520 7.4584 6.9910 6.1831 5.7606 4.3545

5 8.2646 7.2076 6.7559 5.9750 5.5668 4.2081

FSDBT

0 9.9811 8.7109 8.1641 7.1987 6.7014 5.0821

1 9.5224 8.3104 7.7884 6.8671 6.3930 4.8486

2 9.1216 7.9604 7.4602 6.5775 6.1237 4.6445

3 8.7675 7.6513 7.1702 6.3216 5.8857 4.4642

4 8.4516 7.3756 6.9116 6.0935 5.6735 4.3034

5 8.1677 7.1277 6.6792 5.8884 5.4827 4.1588

PSDBT

0 9.9815 8.7127 8.1645 7.1786 6.6823 5.0824

1 9.5228 8.3121 7.7887 6.8480 6.3748 4.8488

2 9.1220 7.9621 7.4605 6.5591 6.1062 4.6447

3 8.7678 7.6528 7.1705 6.3040 5.8690 4.4644

4 8.4520 7.3771 6.9119 6.0765 5.6574 4.3035

5 8.1680 7.1291 6.6794 5.8720 5.4671 4.1589

Table 8 Variation of non-dimensional fundamental frequency (ϖ1) of 
Clamped-Free FG nanobeam for L/h = 10

Theory μ k = 0 k = 0.5 k = 1 k = 5 k = 10
Full  
metal

CBT

0 3.6059 3.0586 2.7614 2.3836 2.3047 1.8360

1 3.6213 3.0717 2.7732 2.3938 2.3145 1.8439

2 3.6372 3.0851 2.7854 2.4043 2.3247 1.8520

3 3.6534 3.0989 2.7978 2.4150 2.3350 1.8602

4 3.6700 3.1131 2.8106 2.4260 2.3457 1.8687

5 3.6871 3.1276 2.8237 2.4374 2.3566 1.8774

FSDBT

0 3.5858 3.0434 2.7483 2.3698 2.2898 1.8258

1 3.6004 3.0558 2.7596 2.3793 2.2989 1.8333

2 3.6155 3.0686 2.7710 2.3891 2.3084 1.8409

3 3.6308 3.0817 2.7828 2.3991 2.3180 1.8487

4 3.6466 3.0951 2.7949 2.4093 2.3279 1.8568

5 3.6628 3.1089 2.8073 2.4199 2.3381 1.8650

PSDBT

0 3.5858 3.0436 2.7484 2.3671 2.2869 1.8258

1 3.6005 3.0561 2.7596 2.3765 2.2960 1.8333

2 3.6155 3.0689 2.7711 2.3862 2.3053 1.8409

3 3.6309 3.0820 2.7829 2.3961 2.3148 1.8488

4 3.6467 3.0955 2.7951 2.4063 2.3247 1.8568

5 3.6629 3.1093 2.8075 2.4168 2.3347 1.8651

It is also seen that the fundamental frequency calculated by 
the classical theory of beams (CBT) is relatively greater than 
those calculated by the first and high order shear deformation 

beam theory, whereas two latter theories (FSDBT and PSDBT) 
gives substantially the same frequencies when the power expo-
nent (k) take very low or very large values (k1 or k → ∞).

Figures 4-7 illustrate the variation of the fundamental fre-
quency according to the material distribution (k) for differ-
ent non local parameter values (μ) under different boundary 
conditions with a constant slenderness ratio L/h = 10. It can 
be observed that, the fundamental frequency decreases rap-
idly where the power exponent (k) is in range from 0 to 2, the 
decrease is medium for k in range from 2 to 5 and it is low for 
k superior to 5 at a constant non-local parameter (μ).

The influence of power exponent (k) on the variation ratio of 
fundamental frequency is important for C–C compared to the 
boundary conditions C–S, S–S and C–F. For example, at  μ = 
5 as the power exponent (k) change from 0 to 10, the variation 
ratio of fundamental frequency reduced by 41.98 % for C–C, 
40.56 % for C–S, 37.06 % for C–F and 34.32 % for S–S. 

The effect of the nonlocality parameter is more significant 
when μ increase from 0 to 3 than that nonlocality parameter (μ) 
in interval between 3 and 5. For example, for S–S at k = 10, the 
fundamental frequency decrease with 77.11 % where μ varies 
from 0 to 3 and 22.89 % where μ varies from 3 to 5.

Fig. 4 Variation of non-dimensional fundamental frequency  
(ϖ1) of Clamped-Clamped FG nanobeam for L/h = 5

Fig. 5 Variation of non-dimensional fundamental frequency 
(ϖ1) of Clamped-Simply FG nanobeam for L/h = 5
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Fig. 6 Variation of non-dimensional fundamental frequency  
(ϖ1) of Simply -Simply FG nanobeam for L/h = 5

Fig. 7 Variation of non-dimensional fundamental frequency  
(ϖ1) of Clamped-Free FG nanobeam for L/h = 5

Tables 9-12 show the variation of the non-dimensional funda-
mental frequency of FG nanobeams with different sets of edge 
supports (C–C, C–F, S–S and C–S) while varying the non local 
parameter (μ) and the slenderness ratio (L/h). This variation is a 
function of all beams theories CBT, FSDBT, PSDBT, HSDBT, 
TSDBT, ESDBT and ASDBT at power exponent k = 1. It’s noted 

that the non-dimensional fundamental frequency increase when 
the value of slenderness ratio (L/h) is increased for the three 
conditions of support C–C, C–S and S–S (Tables 9-11). Further-
more, the increase in fundamental frequency is important when 
the non local parameter (μ) takes superior values. For example, 
the difference between the fundamental frequency of C–S FG 
nanobeam with L/h = 5 and L/h = 20 by TSDBT is 11.48 % for 
μ= 0, 50.07% for μ = 2 and 89.47 % for μ = 5. 

The increase in the slenderness ratio (L/h) has different behav-
iors on the natural frequency of C–F nanobeam, as observed 
in Table 12. It may be noted that the fundamental frequency is 
decreased slightly due to the increase in L/h ratio when the non-
local parameter (μ) is superior to 2 for different beams theories 
exceptionally for CBT the increase is started by μ = 1.

The effect of slenderness ratio (L/h) on the fundamental fre-
quency is very important in the C-C nanobeam case relative to 
other boundary conditions. For instance, the variation of the 
fundamental frequency FG nanobeam with L/h varying from 5 
to 20 by ESDBT and  μ = 3  is 78.75 % for C–C, 64.84 % for 
C-S, 50.58 % for S–S and 01.97 % for C–F. 

The difference between the fundamental frequency of CBT 
and shear deformation theories is considerable when the slen-
derness ratio (L/h) decreased. The fundamental frequency of the 
higher-order theories is a little greater than those of FSDBT for 
any nonlocal parameter (μ) and become almost equal when the 
slenderness ratio (L/h) increases. In the case C-F nanobeam the 
fundamental frequency converge to a single value, (see Table 12). 

Figure 8 describes the manner of variation of the fundamen-
tal frequency for ESDBT according to nonlocal parameters (μ) 
under different boundary conditions with k = 1 and L/h = 5. It 
is noteworthy that, the effect of nonlocal parameters (μ) on the 
fundamental frequency is significant for C-C support compared 
to the other boundary conditions. As μ from 0 to 5, the funda-
mental frequency decreased by 46.69 % for C-C, 45.03 % for 
C-S, 42.08 % for S-S and increased by 09.36 % for C-F.

Table 9 Non-dimensional fundamental frequency (ϖ1) of Clamped-Clamped FG nanobeams with k = 1

L/h μ CBT FSDBT PSDBT HSDBT TSDBT ESDBT ASDBT

5

1 17.2192 14.6324 14.6649 14.6647 14.6734 14.6927 14.6917

2 13.8454 11.9819 11.9992 11.9990 12.0039 12.0165 12.0161

3 11.8882 10.3706 10.3819 10.3818 10.3854 10.3948 10.3946

4 10.5754 9.2647 9.2732 9.2730 9.2758 9.2837 9.2835

5 9.6176 8.4475 8.4542 8.4541 8.4563 8.4633 8.4632

5 8.8796 7.8126 7.8183 7.8182 7.8203 7.8264 7.8263

20

0 17.5730 17.3446 17.3453 17.3454 17.3456 17.3465 17.3466

1 17.3063 17.0833 17.0839 17.0840 17.0842 17.0851 17.0852

2 17.0510 16.8331 16.8336 16.8337 16.8340 16.8348 16.8349

3 16.8064 16.5933 16.5937 16.5938 16.5941 16.5949 16.5950

4 16.5717 16.3631 16.3635 16.3636 16.3639 16.3647 16.3647

5 16.3463 16.1420 16.1423 16.1424 16.1427 16.1435 16.1435
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Table 10 Non-dimensional fundamental frequency (ϖ1) of Clamped- Simply FG nanobeams with k= 1

L/h μ CBT FSDBT PSDBT HSDBT TSDBT ESDBT ASDBT

5

0 12.0153 10.7980 10.9197 10.9189 10.9117 10.9310 10.8978

1 9.8847 8.9477 9.0461 9.0468 9.0425 9.0555 9.0342

2 8.5869 7.8131 7.8841 7.8849 7.8822 7.8922 7.8765

3 7.6926 6.9650 7.0760 7.0766 7.0748 7.0831 7.0712

4 7.0289 6.3719 6.4730 6.4737 6.4722 6.4795 6.4700

5 6.5114 5.8577 6.0012 6.0017 6.0006 6.0071 5.9994

20

0 12.2558 12.1684 12.1689 12.1687 12.1641 12.1694 12.1693

1 12.0829 11.9973 11.9977 11.9976 11.9930 11.9982 11.9981

2 11.9169 11.8330 11.8333 11.8332 11.8288 11.8339 11.8338

3 11.7575 11.6751 11.6755 11.6754 11.6711 11.6760 11.6759

4 11.6041 11.5232 11.5236 11.5235 11.5194 11.5241 11.5240

5 11.4565 11.3770 11.3774 11.3773 11.3703 11.3779 11.3778

Table 11 Non-dimensional fundamental frequency (ϖ1) of Simply - Simply FG nanobeams with k = 1

L/h μ CBT FSDBT PSDBT HSDBT TSDBT ESDBT ASDBT

5

0 8.1596 7.8221 7.8264 7.8264 7.8278 7.8303 7.8303

1 6.9044 6.6200 6.6235 6.6235 6.6247 6.6267 6.6267

2 6.0931 5.8427 5.8457 5.8457 5.8467 5.8485 5.8485

3 5.5137 5.2875 5.2901 5.2901 5.2910 5.2926 5.2926

4 5.0733 4.8654 4.8678 4.8677 4.8686 4.8701 4.8701

5 4.7240 4.5305 4.5327 4.5327 4.5335 4.5348 4.5348

20

0 8.2834 8.2590 8.2590 8.2590 8.2591 8.2592 8.2592

1 8.1830 8.1589 8.1589 8.1589 8.1590 8.1591 8.1591

2 8.0861 8.0624 8.0624 8.0624 8.0624 8.0626 8.0626

3 7.9927 7.9692 7.9692 7.9692 7.9692 7.9694 7.9694

4 7.9023 7.8791 7.8791 7.8792 7.8792 7.8793 7.8793

5 7.8150 7.7921 7.7921 7.7921 7.7921 7.7923 7.7923

Table 12 Non-dimensional fundamental frequency (ϖ1) of Clamped-Free FG nanobeams with k = 1

L/h μ CBT FSDBT PSDBT HSDBT TSDBT ESDBT ASDBT

5

0 2.7443 2.6947 2.6949 2.6949 2.6951 2.6953 2.6953

1 2.7911 2.7325 2.7336 2.7336 2.7339 2.7343 2.7343

2 2.8430 2.7747 2.7768 2.7768 2.7772 2.7778 2.7778

3 2.9014 2.8227 2.8256 2.8256 2.8262 2.8269 2.8269

4 2.9681 2.8779 2.8816 2.8816 2.8823 2.8832 2.8832

5 3.0460 2.9428 2.9472 2.9472 2.9480 2.9491 2.9491

20

0 2.7657 2.7624 2.7624 2.7624 2.7624 2.7624 2.7624

1 2.7687 2.7653 2.7653 2.7653 2.7653 2.7653 2.7653

2 2.7717 2.7683 2.7683 2.7683 2.7683 2.7683 2.7683

3 2.7747 2.7712 2.7712 2.7712 2.7712 2.7713 2.7713

4 2.7777 2.7742 2.7742 2.7742 2.7742 2.7742 2.7742

5 2.7807 2.7772 2.7772 2.7772 2.7772 2.7772 2.7772
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Fig. 8 Variation of non-dimensional fundamental frequency  
of FG nanobeam with nonlocal parameter at L/h=5

6 Conclusion
This paper has presented a free vibration analysis of FG 

nanobeams under different boundary conditions using vari-
ous shear deformation beam theories. Based on the nonlocal 
differential constitutive relation of Eringen, the Ritz method 
is employed to solve the governing equations. The effects of 
material distribution, nonlocal parameter, beam theories, slen-
derness ratios and boundary conditions on the fundamental fre-
quency are examined in detail. The major conclusions of this 
investigation is,

• In the Ritz method, the increased number (n) in the dis-
placement functions plays a crucial role in the conver-
gence of frequency;

• Increasing the value of the power low exponent (k) gen-
erates a decrease of the flexural rigidity.

• The influence of the power exponent, non local param-
eter, transverse shear deformation and slenderness ratio 
on the fundamental frequency value is important for FG 
nanobeams that present the highest stiffness; 

• For short FG nanobeams, the difference between the 
fundamental frequency of classical beam theory and 
those of the first and higher-order shear deformation 
beam theories is considerable;

• The fundamental frequency obtained using the first order 
and higher-order beam theories are almost identical for 
the long FG nanobeams.
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