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Abstract 
This paper is an attempt to compare artificial neural networks 
and response surface methodology for modeling surface rough-
ness and cutting force in terms of better coefficient of determi-
nation (R2), lower root mean square error (RMSE) and model 
predictive error (MPE). Models were developed based on 
three-level Box-Behnken design (BBD) of experiments with 15 
experimental runs composed of three center points, conducted 
on Inconel 718 work material using coated carbide insert with 
cutting speed, feed rate and depth of cut as the process param-
eters under dry environment. Results show that the artificial 
neural network (ANN) compared with RSM is a better reliable 
and accurate approach for predicting and detecting the non-
linearity of surface roughness and cutting force mathematical 
models in terms of correlation and errors. Indeed, the ANN pre-
diction model provides a maximal benefit in terms of precision 
of 10.1% for cutting force (Fv) and 24.38% for surface rough-
ness (Ra) compared with the RSM prediction model.

Keywords 
surface roughness, cutting force, response surface methodol-
ogy, artificial neural network, non linear modeling

1 Introduction 
The Inconel 718 is one of the most important materials 

used in modern industries. In addition of the best properties 
in terms of high strength, corrosion resistance, heat resistance 
and fatigue resistance, the Inconel 718 has, also a low thermal 
conductivity as it is mentioned by Lynch [1]. Certainly, this 
type of alloy is difficult to machine for the following reasons 
as it is presented by Alauddin [2]: High work hardening rates 
at machining, strain rates leading to high cutting forces; abra-
siveness; toughness, gummy and strong tendency to weld to 
the tool with forming the built-up edge; low thermal properties 
leading to high cutting temperatures. However, it has a wide 
variety of applications such as aircraft gas turbines stack gas 
reheaters, reciprocating engines and others. 

In order to respond to the requirements of those applica-
tions, it is very important to forecasting surface roughness and 
cutting force. Consequently, it is necessary to search the best 
modeling approach of these output parameters. To obtain this 
objective, several approaches can be used as well as response  
surface methodology (RSM) and artificial neural network 
(ANN). Response surface methodology (RSM) is considered 
as a quick and useful procedure for the investigation and opti-
mization of complex processes as well as modeling machining 
output parameters. Certainly, Davoodi and Eskandari [3] found 
that response surface methodology represents a better approach 
to predict tool life and productivity when turning of N-155 
iron–nickel-base superalloy. Shihab et al. [4], investigated cut-
ting temperature during hard turning of AISI 52100 alloy steel 
using multilayer coated carbide insert; they concluded that the 
developed RSM model is able to predict cutting temperature 
for different combination of input parameters very close to 
experimental values. Arokiadass et al. [5], used response sur-
face methodology to modeling tool flank wear when end mill-
ing of LM 25 Al/SiCp with carbide tool. They concluded that 
the developed relationship can be effectively used to predict 
flank wear of carbide tool at a confidence level of 95%. Sahoo 
et al. [6], confirmed this conclusion when studying the develop-
ment of flank wear model in turning hardened EN 24 steel with 
PVD TiN coated mixed ceramic insert under dry environment. 
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Moreover, Because of its structured nature, RSM is useful in 
getting insight information (e.g. interactions between different 
components) of the system as it is shown by Desai et al. [7].

In the last two decades, artificial neural network ANN has 
come up as one of the most efficient methods for empirical 
modeling, especially for non-linear systems as well as mod-
eling of output parameters in machining areas. Absolutely, 
Das et al. [8], justified the use of artificial neural network to 
develop relationship between cutting process parameters and 
surface roughness when machining of Al-4.5Cu-1.5TiC Metal 
Matrix Composites, by its capability to detect non-linear rela-
tionships. Moreover, Palavar et al. [9], concluded that the pre-
diction of aging effects on the wear behavior of Inconel 706 
superalloy using ANN, can provide effective results and that 
the method can be effectively used to determine weight loss 
values in the determined parameters with a high coefficient of 
determination value. In addition, the ANN approach can save 
time in experimental processes and reduce costs as it provides 
quicker results.

Several research discuses the accuracy and capability of  
response surface methodology and artificial neural network 
approaches in the status of comparative study. Definitely, in 
their investigation to evaluate machining parameters of hot 
turning of stainless steel (Type 316), Ranganathan et al. [10], 
concluded that the ANN and RSM models are robust and accu-
rate to estimate the surface roughness of the workpiece when 
hot turning of this steel. Besides, the investigation conducted 
by Bachy and Franke [11], for developing mathematical mod-
els by using artificial neural network (ANN) and response sur-
face methodology (RSM), intended for the investigation of the 
effect of laser direct structuring (LDS) parameters on the groove 
dimensions, lap dimensions and the heat effective zone in the 
MID products. Results showed that the ANN model provides 
lower percentage error, which justify the author’s conclusion 
concerning the ANN high accuracy model for predicating than 
the RSM model. Bingöl et al. [12], agreed root mean square 
error (RMSE), coefficient of determination (R2) and absolute 
average deviation (AAD) as criteria of comparison between 
RSM and ANN for the evaluation of heavy metal biosorption 
process. A batch sorption process was performed using Nigella 
sativa seeds (black cumin), a novel and natural biosorbent, to 
remove lead ions from aqueous solution with the process vari-
ables: pH, biosorbent mass and temperature. They concluded 
that the ANN model was found to have a higher predictive 
capability than the RSM model. Maran et al. [13], proposed 
another criterion for comparing RSM and ANN to predict the 
mass transfer parameters of osmotic dehydration of papaya, 
this comparison is conducted in terms of root mean square error 
(RMSE), mean absolute error (MAE), standard error of predic-
tion (SEP), model predictive error (MPE), chi square statistic 
(χ2), and coefficient of determination (R2) based on the valida-
tion data set. The results showed that the adequate trained ANN 

model is found to have higher predictive capability and more 
accurate in predicting as compared to RSM model. Whereas, 
other researchers found that RSM is better than the ANN 
approach in several investigations and studies. Truly, after 
predicting tensile strength of friction stir welded AA7039 alu-
minum alloy joints, Lakshminarayanan and Balasubramanian 
[14], concluded that RSM has a main advantage compared with 
ANN, this advantage consist of its ability to quantify the fac-
tor contributions from the coefficients in the regression model, 
identifying the insignificant main factors and interaction factors 
or insignificant terms in the model. Moreover, in their compari-
son between ANN and RSM approaches for modeling surface 
roughness when turning of Al7075/10/SiCp and Al 7075 hybrid 
composites, Kumar and Chauhan [15], concluded that the ANN 
prediction model produced a greater parentage error than the 
RSM prediction model with (R2) values of 0.99571 and 0.9972 
respectively. 

In this study, a 3 level and 4 factor Box-Behenken (BBD)  
response surface design (RSM) and artificial neural network 
(ANN) based models was developed to predict the relationship 
between the experimental variables (cutting speed, feed rate 
and depth of cut) on surface roughness and cutting force. The 
RSM and ANN approaches are compared in terms of the coef-
ficient of determination (R2), root mean square error (RMSE) 
and model predicted error (MPE). The predicted conversion 
using ANN and RSM models is discussed to determine which 
approach has better accuracy and capability for predicting sur-
face roughness and cutting force when turning of Inconel 718 
with coated carbide tool. 

2 Materials and methods
2.1 Material and experimental procedure

The aim of the current experimental work is to compare 
the response surface methodology (RSM) and artificial neural 
network (ANN) accuracy, and determine whether approach 
provides a superiority, capability and obvious improvement in 
surface roughness and cutting force models in terms of better 
coefficient of determination (R2), lower root mean square error 
(RMSE) and model predictive error (MPE). In order to reach 
this objective, cutting speed, feed rate and depth of cut are cho-
sen as process parameters. The workpiece material used in this 
study was Inconel 718 having a hardness of 35 HRC and the 
chemical composition as shown in Table 1.

Table 1 Chemical composition of workpiece 

Element C Co Mn Fe Sn Mo P Ti

Quantity % 0.08 1 0.35 12.29 0.35 3.3 0.015 1.15

Element S Cu Ni + Co Al Cr Cb+Ta

Quantity % 0.015 0.15 55 0.8 21 5.5
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The workpiece geometry is a cylindrical bar specimen with 
the diameter of 70 mm, length of 350 mm and cutting length of 
20 mm. Straight turning operations have been achieved using a 
6.6 kW spindle power TOS TRENCIN model SN40C lathe dur-
ing dry conditions. The experimental setup is shown in Fig. 1.

Fig. 1 Set-up and design of experiments

Cutting inserts were coated carbide as used with Settineri 
and Lerga [16] and Jawaid et al. [17] with the standard des-
ignation (ISO) of SNGN 120408 with radius nose of 0.8 mm, 
commercialized by Sandvik under GC1025. The tool holder 
used in this experimental study has the standard designation of 
CSBNR2525M12 with the following angles: χr = 45°, α = 6°, γ 
= -6° and λ = -6° as mentioned in Coromant [18]. Surface rough-
ness measurements have been obtained directly on the machine-
tool without disassembling the workpiece, using a roughness 
meter (Surftest 301 Mitutoyo). The tool holder was mounted on 
a three-component piezoelectric dynamometer (Kistler 9257B). 
The measurement chain includes a charge amplifier (Kistler 
5019B130), data acquisition hardware (A/D 2855A3) and graph-
ical programming environment (DYNOWARE 2825A1-1)  
for data analysis and visualization.

2.2 Methods
2.2.1 Response surface methodology approach

Response surface methodology is an empirical and widely 
accepted statistical modeling technique employed for multiple 
regression analysis using quantitative data obtained from prop-
erly designed experiments to solve multivariate equations simul-
taneously as found by Maran et al. [19] and Tebassi et al. [20]. 
RSM approach proceeds with carrying out statistically designed 
experiments, followed by evaluating the coefficients in a math-
ematical relationship, the prediction of response and examining 
the sufficiency of the model. In this approach, the quantitative 
pattern of relationship between desired response and independ-
ent input variables (machining process parameters) can be inter-
preted equally. RSM can represent the direct and interactive 
effects of process parameters through the analysis of variance 
(ANOVA). Moreover, this approach applied in the present work 
is considered as a procedure to identify a relationship between 
independent input process parameters and output data (process 

response), which includes commonly six steps as it is indicated 
by Gaitonde et al. [21] and Tebassi et al. [20]: (1) define the 
independent input variables and the desired output responses, 
(2) adopt an experimental design plan, (3) perform regression 
analysis with the required model of RSM as found by Hessainia 
et al. [22] and Zahia et al. [23] as shown in Eq. (1).

Ω = …( ) +ω εv a f rc p, , , , .

Where Ω, presents the desired response and ω  denotes the 
response function. In the procedure of analysis, the approxima-
tion of  Ω  was proposed using the fitted second-order polyno-
mial regression model which is called the full quadratic model. 
The fellow step (4) is to perform a statistical analysis of vari-
ance (ANOVA) of the independent input variables in order to 
find parameters which affect the response, (5) determine the sit-
uation of the RSM model and decide whether this model needs 
screening variables or not. A Box-Behnken Design (BBD) with 
three factors at three levels and three centered points was used 
to design the experiments as exhibited in Table 2.

Table 2 Assignment for the levels to the factors

Level
Cutting speed
Vc (m/min)

Feed rate
(mm/rev)

Depth of cut
ap (mm)

-1 30 0.08 0.15

0 60 0.12 0.3

1 90 0.16 0.45

The process parameters selected for the experimentation 
were cutting speed, feed rate and depth of cut. The number of 
experiments N required for the development of BBD is defined 
by Maran et al. [24] as:

N k k Cp= − +( )2 1   .

Where k is number of factors and Cp is the number of cen-
tral points. The design included three factors and three cen-
tral points. Consequently, we have 15 runs. A full quadratic 
model was used to fit the experimental data and identify the 
relevant model terms using statistical software (Design Expert 
9 and JMP Pro 10 software). As it is indicated by Hessainia et 
al. [22] and Zahia et al. [23], a quadratic model, which also 
includes the linear model, can be described as:

ω β β β β ε= + + + + <
= = <∑ ∑ ∑0 1

2

1i ii

k
ii ii

k
ij i ji j

k
ijX X X X i jfor .

Where ω  denotes the predicted response , β0 is constant, 
βi, βii and βij are the coefficients of linear, quadratic and cross 
product terms, respectively. Xi and Xj reveal the coded vari-
ables that correspond to the studied machining parameters. The 
surface roughness criterion Ra and cutting force Fv are indi-
cated as ω1  and ω2  respectively, and analyzed as responses.

(1)

(2)

(3)
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In this study, the number of independent parameters (machin-
ing process parameters) is k = 3; and   εij is the error which 
describes the differentiation between predicted and actual val-
ues. The experimental data were analyzed, and ANOVA tables 
were generated. The significance of input parameters (cutting 
speed, feed rate and depth of cut) was evaluated by analysis of 
variance (ANOVA) for each response which includes F-value, 
Pvalu-test and Lack of Fit F-value which evaluates the signifi-
cance relative to the pure error and the model adequacies were 
checked in terms of the values of R2, adjusted-R2, root mean 
square error (RMSE) and model predictive error (MPE).

2.2.2 Artificial neural network approach
Artificial neural network is potentially more accurate and 

can be used as an alternative to the polynomial regression 
based modeling tool, which provides the modeling of complex 
nonlinear relationships as it is concluded by Nagata and Chu 
[25], Ramezani and Afsari [26] and Sarkar et al. [27]. 

Two different ANN was used in this study, one for Ra and 
one for Fv, with a different number of hidden neurons for each. 
The number of neurons in the input layer is fixed as three neu-
rons (cutting speed, feed rate and depth of cut) and the number 
of neurons in the output layer is fixed as one which represents 
the single response Ra or Fv. A neuron (node) is defined as 
a single computational processor, which operates with sum-
ming junction and transfer function. Moreover, according to 
Hagan et al. [28] and Demuth et al. [29], the relations consist 
of weights w and biases b with neurons addressing information. 

The first phase for the training of a neural network is to 
design its topology. This developed topology was designated 
as 3-H-1, which describes three input neurons representing the 
chosen machining process variables (cutting speed, feed rate 
and depth of cut); H represents the number of neurons in a sin-
gle hidden layer and one output neuron representing the cho-
sen output machining process (surface roughness Ra or cutting 
forces Fv). The optimal neural network architecture was cho-
sen between all architectures according to two steps.

First step: Choose of the optimal neural network architec-
ture is done according to Dey and Chakraborty [30] in terms of 
better coefficient of determination and lower root mean square 
error (RMSE) with varying the number of neurons in the single 
hidden layer. Consequently, in this step, the number of neurons 
in the single hidden layer H was known.

Second step: The optimal neural network architecture 
obtained in the precedent step was examined in terms of 
higher coefficient of determination (R2) and lower root mean 
square error (RMSE) with varying the number of iterations. 
The experimental data were divided into a training (10 tests) 
and validation (5tests) with a leaning rate value of (0.01). The 
activation function used in this study is a hyperbolic tangent 
which is a sigmoid function. According to Sall et al. [31], the 

hyperbolic tangent (TanH) transforms values to be between -1 
and 1; its formula is given in Eq. (4), where x is a linear combi-
nation of the X variables.

TanH e
e

x

x=
−
+

2

2

1

1
.

2.2.3 Comparison approach between RSM and ANN 
models

In order to evaluate the goodness of fitting and prediction 
accuracy of the constructed models, coefficients of determina-
tion (R2), performance function error analyses of root mean 
square error (RMSE) and model predictive error (MPE) were 
carried out between experimental and predicted data for sur-
face roughness and cutting force as shown in the research of 
Ramezani [32]. The coefficient of determination (R2), root 
mean square error (RMSE) and model predictive error (MPE) 
are calculated as cited by Rajendra et al. [33] and García-
Gimeno et al. [34] as shown in Eq. (5), Eq. (6) and Eq. (7), 
respectively:
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When, n is the number of experiments; yi,e is the experimen-
tal value of the ith experiment; yi,p is the predicted value of the 
ith experiment which calculated by the model; and yaverage is the 
average value of experimentally determined values. In order 
to study and compare RSM and ANN models and determine 
which model can sufficiently and accurately predict surface 
roughness and cutting forces and according to Sahoo et al. 
[35], values predicted by the RSM and ANN models are plot-
ted against the corresponding actual values for showing their 
ability truthfulness.

3 Results and discussion
3.1 RSM modelling

Table 3 shows the experimental results of surface rough-
ness (Ra) and cutting force (Fv). A statistical analysis was per-
formed with the objective of analyzing the influence of cutting 
speed, feed rate and depth of cut on the obtained outputs, which 
out for a 5% significance level, i.e., for a 95% confidence level.

(4)

(5)

(6)

(7)
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Table 3 Experimental results for surface roughness and cutting force

Run
Vc
(m/min)

ap
(mm)

f
(mm/rev)

Ra
(µm)

Fv
(N)

1 90 0.45 0.12 1.19 89.27

2 90 0.3 0.08 1.2 52.92

3 60 0.3 0.12 1.51 56.17

4 60 0.3 0.12 1.22 59.33

5 60 0.3 0.12 1.18 56.17

6 90 0.3 0.16 1.57 52.55

7 30 0.45 0.12 0.8 101.22

8 30 0.3 0.16 1.5 70.1

9 30 0.15 0.12 0.54 62.75

10 60 0.45 0.08 0.47 80.34

11 90 0.15 0.12 1.41 24.88

12 60 0.15 0.08 0.58 22.25

13 60 0.45 0.16 1.86 91.24

14 30 0.3 0.08 0.46 56.06

15 60 0.15 0,16 0.88 26.91

3.1.1 Surface roughness
Table 4 shows the results of ANOVA corresponding to Ra. 

According to this table, the model F-value of 7.77 implies 
the model is significant. There is only a 1.81% chance that an 
F-value this large could occur due to noise. Values of “Prob > 
F” less than 0.05 indicate model terms are significant, in this 
case Vc, f, Vc*f and ap2 are all significant model terms. Values 
greater than 0.1 indicate the model terms are not significant. 
The “Lack of Fit F-value” of 1.25 implies the Lack of Fit is not 
significant relative to the pure error. There is a 47.42% chance 
that a “Lack of Fit F-value” this large could occur due to noise. 

Table 4 Analysis of variance for Ra

Source
Sum of
Squares

df Mean Square F Value
p-value
Prob > F

Model 2.60328167 9 0.2892535 7.7718020 0.01806635

A-Vc 0.535612 1 0.5356125 14.391093 0.01271199

B-ap 0.103512 1 0.1035125 2.7812234 0.15624955

C-f 1.20125 1 1.20125 32.275760 0.0023537

AB 0.0576 1 0.0576 1.5476243 0.26862586

AC 0.112225 1 0.112225 3.0153150 0.14299472

BC 0.297025 1 0.297025 7.9806099 0.03689108

A^2 0.00641026 1 0.0064102 0.1722338 0.69534095

B^2 0.28262561 1 0.2826256 7.5937210 0.04003978

C^2 0.02314106 1 0.0231410 0.6217641 0.46611624

Residual 0.18609167 5 0.0372183

Lack of Fit 0.121225 3 0.0404083 1.245889 0.47422745

Pure Error 0.06486667 2 0.0324333

Cor Total 2.78937333 14

The perturbation plot in Fig. 2 helps to compare the effect of 
all the factors at a particular point in the design space on surface 
roughness. A steep slope for Vc and f shows that the response 
is sensitive to those factors. Indeed, from Fig. 3 that shows the 
contribution percent of the factors on the response Ra, it can 
be seen that the most significant factor on Ra is the feed rate f, 
which explains, 45 % contribution of the total variation.

The next largest contribution on Ra comes from the cutting 
speed Vc with the contribution of 20 %. Deph of cut ap have 
lower contribution value (4 %).

Fig. 2 Perturbation plot for Ra

Fig. 3 Terms contribution (%) on Ra

When the data are analyzed, the following response func-
tion second order equation for Ra, is obtained in terms of 
actual factors as:

Ra Vc ap f
Vc ap Vc f ap f

= + + +
− − +

−

1 30 0 26 0 11 0 39

0 12 0 17 0 27

0

. . . .

. * . * . *

.0042 0 28 0 079
2 2 2

* . * . *Vc ap f− −

This equation can be used to make predictions about the 
response for given levels of each factor, and its accuracy can be 
evaluated. Certainly, R2 has a value of 0.9333 and adjusted-R2 
of 0.8132. The Adeq Precision of 8.586 measures the signal to 
noise ratio. A ratio greater than 4 is desirable [36]. Consequently, 
a ratio of 8.586 indicates an adequate signal. This model can 
be used to navigate the design space. Root mean square error 
(RMSE) and model predictive error (MPE) are calculated, and 
their values are: 0.1929 and 10.6549 % respectively.

(8)
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3.1.2 Cutting force
According to Table 5, that shows analysis of variance 

(ANOVA) for Fv. The model F-value of 46.87 implies the 
model is significant. There is only a 0.03% chance that an 
F-value this large could occur due to noise. Values of “Prob > 
F” less than 0.05 indicate model terms are significant. In this 
case Vc, ap, f, Vc2 are significant model terms. Values greater 
than 0.1 indicate the model terms are not significant. The “Lack 
of Fit F-value” of 55.82 implies the Lack of Fit is significant. 
There is only a 1.77% chance that a “Lack of Fit F-value” this 
large could occur due to noise. 

Table 5 Analysis of variance for Fv

Source
Sum of
Squares

df
Mean
Square

F Value
p-value
Prob > F

Model 33973.25 9 3774.81 46.87 0.0003

A-Vc 1921.07 1 1921.07 23.85 0.0045

B-ap 22717.53 1 22717.53 282.10 < 0.0001

C-f 8069.58 1 8069.58 100.20 0.0002

AB 222.01 1 222.01 2.76 0.1577

AC 23.57 1 23.57 0.29 0.6117

BC 301.89 1 301.89 3.75 0.1106

A^2 654.85 1 654.85 8.13 0.0358

B^2 90.75 1 90.75 1.13 0.3370

C^2 0.049 1 0.049 6.064E-004 0.9813

Residual 402.66 5 80.53

Lack of Fit 397.90 3 132.63 55.82 0.0177

Pure Error 0.064866 2 0.03243

Cor Total 34375.90 14

The perturbation plot in Fig. 4 for Fv helps to compare the 
effect of all the factors at a particular point in the design space. 
A steep slope for ap and f shows that the response is sensitive 
to those factors.

Fig. 4 Perturbation plot for Fv

Indeed, from Fig. 5 that shows the contribution percent of 
the factors on Fv, it can be seen that the most significant factor 
is the depth of cut ap, which explains 66 % contribution of the 
total variation. The next largest contribution on Fv comes from 
the feed rate f with the contributions of 23 %. Cutting speed has 
a lower contribution value of contribution ratio (6 %). The sec-
ond-order polynomial equation of cutting force Fv is obtained 
in terms of actual factors as shown in Eq. (9)

Fv Vc ap f
Vc ap Vc

= − − +
+ +
130 4 3 03163 50 025 221 00

1 65556 2 02292

. . . .

. * . ** . *

. * . * . *

f ap f
Vc ap f

+

+ + +

1447 91667

0 014797 220 33333 71 875
2 2 2

Fig. 5 Terms contribution (%) on Fv

Model accuracy can be evaluated. Surely, R2 is to 0.9883 and 
adjusted-R2of 0.9672. The Adeq Precision of 23.215 measures 
the signal to noise ratio [36]. A ratio greater than 4 is desirable. 
Consequently, a ratio of 23.215 indicates an adequate signal. 
This model can be used to navigate the design space. Root mean 
square error (RMSE) and model predictive error (MPE) are cal-
culated, and their values are: 8.9739 and 3.5398 % respectively.

3.2 ANN modelling
3.2.1 Surface roughness

The first step of ANN modeling was to optimize a neural 
network with the aim of obtaining an ANN model with a mini-
mal dimension and minimal errors in both training and valida-
tion by using the leaning rate of 0.01. Indeed, this step consists 
in choosing the optimal number of neurons in the single hidden 
layer H in terms of better coefficient of determination (R2) and 

lower root mean square error (RMSE). 
Figure 6 shows that the optimal number of neurons is 4, which, 

explain 0.963805 for training R2 and 0.99999 for validation R2 
with the training root mean square error (RMSE) of 0.073585 
and 0.001520 for validation as shown in Fig. 7. Consequently, 
the optimal architecture is 3-4-1 as shown in Fig. 8.

(9)
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Fig. 6 Coefficient of determination versus the number of neurons  
in the single hidden layer for Ra

Fig. 7 Root mean square error versus the number of neurons  
in the single hidden layer for Ra

Fig. 8 Optimal architecture 3-4-1 for modeling Ra

The second step consists in obtaining the optimal number 
of iterations according to this architecture (3-4-1) in terms of 
better coefficient of determination (R2) and lower root mean 
square error (RMSE). Truly, Fig. 9 shows the variation of the 
coefficient of determination (R2) versus the number of itera-
tions for both training and validation. It can be seen from this 
figure that the number of iterations of 450 is considered as 
optimal, because it can generate the R2 of 0.98926 for training 
and 0.93399 for validation. Likewise, this number of iteration 
results a training root mean square error (RMSE) of 0.04081 
and 0.12261 for validation as shown in Fig. 10. Also, for the 
3-4-1 architecture, with the number of iterations of 450 for 
training, the model predictive error (MPE) calculated accord-
ing to Eq. (7), is 2.37788 %.

3.2.2 Cutting force 
The first step consists in the choosing of the optimal number 

of neurons in the single hidden layer H in terms of better coeffi-
cient of determination and lower root mean square error (RMSE) 
using the leaning rate of 0.01. Figure 11 shows that the optimal 
number of neurons is 8, which explain 0.99988 for training R2 
and 0.99888 for validation R2. In addition, this architecture can 
generate the root mean square error (RMSE) of 0.5578 for train-
ing and 0.76499 for validation as shown in Fig. 12. Consequently, 
the optimal architecture is 3-8-1 as shown in Fig. 13. 

Fig. 9 Coefficient of determination versus the number of iterations using 
3-4-1 architecture for Ra

Fig. 10 Root mean square error versus the number of iterations using 3-4-1 
architecture for Ra

Fig. 11 Coefficient of determination versus the number of neurons in the 
single hidden layer for Fv
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Fig. 12 Root mean square error versus the number of neurons in the single 
hidden layer for Fv

Fig. 13 Optimal architecture 3-8-1 for modeling Fv

The second step consists in obtaining the optimal number 
of iterations according to this architecture (3-8-1) in terms of 
better coefficient of determination (R2) and lower root mean 
square error (RMSE).

Figure 14 shows the variation of the coefficient of determi-
nation versus the number of iterations for both training and val-
idation according to the optimal architecture (3-8-1). It can be 
seen from this figure that the number of iterations of 150 is con-
sidered as optimal, because it can generate the R2 of 0.99979 
for training and 1 for validation. Likewise, this number of 
iteration results a training root mean square error (RMSE) of 
0.63012 and 0.00973 for validation as shown in Fig. 15. Also, 
for the 3-8-1 architecture, the model predictive error (MPE) is 
0.19985 %. This value is obtained after 150 iterations.

3.3 Comparison of RSM and ANN models
The question is: which approximation model is more trustable 

offering better accuracy in fitting experimental data and giving 
a better optimal solution confirmed by experiment? Moreover, 
it is important to reveal the advantages of each methodology 
and differences between them. At this stage, comparison cri-
teria are needed to quantify the difference between values pro-
duced by both models and the actual values. In order to test the 
accuracy of both the ANN and RSM models. The performances 

of constructed ANN and RSM models were measured in terms 
of better coefficient of determination (R2), root mean square 
error (RMSE) and model predictive error (MPE) for surface 
roughness and cutting force. The diagram that compares the 
experimental data versus the predicted RSM and ANN values 
for Ra is shown in Fig. 16. It is observed that the deviations of 
the predicted and experimental data are smaller for ANN model 
compared with RSM model. 

Fig. 14 Coefficient of determination versus the number of iterations using 
3-8-1 architecture for Fv

Fig. 15 Root mean square error versus the number of iterations using 3-8-1 
architecture for Fv

Fig. 16 Comparison between experimental and predicted Ra with RSM and 
ANN models
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Certainly, the obtained R2 for the surface roughness RSM 
model is to 0.9333 and its value for ANN model is to 0.98926. 
This can clarify the capability of ANN model, as shown in 
Fig. 17, which illustrates, the lower residuals in Ra for ANN 
model compared with RSM model. In addition, RMSE and 
MPE values are 0.1929 and 10.6549 % for the surface rough-
ness RSM model. Their values for the surface roughness ANN 
model are 0.04081 and 2.37788 % respectively.

Fig. 17 Comparison between RSM and ANN models residuals for Ra

Relating to cutting force Fv, the diagram that compares the 
experimental data versus the predicted RSM and ANN values is 
shown in Fig. 18. Certainly, the obtained R2 values for the cut-
ting force RSM model and ANN model are: 0.9883 and 0.9997 
respectively. This can clarify the competence of ANN model, 
as shown in Fig. 19, which illustrates, the lower residuals in Fv 
for ANN model compared with RSM model.

Fig. 18 Comparison between experimental and predicted Fv with RSM and 
ANN models

In addition, ANN model presents a good root mean square error 
(RMSE) and model predictive error (MPE) compared with RSM 
model. Really, RMSE and MPE values are 8.9739 and 3.53985 
% for cutting force RSM model. Their values for cutting force 
ANN model are 0.63012 and 0.19985 % respectively. Moreover, 
ANN prediction model offered a maximal benefit in precision of 
10.1% for cutting force Fv and 24.38% for surface roughness Ra 
compared with RSM prediction model as shown in Fig. 20.

Fig. 19 Comparison between RSM and ANN models residuals for Fv

Fig. 20 Benefit in terms of precision percent offered by ANN model com-
pared with RSM model for surface roughness Ra and cutting force Fv

4 Conclusion
This study compares the performance of surface response 

(RSM) and neural network (ANN) methodologies with their 
modeling, prediction and generalization capabilities using the 
experimental data based on the Box-Behnken design for sur-
face roughness and cutting force. The following conclusions 
are drawn from this work:

From analysis of variance (ANOVA) it can be concluded 
that the surface roughness is significantly affected by feed 
rate and cutting speed with the contribution of 45% and 20% 
respectively. The cutting force Fv is significantly affected by 
depth of cut, feed rate and cutting speed with the contribution 
of 66%, 23% and 6% respectively.

From the comparative study, ANN models are found to be 
capable for better predictions of surface roughness and cutting 
force within the range they trained than the RSM models in 
terms of better correlation and lower error. Indeed, the RSM 
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prediction model for Ra presents a coefficient of determination 
(R2), root mean square error (RMSE) and the model predictive 
error (MPE) of 0.9333, 0.1929 and 10.6549%, respectively, 
compared with their values obtained with ANN prediction 
model of 0.98926, 0.04081 and 2.37788% respectively. 

In addition, the RSM prediction model for Fv presents a coef-
ficient of determination (R2), root mean square error (RMSE) 
and the model predictive error (MPE) of 0.9883, 8.9739 and 
3.5398% respectively, their values obtained with ANN model 
are 0.99979, 0.63012 and 0.19985% respectively. Moreover, 
the ANN prediction model provides a maximal benefit in terms 
of precision of 10.1% for Fv and 24.38% for Ra compared with 
the RSM prediction model. 

The approaches used in the present work proved their effi-
ciency in investigating and modeling the machining output 
parameters, such as: surface roughness and cutting force. 
Therefore, the results of this research could be very helpful for 
scientific researchers as well as for mechanical manufacturing 
companies.
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