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Abstract
The major novelty of the paper in the study, post-buckling of 
simply supported FGM beams using various theory, classical 
beam theory (CBT), first-order shear deformation beam theory 
(FSDBT), parabolic shear deformation beam theory (PSDBT) 
and exponential shear deformation beam theory (ESDBT). 
Governing equations of FGM beam for post-buckling problem 
were found by applying Hamilton principle and Navier type 
solution method was used to solve post-buckling problem. It 
is assumed that elasticity modulus is changing in the thick-
ness direction and all other material properties are taken to 
be constant. Variation of elasticity modulus in the thickness 
direction, are described by a simple power law distribution in 
terms of the volume fractions of constituents. The shear effect 
is shown to have a significant contribution to both the buck-
ling and post-buckling behaviors. Results of this analysis show 
that classical and first-order theories underestimate the ampli-
tude of buckling while all higher order theories, considered in 
this study, yield very close results for the static post-buckling 
response.

Keywords
Buckling, Amplitude, Shear deformation, Functionally graded 
beams

1 Introduction
Functionally graded materials (FGMs) are novel, micro-

scopically inhomogenous in which the mechanical properties 
vary smoothly and continuously from one surface to another. It 
has many favorable performances in engineering applications, 
such as high resistance to large temperature gradients, reduction 
of stress concentration and so on. Therefore, FGMs have been 
applied extensively in many situations where large temperature 
gradients are encountered. And the studies of the mechanical 
behaviors of FGM structures under the thermal and mechanical 
loads have being attracted more and more attentions and also 
have become a new research field in solid mechanics. 

A brief overview of recent works about thermo-mechanical 
analysis of functionally graded structures is presented below. 
Several applications of the theory of thermo-elasticity can be 
found in the book by Hetnarski and Eslami [1]. In particular, 
the thermal stress analysis of beams based on Euler–Bernoulli 
assumptions was presented. Beams made of functionally graded 
materials were also investigated. The problem of thermal 
stresses in FGMs was addressed by Noda [2]. The optimal gra-
dation profiles to decrease the thermal stresses in FGMs were 
discussed. The thermoelastic behaviour of functionally graded 
beams was also studied by Chakraborty et al. [3]. A beam 
finite element based on Timoshenko’s theory was developed, 
accounting for an exponential and a power law through-the-
thickness variation of elastic and thermal properties. Zhao et 
al. [4] studied the post-buckling of simply supported rod made 
of functionally graded materials under uniform thermal loading 
using the numerical shooting method. Li et al. [5] studied the 
thermal post-buckling behaviour of a fixed-fixed beam based on 
the Timoshenko beam theory. They found the effect of shear on 
buckling of homogeneous beams and used the shooting method 
to analyze the post-buckling behaviour of FGM beams. Rastgo 
et al. [6] discussed the buckling of functionally graded mate-
rial curved beams under linear thermal loading. They studied 
both the in-plane and out of plane buckling of curved beams. 
Ke et al. [7] presented the post-buckling of a cracked beam for 
hinged–hinged and clamped–hinged edge conditions based on 
the Timoshenko beam theory. Also, Ke et al. [8] presented the 
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free vibration and mechanical buckling of cracked beams using 
the first order shear deformation beam theory for three types of 
boundary conditions.

Recently, considerable interest has also been focused on inves-
tigating the performance of FGM plates. For example, Reddy 
[9] proposed an analytical formulation relied on a Navier’s 
approach using the third-order shear deformation theory and the 
von Karman-type geometric non-linearity. Veland Batra [10, 11] 
introduced an exact formulation based on a power series for ther-
moelastic deformations and vibration of rectangular FGM plates. 
Matsunaga [12, 13] used a two-dimensional global higher-order 
deformation theory to analyze free vibration and buckling of 
FGM plates. In thermal buckling of functionally graded mate-
rial plates Bouazza et al. [14, 15] discussed the thermal buck-
ling of plates based on the classical and first order displacement 
plate theories. They studied three types of thermal loadings for 
critical bucking temperature of plates and found that the classical 
plate theory over-predicts the buckling behaviour of thick plates. 
Also, Bouazza et al. [16, 17] expressed the mechanical buckling 
of plates under three types of mechanical loadings for simply 
supported plates in all edges. Effects of changing plate charac-
teristics, material composition, and volume fraction of constitu-
ent materials on the critical temperature difference of FGM with 
simply supported edges are also investigated. They observed in 
their study that transverse shear deformation has considerable 
effects on the critical buckling temperature of FGM plate, espe-
cially for a thick plate or a plate with large aspect ratio. The static 
response of functionally graded plates subjected to thermal loads 
was addressed by Brischetto et al. [18]. The temperature field 
was determined by solving Fourier’s equation. Different volume 
fractions of the material constituents were considered to evaluate 
the temperature, displacement and stress distributions. Hosseini-
Hashemi et al. [19], have recently proposed a novel exact ana-
lytical approach to free vibration analysis of Levy-type FGM 
rectangular plates, etc. Due to the complexity of mathematics, 
it is in general difficult to obtain the exact solution for all prob-
lems. Therefore, numerical methods have been devised to solve 
such FGMs structural components. Nowadays, the finite element 
method has become the most powerful and reliable tool to ana-
lyze FGM structures [20].

In this study, the nonlinear response of simply supported 
FGM beams is presented. The material properties of the beams 
vary continuously in the thickness direction according to the 
power-law form. The formulations are developed by using 
CBT, FSDBT, PSDBT, and ESDBT. Governing equations were 
found by applying Hamilton’s principle. Navier type solution 
method was used to obtain critical buckling loads. Different 
higher order shear deformation theories, first-order shear defor-
mation beam theory and classical beam theories were used in 
the analysis. In this study, the effects of slenderness ratio, mate-
rial variations, the different formulations and the beam theories 
on the first critical buckling load are examined.

2 Presentation of the study area
2.1 Material properties

Consider a rectangular beam made of a mixture of metal and 
ceramic as shown in Fig. 1. The material in top surface and in 
bottom surface is metal and ceramic respectively. The modulus 
of elasticity E, and the Poisson’s ratio m are assumed as [21]:

E z E V E V
z

c c m c( ) = + −( )
=

1

0
ν ν( )

Where  Ec  and  Em  denote values of the elasticity modulus 
at the top and bottom of the beam, respectively, and  Vc  denotes 
the volume fraction of the ceramic and is assumed as a power 
function as follows:
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Where k is a variable parameter. According to this distribution, 
bottom surface (z = – h/2) of functionally graded beam is pure 
metal, whereas the top surface (z = h/2) is pure ceramics, and 
for different values of k one can obtain different volume frac-
tions of ceramic. 

Where z is the thickness coordinate variable; and  – h ⁄ 2 ≤ z 
≤ h ⁄ 2  where h is the thickness of the beam and k is the power 
law index that takes values greater than or equals to zero.

Fig. 1 Co-ordinates and geometry of functionally graded beam.

Figure 2 shows the variation of volume fractions of ceramic 
in the thickness direction of FGM beam. Here, volume fraction 
for ceramic increases from 0 at z = –h/2 to 1 at z = h/2. 

The state of stress in the beam is given by the generalized 
Hooke’s law as follows:

σ ε τ γx x xz xzQ Q= =
11 55

,

Where  Qij  are the transformed stiffness constants in the 
beam co-ordinate system and are defined as:
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Fig. 2 Volume fraction of ceramic along the thickness direction 

2.2 Governing equations
Assuming that the deformations of the beam are in the x–z 

plane and denoting the displacement components along the x, 
y and z directions by U, V and W, respectively, the following 
displacement field for the beam is assumed on the basis of the 
general shear deformable shell theory presented by Soldatos 
and Timarci [22]:

U x z t u x t zw x t f z u x t

V x z t

W x z t w x

, , , , ,

, ,

, , ,

( ) = ( ) − ′( ) + ( ) ( )
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Here, u and w represent middle surface displacement com-
ponents along the x and z directions, respectively, while u1 is an 
unknown function that represents the effect of transverse shear 
strain on the beam middle surface, and  f (z)  represents the 
shape function determining the distribution of the transverse 
shear strain and stress through the thickness.

Classical beam theory is obtained as a particular case by tak-
ing the shape function as zero. Although different shape func-
tions are applicable, only the ones which convert the present 
theory to the corresponding parabolic shear deformation beam 
theory (PSDBT), first order shear deformation beam theory 
(FSDBT) and exponential shear deformation beam theory 
(ESDBT) are employed in the present study. This is achieved 
by choosing the shape functions as follows:
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According to the small-strain, moderate-rotation approxi-
mations, the nonvanishing strains are given as follows:
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Where  εx  is the normal strain and γxz  is the engineering 
shear strain.

Here the axial displacement u is assumed to be of order w2, 
which is based on the insignificant effect of the inplane inertia, 
see Nayfeh and Mook [23]. Substituting Eq. (5) into Eq. (7) 
yields
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The following stress resultants are introduced [24, 25]:
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Where N and M are the classical well-known force and 
moment stress resultants,  Qs and Ms  are stress resultants asso-
ciated with the shear deformation. Using Hook’s law, the stress 
resultants are expressed in terms of the strains as follows:
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The extensional, coupling and bending rigidities appearing 
in Eq. (10a) are, respectively, defined as follows:
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Moreover, the transverse shear rigidity appearing in 
Eq. (10b) is defined according to
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Where Ks is the shear-correction factor for Timoshenko 
theory (Ks = 5/6) that is equal to unity for higher-order shear 
deformation.

It should be pointed out that the extensional  A11 , coupling 
B11 and bending D11 rigidities are the ones usually appearing 
even in the classical beam theories. Among the additional 
rigidities in Eq. (10a), the one denoted as  E11 is considered as 
additional coupling rigidity while the ones denoted as  F11  and 
H11 are considered as additional bending rigidities.

The total potential energy can be expressed as follows:

V dv N w dxx x xz xz

L

v

= +( ) + ′∫∫
1

2

1

2

2

0

σ ε τ γ

(5)

(7)

(6)

(8)

(9)

(10a)

(10b)

(11)

(12)

(13)



124 Period. Polytech. Mech. Eng. K. Amara, M. Bouazza, B. Fouad

Substituting Eq. (8) into Eq. (13) and noting the definition 
of the stress resultants, the potential energy can be expressed 
as follows:
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The kinetic energy of the FGM beam is given by

T U w dv u zw fu w dv
vv

= +( ) = − ′+( ) +



∫∫

1

2

1

2

2 2

1

2 2ρ ρ

    

Where  ρ  is the mass density per unit volume.
Hamilton’s variational principle states that at two specified 

times t1 and t2 is a stationary point (a point where the variation 
is zero), of the action functional

δ δ δT V W dtnc
z
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Where  δ  is the first variation and  Wnc  is the work done by 
nonconservative forces,  δV  the virtual total potential energy 
and  δT  the virtual kinetic energy of the FGM beam. Applying 
this principle yields the following equations of motion:
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The equations of motion can be expressed in terms of the dis-
placements, u, w  and u1 . To this end, we substitute Eqs. (10a) 
and (10b) into Eqs. (17)–(19) and obtain
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The boundary-value problem governing the static postbuck-
ling response, expressed in terms of stress resultants, can be 
obtained from Eqs. (17)–(19) by setting all time-dependent 
terms equal to zero and disregarding the nonconservative 
forces. The result is:
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As it is evident from Eq. (24), the stress resultant N, which 
is the total axial force exerted on the beam’s cross section, is 
a constant. In the context of linear analysis, where the con-
tribution of the midplane stretching is negligible, the induced 
axial force is simply equal to the externally applied axial load 
at the beam ends. As a matter of fact, the midplane stretching 
introduces a tension force on the beam’s cross section. As a 
result, the total axial force N, which is a constant according 
to Eq. (24), will account for the applied axial force and the 
induced axial force due to midplane stretching. This means that 
for a compressive external axial force N, the stress resultant N 
will be less than the applied force by an amount that is equal to 
tension due to midplane stretching. Consequently, Eq. (25) that 
governs the transverse displacement w will be nonlinear. To 
this end, we express the equations governing the static response 
of the beam in terms of the displacements. Equations (24)–(26) 
can be expressed as follows:
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One notes that Eq. (27) may be solved for the axial displace-
ment u, and hence it can be eliminated from the other two equa-
tions. This will lead to a flexural model that is given in terms of 
only the displacements unknowns w and u1 . It is worth noting 
that this is applicable regardless of the symmetry property of 
the structural laminate. Integrating Eq. (27) with respect to the 
spatial coordinate x yields
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Where c1 is a constant that represents the induced axial 
tension force due to midplane stretching as it will be shown. 
Integrating Eq. (30) once more, we obtain

u x w d B
A
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For the midplane stretching to be significant, the beam ends 
must be restrained [26]. The boundary conditions for the axial 
displacement are assumed as follows:

u = 0 at x = 0; L
The constants  c1  and  c2  are now given by
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Now, Eq. (30) can be rewritten as follows:
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Equation (27) and its first derivative can be expressed as follows:
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Substituting Eqs. (33)–(35) into Eqs. (28) and (29), we obtain
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Where  β  is a constant defined by
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In view of Eqs. (10a) and (10b), the stress resultants M and 
Ms are given by
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These two equations can be solved for ws and u’
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boundaries and obtain
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With ξ = 0, L
Since F11 , H11 , and D11  do not vanish, the boundary condi-

tions in terms of the displacements can be expressed as follows:

w u x L= ′ = =0 0 0
1

and at ,

The first buckling mode was proofed to be the only sta-
ble equilibrium position. For simply supported boundary con-
ditions outlined above, the following displacement field is 
assumed:

w x a x
L

( ) = sinπ

u x b x
L1 ( ) = cosπ

Where a and b are unknowns to be determined. Substituting 
Eqs. (43) and (44) into Eqs. (36) and (37), yields three solu-
tions: the first is the trivial solution, a = 0, that corresponds to 
the equilibrium position in the prebuckling state and the other 
two solutions, a ≠ 0, correspond to the stable equilibrium posi-
tions in the postbuckling state. As it is well-known, the preb-
uckling equilibrium position becomes unstable beyond the 
state of buckling. The postbuckling response can be obtained 
as follows:
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We note that the buckling amplitude a corresponds to the 
maximum buckling level that occurs at the midspan of the 
beam where x = L/2.

On the other hand, the critical buckling load, N cr , can be 
obtained by solving the linear counterpart of Eq. (36). The 
result is

N
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3 Results and discussion
The constituent material properties of the FGM beam were 

chosen as follows [14-19]:
Al:       Em = 70GPa ; νc = 0.3;
Ceramic: Ec = 380GPa ; νc = 0.3.
The nondimensional critical buckling load, Pcr , is defined 

as follows:

(31)
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P L
bh E

Ncr

m

cr=
2
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Non-dimensional first critical buckling load were given in 
Tables 1-5 for L/h = 5, 10, 20, 50 and 100, respectively, for 
different theories and for different material distributions. It 
is seen from the tables that critical buckling load is decreas-
ing with increasing k and increasing with increasing L/h 
ratios. Difference between the critical buckling load predicted 
by CBT and shear deformation theories is decreasing with 
increasing L/h ratio.

Table 1 Comparison of nondimensional first critical buckling load with 
different theories for different material distribution (L/h = 5, a = 0).

Theory Ceramic k = 0.3 k = 1 k = 3 k = 5 k = 10 Metal

CBT 4.906 3.812 2.905 2.305 2.047 1.688 0.904

FSDBT 4.485 3.498 2.655 2.069 1.824 1.4999 0.826

PSDBT 4.4097 3.447 2.611 1.996 1.741 1.433 0.812

ESDBT 4.413 3.721 2.613 1.995 1.737 1.433 0.813

Table 2 Comparison of nondimensional first critical buckling load with 
different theories for different material distribution (L/h = 10, a = 0).

Theory Ceramic k = 0.3 k = 1 k = 3 k = 5 k = 10 Metal

CBT 4.906 3.812 2.905 2.305 2.047 1.688 0.904

FSDBT 4.794 3.728 2.838 2.241 1.987 1.636 0.883

PSDBT 4.772 3.714 2.825 2.219 1.961 1.616 0.879

ESDBT 4.773 3.788 2.826 2.219 1.9598 1.616 0.879

Table 3 Comparison of nondimensional first critical buckling load with 
different theories for different material distribution (L/h = 20, a = 0).

Theory Ceramic k = 0.3 k = 1 k = 3 k = 5 k = 10 Metal

CBT 4.906 3.812 2.905 2.305 2.047 1.688 0.904

FSDBT 4.878 3.791 2.888 2.288 2.032 1.674 0.899

PSDBT 4.872 3.787 2.885 2.283 2.025 1.669 0.897

ESDBT 4.872 3.806 2.885 2.282 2.025 1.669 0.898

Table 4 Comparison of nondimensional first critical buckling load with 
different theories for different material distribution (L/h = 50, a = 0).

Theory Ceramic k = 0.3 k = 1 k = 3 k = 5 k = 10 Metal

CBT 4.906 3.812 2.905 2.305 2.047 1.688 0.904

FSDBT 4.902 3.809 2.902 2.302 2.045 1.685 0.903

PSDBT 4.901 3.808 2.902 2.301 2.044 1.685 0.903

ESDBT 4.901 3.811 2.902 2.301 2.044 1.685 0.903

Table 5 Comparison of nondimensional first critical buckling load with
different theories for different material distribution (L/h = 100, a = 0).

Theory Ceramic k = 0.3 k = 1 k = 3 k = 5 k = 10 Metal

CBT 4.906 3.812 2.905 2.305 2.047 1.688 0.904

FSDBT 4.905 3.811 2.904 2.304 2.047 1.687 0.904

PSDBT 4.905 3.811 2.904 2.304 2.047 1.687 0.904

ESDBT 4.905 3.812 2.904 2.304 2.046 1.6867 0.904

It is worth investigating the significance of shear defor-
mation not only on the critical buckling load but also on the 
resulting postbuckling response, which is considered to be the 
contribution of this study. The postbuckling response of simply 
supported FGM beams using Euler–Bernoulli’s beam theory, 
Timoshenko’s theory, and some higher-order shear deforma-
tion theories is presented.

Figures 3-4 shows the critical buckling load Pcr( )  vs the 
nondimensional amplitude for different values of volume frac-
tion exponent k (L/h = 5). It is seen that the nondimensional 
axial load increases monotonically as the nondimensional 
amplitude increases. The values of the nondimensional axial 
load calculated by using the some higher-order shear defor-
mation theories are lower than those calculated by using the 
Timoshenko’s theory, which is lower than those calculated by 
using the Euler–Bernoulli’s beam theory.

Figures 5-6 shows the variation trend of nondimensional axial 
load with length-to-thickness ratios L/h for different values of 
material gradient index k. It is observed that with increasing 
the length-to-thickness ratios L/h from 5 to 20, the nondimen-
sional axial load also increases steadily, whatever the material 
gradient index k is. It is also found that transverse shear defor-
mation has some effect on the buckling load. As the length-to-
thickness ratios increases, the difference between the values of 
higher-order shear deformation theories, Timoshenko’s theory 
and Euler-Bernoulli’s beam theory decreases.

As can be noted from the figures, the length-to-thickness 
ratio is a crucial parameter in the analysis of postbuckling of 
functionally graded beams. As Equation (6) shows the signif-
icance of this parameter in determining the critical buckling 
load, these figures show that it also has a significant effect on 
the postbuckling response. As the higher-order shear deforma-
tion theories show very close results in the course of the critical 
buckling load, they also yield similar postbuckling response. 
We also note that the first-order shear deformation theory 
always underestimates the amplitude of buckling compared 
with higher-order theories. 

(47)
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Fig. 3 Variation of the maximum buckling with the applied 
axial load for L/h = 5 and k = 1.

Fig. 4 Variation of the maximum buckling with the 
applied axial load for L/h = 5 and k = 5.

Fig. 5 Variation of the maximum buckling with the length-
to-thickness ratio for a = 0.1 and k = 1.

Fig. 6 Variation of the maximum buckling with the 
length-to-thickness ratio for a =0.1 and k = 5.

4 Conclusion
In the present paper, equilibrium and stability equations 

for a simply supported rectangular functionally graded beam 
are obtained using the classical, first-order, and higher-order 
shear deformation theories, with the assumption of power law 
composition for the constituent materials. Closed form solu-
tions for the critical buckling load and static postbuckling 
response of beams are presented. Numerical results show the 
significant effect of the shear deformation on the buckling and 
postbuckling responses of moderately thick beams or beams 
made of functionally graded materials. For instance, the critical 
buckling loads predicted by the classical beam theory and first-
order shear deformation theory are underestimated. The effect 
of shear deformation on the static postbuckling response is also 
investigated. Using the first-order and some higher-order shear 
deformation theories, the amplitude of buckling is found to 
be much higher than its value predicted by the classical beam 
theory. It is also found out that higher-order shear deformation 
theories considered in this study have led to the same results 
for buckling and postbuckling responses. Based on the post-
buckling response, one can conclude that the effect of the shear 
deformation has considerable effect on the critical buckling 
load of functionally graded beam, especially for a thick beam.

Acknowledgement
The project presented in this article is supported by the 

University Centre of Ain Temouchent, University of Sidi Bel 
Abbes and University of Bechar.



128 Period. Polytech. Mech. Eng. K. Amara, M. Bouazza, B. Fouad

References
[1] Hetnarski, R. B., Eslami, M. R. "Thermal stresses – advanced theory and 

applications." Springer, 2009. DOI: 10.1007/978-1-4020-9247-3
[2] Noda, N. "Thermal stresses in functionally graded materials." Journal of 

Thermal Stress. 22(4-5), pp. 477-512. 1999.
 DOI: 10.1080/014957399280841
[3] Chakraborty, A., Gopalakrishnan, S., Reddy, J. N. "A new beam finite 

element for the analysis of functionally graded materials." International 
Journal of Mechanical Sciences. 45(3), pp. 519-539. 2003.

 DOI: 10.1016/s0020-7403(03)00058-4
[4] Zhao, F. Q., Wang, A. M., Liu, H. Z. "Thermal post-buckling analyses of 

functionally graded material rod." Applied Mathematics and Mechanics. 
28(1), pp. 59-67. 2007. DOI: 10.1007/s10483-007-0107-z

[5] Li, S. R., Zhang, J. H., Zhao, Y. G. "Thermal post-buckling of func-
tionally graded material Timoshenko beams." Applied Mathematics and 
Mechanics. 27(6), pp. 803-810. 2006. DOI: 10.1007/s10483-006-0611-y 

[6] Rastgo, A., Shafie, H., Allahverdizadeh, A. "Instability of curved 
beams made of functionally graded material under thermal loading." 
International Journal of Mechanics and Materials in Design. 2(1-2), pp. 
117-128. 2005. DOI: 10.1007/s10999-005-4446-3

[7] Ke, L. L., Yang, J., Kitipornchai, S. "Postbuckling analysis of edge 
cracked functionally graded Timoshenko beams under end-shortening." 
Composite Structures. 90(2), pp. 152-160. 2009.

 DOI: 10.1016/j.compstruct.2009.03.003
[8] Ke, L. L., Yang, J., Kitipornchai, S., Xiang, Y. "Flexural vibration and 

elastic buckling of a cracked Timoshenko beam made of functionally 
graded materials." Mechanics of Advanced Materials and Structures. 
16(6), pp. 488-502. 2009. DOI: 10.1080/15376490902781175

[9] Reddy, J. N. "Analysis of functionally graded plates." International 
Journal for Numerical Methods in Engineering. 47, pp. 663-684. 2000.

 DOI: 10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8
[10] Vel, S. S., Batra, R. C. "Exact solution for thermoelastic deformations 

of functionally graded thick rectangular plates." AIAA Journal. 40, pp. 
1021-1033. 2002. DOI: 10.2514/3.15212

[11] Vel, S. S., Batra, R. C. "Three-dimensional exact solution for the vibra-
tion of functionally graded rectangular plates." Journal of Sound and 
Vibration. 272, pp. 703-730. 2004. DOI: 10.1016/s0022-460x(03)00412-7

[12] Matsunaga, H. "Free vibration and stability of functionally graded 
plates according to a 2-D higher-order deformation theory." Composite 
Structures. 82(4), pp. 499-512. 2008.

 DOI: 10.1016/j.compstruct.2007.01.030
[13] Matsunaga, H. "Thermal buckling of functionally graded plates accord-

ing to a 2D higher-order deformation theory." Composite Structures. 
90(1), pp. 76-86. 2009. DOI: 10.1016/j.compstruct.2009.02.004

[14] Bouazza, M., Tounsi, A., Adda-Bedia, E. A., Megueni, A. "Thermal 
buckling behavior of functionally graded material." Journal of Materials 
Science and Technology. 18(3), pp. 155-170, 2010.

[15] Bouazza, M., Tounsi, A., Adda-Bedia, E. A., Megueni, A. "Stability anal-
ysis of functionally graded plates subject to thermal loads." In: Shell-like 
Structure. pp. 669-680. Springer, 2011.

 DOI: 10.1007/978-3-642-21855-2_44

[16] Bouazza, M., Tounsi, A., Adda-Bedia, E. A., Megueni, A. "Thermoelastic
 stability analysis of functionally graded plates: An analytical approach." 

Computational Materials Science. 49(4), pp. 865-870. 2010.
 DOI: 10.1016/j.commatsci.2010.06.038
[17] Bouazza, M., Ouinas, D., Abdelaziz, Y., Hamouine, A. "Buckling of thin 

plates under uniaxial and biaxial compression." Journal of Materials 
Science and Engineering B. 2(8), pp. 487-492. 2012.

[18] Brischetto, S., Leetsch, R., Carrera, E., Wallmersperger, T., Kröplin, B. 
"Thermomechanical bending of functionally graded plates." Journal of 
Thermal Stress. 31(3), pp. 286-308. 2008.

 DOI: 10.1080/01495730701876775
[19] Hosseini-Hashemi, Sh., Fadaee, M., Atashipour, S. R. "A new exact 

analytical approach for free vibration of Reissner–Mindlin function-
ally graded rectangular plates." International Journal of Mechanical 
Sciences. 53(1), pp. 11-22. 2011. DOI: 10.1016/j.ijmecsci.2010.10.002

[20] Reddy, J. N., Chin, C. D. "Thermo mechanical analysis of functionally 
graded cylinders and plates." Journal of Thermal Stresses. 21(6), pp. 
593-626. 1998. DOI: 10.1080/01495739808956165

[21] Praveen, G. N., Reddy, J. N. "Nonlinear transient thermoelastic analysis 
of func- tionally graded ceramic-metal plates." International Journal of 
Solids and Structures. 35(33), pp. 4457-4476. 1998.

 DOI: 10.1016/s0020-7683(97)00253-9
[22] Soldatos, K. P., Timarci, T. "A unified formulation of laminated compos-

ite, shear deformable, five degrees of freedom cylindrical shell theories." 
Composite Structures. 25(1-4), pp. 165-171. 1993.

 DOI: 10.1016/0263-8223(93)90162-j
[23] Nayfeh, A. H., Mook, D. T. "Nonlinear oscillations." Wiley, New York. 

1979.
[24] Hyer, M. W. "Stress analysis of fiber-reinforced composite materials." 

McGraw-Hill. 1998.
[25] Nayfeh, A. H., Emam, S. A. "Exact solution and stability of postbuck-

ling configurations of beams." Nonlinear Dynamics. 54(4), pp. 395-408. 
2008. DOI: 10.1007/s11071-008-9338-2

[26] Croce, L. D., Venini, P. "Finite elements for functionally graded 
Reissner–Mindlin plates." Computer Methods in Applied Mechanics and 
Engineering. 193(99-11), pp. 705-725. 2007.

 DOI: 10.1016/j.cma.2003.09.014
[27] Natarajan, S., Baiz, P. M., Bordas, S., Rabczuk, T., Kerfriden, P. "Natural 

frequencies of cracked functionally graded material plates by the extend-
ed finite element method." Composite Structures. 93(11), pp. 3082-3092. 
2011. DOI: 10.1016/j.compstruct.2011.04.007

[28] Reddy, J. N. "Mechanics of laminated composite plates." CRC Press, 
Boca Raton. 1997.

[29] Timarci, T., Soldatos, K. P. "Comparative dynamic studies for symmet-
ric cross-ply circular cylindrical shells on the basis of a unified shear 
deformable shell theory." Journal of Sound and Vibration. 187, pp. 609-
624. 1995. DOI: 10.1006/jsvi.1995.0548

[30] Zhen, W., Wanji, C. "A higher-order theory and refined three-node tri-
angular element for functionally graded plates." European Journal of 
Mechanics A/ Solids. 25(3), pp. 447-463. 2006.

 DOI: 10.1016/j.euromechsol.2005.09.009

http://dx.doi.org/10.1007/978-1-4020-9247-3
http://dx.doi.org/10.1080/014957399280841
http://dx.doi.org/10.1016/s0020-7403(03)00058-4
http://dx.doi.org/10.1007/s10483-007-0107-z
http://dx.doi.org/10.1007/s10483-006-0611-y
http://dx.doi.org/10.1007/s10999-005-4446-3
http://dx.doi.org/10.1016/j.compstruct.2009.03.003
http://dx.doi.org/10.1080/15376490902781175
http://dx.doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8
http://dx.doi.org/10.2514/3.15212
http://dx.doi.org/10.1016/s0022-460x(03)00412-7
http://dx.doi.org/10.1016/j.compstruct.2007.01.030
http://dx.doi.org/10.1016/j.compstruct.2009.02.004
http://dx.doi.org/10.1007/978-3-642-21855-2_44
http://dx.doi.org/10.1016/j.commatsci.2010.06.038
http://dx.doi.org/10.1080/01495730701876775
http://dx.doi.org/10.1016/j.ijmecsci.2010.10.002
http://dx.doi.org/10.1080/01495739808956165
http://dx.doi.org/10.1016/s0020-7683(97)00253-9
http://dx.doi.org/10.1016/0263-8223(93)90162-j
http://dx.doi.org/10.1007/s11071-008-9338-2
http://dx.doi.org/10.1016/j.cma.2003.09.014
http://dx.doi.org/10.1016/j.compstruct.2011.04.007
http://dx.doi.org/10.1006/jsvi.1995.0548
http://dx.doi.org/10.1016/j.euromechsol.2005.09.009

	1 Introduction
	2 Presentation of the study area 
	2.1 Material properties 
	2.2 Governing equations

	3 Results and discussion
	4 Conclusion 
	Acknowledgement
	References 

