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Abstract
Dam-break turbulent flow interacting with obstacles is sim-
ulated with the VOF method implemented in an in-house 
unstructured-grid finite-volume Navier-Stokes code. A special 
attention is paid to prediction of separation phenomena using 
low-Re computational grids that provide full resolution of vis-
cous sublayers on the bottom and side confining walls, if any. 
Some original developments aimed at improvement of the VOF 
method robustness for such kind of flows are presented. The 
test case considered is interaction of the dam-break induced 
water stream with a triangular obstacle. Computations under 
conditions of experiments by Soares-Frazao (2007) have 
been carried out on the base of 2D and 3D formulations. It is 
shown that action of the bottom wall friction leads to forma-
tion of one or two separation “bubbles”, depending on the 
flow development phase, and to occurrence of associated hills 
at the free surface, which are observed in experimental pho-
tos as well. Taking into account presence of side walls of the 
experimental channel results in solutions with a considerably 
3D shape of the computed free surface, and its side view much 
better agrees with the experimental photos than that given by 
2D solutions. Moreover, local-in-time separation of the flow 
from the side walls is predicted with the 3D formulation.
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1 Introduction
Dam-break flows or other impact single-wave flows may 

cause damage of civil and industrial buildings and constructions. 
For the sake of the damage mitigation or minimization such kind 
of flows must be well studied including all the aspects of their 
interaction with different obstacles. 

To date experimental data is available for several model dam-
break flows that interact with obstacles having different shape 
(triangular – [1, 2], trapezoidal – [3, 4], vertical wall – [5, 6] and 
others). As a rule, experimental works provide a set of photos 
showing free surface configuration for different time instants.

Currently experimental studies are being displaced more 
and more by numerical simulation applicable to a wide variety 
of flows. Different numerical models have different computa-
tional costs and areas of applicability. According to this trend, 
experiment is increasingly used as a data source for validation 
of mathematical models and computational tools. Sure, this 
statement is completely applicable to the problems attributed 
to the dam-break flows. 

Traditionally numerical modeling of a single wave propaga-
tion and its interaction with different obstacles is performed 
using a method of shallow water equations (SWE) (see for 
example [1, 7-10]), which provides a proper prediction of 
unsteady areas of water raise before the obstacles (positions of 
these areas and their height). However, the SWE method is not 
capable to reproduce details of wave-obstacle interaction, such as 
overturning (breaking) of a negative wave, which appears when 
a stream is fully or partly reflected by an obstacle, and fails to 
predict accurately pressure distribution over walls of the obstacle 
(especially in case of bluff obstacles). As well, as pointed in some 
of the aforementioned contributions, the SWE method does not 
predict accurately the propagation speed of the main intensive 
wave and reflected waves, and does not reproduce details of their 
free surface shape.

Alternative to the SWE approach is solving the full three-
dimensional (3D) or two-dimensional (2D) Navier-Stokes (NS) 
equations, or the Reynolds Averaged Navier-Stokes equations 
(RANS), if turbulence is considered as a significant factor. 
Capabilities of the SWE and NS approaches are compared, in 
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particular, in [3] and [11]. Computational results obtained via 
solving the Navier-Stokes equations for dam-break flow inter-
acting with different obstacles can be found in [2-5, 12, 13].

Separation zone may occur at front side of an obstacle. Such 
a zone can be seen, in particular, in the 2D velocity field com-
puted with code Flow-3D for a model dam-break flow interact-
ing with a trapezoidal obstacle [3]. Apparently, appearance of 
this zone is caused by an adverse pressure gradient occurring 
when the flow goes up at a front side of the obstacle.

Application of numerical methods for analysis of such a com-
plicated flow like the intensive single-wave interaction with an 
obstacle requires a justified assurance that no scheme factors are 
affecting considerably a solution. This requirement is related to 
both the schemes used for prediction of free surface evolution and 
to the approaches employed for near-wall layer treatment.

Typically, the flows under consideration are characterized 
by high Reynolds numbers, and are often (in most cases) mod-
eled using one or another turbulence model. Here it should be 
noted that the majority of the previous computations of free 
surface flow developing over a wall were performed with 
application of the standard wall function technique (using so-
called high-Re computational grids) to satisfy no-slip condition 
on the solid wall or even with prescribing slip condition. It is 
well known, however, that the standard wall functions do not 
perform well in case of boundary layer separation caused by 
adverse pressure gradient.

Nowadays the most popular approach for free surface tracking 
is the Volume-of-Fluid (VOF) method [14]. It allows perform-
ing computations in cases of strong deformations of free surface 
including the case of wave breaking. In this method free surface 
position is determined by space distribution of so-called marker-
function presenting volume fraction of fluid. Marker-function 
evolution is governed by a convective transport equation, and the 
quality of numerical schemes used for approximation of this 
equation affects directly the free surface artificial smearing or/
and deformation.

It is well known that application of conventional schemes 
for convective flux evaluation is not suitable for solution of the 
marker-function equation as it leads to smearing of a transitional 
area, where the fluid volume fraction must vary rapidly from zero 
to unity, over plenty computational cells. There are several spe-
cialized (so-called “compressive”) numerical schemes proposed 
in literature for approximation of this equation, for example 
HRIC [15], CICSAM [16] and M-CICSAM scheme [17].

The present work, extending studies reported in [18], is 
aimed to development and application of 3D numerical tech-
niques for simulation of a dam-break turbulent flow interact-
ing with an obstacle. Some original developments aimed at 
improvement of the VOF method robustness for such kind of 
flows are presented. A special attention is paid to prediction of 
separation phenomena using low-Re computational grids that 
provide full resolution of viscous sublayers on the bottom and 

confining side walls. Results of 2D and 3D computations per-
formed for a test configuration with a triangular obstacle are 
presented and discussed.

2 Computational method
Present developments and computations are based on using 

an in-house unstructured-grid finite-volume Navier-Stokes 
code called Flag-S. In this code the VOF method is used for 
free surface tracking, and the SIMPLEC algorithm is used for 
pressure-velocity coupling in computations of incompressible 
fluid motion. Note also that all computational results presented 
below were obtained without taking into account effects of sur-
face tension on the gas-liquid interface.

2.1 VOF method
As mentioned in Introduction, in the framework of the VOF 

method [14] free surface position is determined by spatial 
distribution of so-called marker-function C, which in fact is 
volume fraction of fluid in a computational grid cell: С = 1 – 
cell contains only liquid, С = 0 – cell contains only gas. It 
is assumed that the free surface coincides with an isosurface 
C = 0.5. Herewith, liquid and gas can be treated as a single 
fluid having variable material properties defined as follows 
(this approach is called one fluid formulation):

ρ ρ ρ= −( )C C gl
+ 1

µ µ µ= + −( )C C gl
1

Governing equations for this effective fluid motion are 
solved throughout the entire computational domain and no 
boundary conditions at the gas-liquid interface are needed.

To apply the finite-volume discretization method, the govern-
ing equations are written in a conservative form. Conservative 
form of the momentum equation is given by:

∂
∂

+∇⋅( ) = −∇ +∇⋅ ∇( ) +ρ ρ µ ρv
t

vv p v g

The equation governing convective transport of the fluid 
volume fraction can be also transformed to a conservative form 
(4) using continuity equation (5) applicable for incompressible 
liquid and gas.

∂
∂

+∇⋅( ) =C
t

Cv 0

∇⋅ =v 0

According to the finite-volume technique, discretized forms 
of these equations are as follows (summation is performed over 
all faces of a control volume being a computational cell): 
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f

=∑ 0

Here  Ff  is volumetric flux defined as F S vf f f= ⋅ .
Different values of parameter  β correspond to different 

time-discretization schemes. Note that form (6) ensures con-
servation of the marker-function total amount in the computa-
tional domain, i.e. ensures liquid and gas global conservation. 

As seen from (6), values of the marker-function at computa-
tional cell faces,  Cf , are required. They should be evaluated via 
interpolation of C-values from neighboring cells. It is known 
that conventional upwind schemes most commonly used for 
discretization of convective terms (in momentum equation, for 
example) are inappropriate for Eq. (6) as they lead to smearing 
of the gas-liquid interface over many computational cells.

In the literature, several specialized (so-called “compres-
sive”) numerical schemes are proposed for approximation of  Cf . 
A detailed comparative study of performance of two popular 
schemes HRIC [15] and CICSAM [16], and also a promising 
modification of CICSAM scheme, M-CICSAM [17] was con-
ducted in work [19]. The latter one has demonstrated its supe-
riority over the other schemes examined: less dependence on 
quality of computational grid and time step size. According 
to these findings, the M-CICSAM scheme was chosen for 
the computations presented below. It was found also that the 
Crank-Nicolson scheme (corresponding to β = 0.5) is prefer-
able when solving Eq. (6) [19].

In case of taking into account turbulence effects, the set of 
above given governing equations is added by transport equa-
tions of turbulence parameters that define the eddy viscosity, 
and the latter is simply added to the molecular one. For the pre-
sent computations, the Menter’s two-equation SST turbulence 
model was used, since typically this model shows superiority 
over other eddy-viscosity turbulence models in case of separa-
tion flow computations [20]. Transport equations of this model 
were solved throughout the computational domain, i.e. with no 
boundary conditions at the gas-liquid interface.

2.2 Approximation of convective part of the 
momentum equation

Convective flux of momentum at a cell face is evaluated 
via application of an interpolation procedure using density 
and velocity values from neighbouring cells. At that, a spe-
cific issue arises when treating the area corresponding to the 
gas-liquid interface since fluid density in this area changes rap-
idly by several orders. As a result of this rapid change, density 
approximation method has a dramatic effect on the cell-face 
momentum flux evaluated. As pointed in [21], writing momen-
tum equation in the above given conservative form (3) implies 
that at the stage of their discretization the density interpolation 
procedure must provide those density values at cell faces that 
(together with the applied time approximation scheme) ensure 
fulfilment of discretized conservative form of non-stationary 

continuity equation for the effective fluid. This requirement 
may be satisfied by using the same time approximation for the 
momentum equation and for Eq. (4), and evaluating cell-face 
density values directly using  Cf  values that are computed at 
solving Eq. (6) [21].

However, the above described approach prevents imple-
mentation of special numerical “tricks” that can improve effec-
tiveness and robustness of the VOF method and quality of the 
computed marker-function field. One of such “tricks”, aimed 
at extra sharpening of the gas-liquid interface, is reported in 
[22]. Another motivation for rejection of the approach elabo-
rated in [21] is due to difficulties with its implementation in the 
framework of fractional step strategy, which is rather efficient 
and implies that several time steps are done at solving Eq. (6) 
within one time step at solving the fluid dynamics governing 
equations.

To avoid the necessity of usage of fully consistent discrete 
approximations for Eqs. (3) and (4) one could, in particular, 
employ the momentum equation written in the conventional 
non-conservative form (8a), as it was done, for instance, in [23], 
or in the “partially” conservative formulation (8b) used in [24]:

ρ ρ∂
∂
+ ⋅∇ =
v
t

v v RHS

ρ ρ∂
∂
+ ∇⋅( ) =v
t

vv RHS

Discretized forms of these equations given by (9a) and (9b) 
illustrate that no density face values are needed:

V v
t

v F RHSP P P f
f

ρ ρ∂
∂
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F v RHSP P f
f

fρ ρ∂
∂
+ =∑

These two variants were tried at implementation of the VOF 
method in code Flag-S (note that for time discretization of 
momentum equation the Crank-Nicolson scheme was used for 
all the computations presented below). It has been established, 
however, that both schemes (9) result in dramatic false defor-
mation of gas-liquid interface even in relatively simple cases. 
As an example, Fig. 1 depicts results of 2D test computations 
carried out with schemes (9a) and (9b) for the gravity-induced 
free falling of a circular liquid cylinder, diameter 0.04 m, sur-
rounded by air (the latter remains at rest far from the cylinder). 
Obviously, that at very short times (when the cylinder velocity 
is small and liquid-air interaction is insignificant) the shape of 
the cylinder has to remain practically the same as at the initial 
instant. Figure 1 shows, however, that both schemes (9) pro-
duce large deformations of the cylinder shape even for a time 
interval of 0.07 s that is sufficiently small (the cylinder passes 
less than one diameter). Figure 1 shows that even in this case 

(7)
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large deformations of the cylinder shape are produced by both 
schemes (9).

In the present work, it is suggested to rewrite the momentum 
equation in a novel form given by (10) and to use its discrete 
analog (11). This form provides a proper reduction of errors 
originated from numerical violation of mass balance in com-
putational cells.

ρ ρ ρ∂
∂
+∇⋅( ) − ∇⋅( ) =v
t

vv v v RHS

V v
t

F v v F RHSP f f
f

f P f f
f

ρ ρ ρ∂
∂
+ − =∑ ∑

For the test case with falling liquid cylinder, results of com-
putations preformed with scheme (11) are also shown in Fig. 1. 
One can see a radical improvement of the prediction quality.

Fig. 1 Effect of momentum convective term numerical approximation on 
the shape of free falling liquid cylinder: 1 – approximation based on using 

scheme (9a), 2 – (9b), 3 – (11).

Note that a form analogous to (11) was used for discretiza-
tion of the convective terms in the turbulence model transport 
equations.

2.3 Approximation of pressure gradient
The finite-volume discretization for pressure gradient in 

momentum Eq. (3) is given by:

∇( ) = ∑p
V

p SP f f
f

1

Here again pressure values pf at cell face centers should be 
evaluated via interpolation of pressure values from neighboring 
cells. Unfortunately, conventional linear interpolation technique 
(13) works incorrectly in case of resting liquid and gas, which is 
characterized by discontinuity in pressure gradient. For the sake 
of clarity, consider a case where a mesh cell face coincides with 
a free surface (see Fig. 2). In this case, usage of correct pressure 
values at centers of neighboring cells 1 and 2 will produce an 
overestimated pressure value at the face. As a result, for cells 1 
and 2 application of (12) gives a pressure gradient value that is 
not balanced with the gravity force. Consequently, momentum 
equation will not be satisfied in the case of zero fluid veloci-
ties (as it should be), and non-physical, increasing in time local 
oscillations of velocity and pressure fields will arise.

p p d p d
d df lin =
+
+

1 2 2 1

1 2

Fig. 2 Scheme of pressure distribution in the vicinity of gas-liquid interface in 
case of resting liquid and gas, and interpolated pressure values at a mesh cell 

face coinciding with the interface.

It can be easily obtained that a correct face pressure value is 
generated when using a density-weighted interpolation given by:

p p d p d
d df weighted =
+
+

1 2 2 2 1 1

1 1 2 2

ρ ρ
ρ ρ

It has been established, however, that usage of scheme (14) 
in case of liquid and gas motion leads to occurrence of intensive 
even-odd pressure oscillations near the gas-liquid interface, in 
particular, in the above presented case of a free falling liquid 
cylinder. To overcome this issue, a combination of schemes 
(13) and (14) is proposed where the weight  ξ  is dependent on 
the angle,  α, between the normal of the current cell face and 
the gravity vector:

p p pf f f= ⋅ + −( ) = ( )ξ ξ ξ α
weighted lin

1
2

, cos

Test computations performed in the present work with 
scheme (15) have shown that it works correctly in both the 
cases of resting and free falling liquid.

2.4 Problems of accurate resolution of viscous near-
bottom layer in case of liquid spreading along a dry 
wall

As mentioned above, free surface flows, and in particular 
dam-break flows, are most commonly modeled using high-Re 
computational grids and the standard wall function technique 
for determination of wall friction. However, accurate predic-
tion of flows with occurrence of near-bottom separation zones 
requires accurate resolution of near-wall viscous layer that 
implies using a low-Re grid strongly clustered near the wall 
(with normalized distance, Y+, of the first computational point 
to the wall less or about unity). First our attempts to use such a 
grid for simulation of dam-break flow developing along a dry 
bottom have highlighted a serious issue. 

(10)

(12)

(11)

(13)

(14)

(15)
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Consider the simplest 2D dam-break test case, where after 
sudden removal of the retaining wall the fluid floods the dry 
horizontal wall due to gravity (see Fig. 3a). The computations 
with a low-Re grid have shown that the air initially located 
in computational cells in vicinity of the dry bottom can not 
be properly displaced by the spreading fluid because velocity 
values in these cells are very low. As a result, a thin elongated 
non-physical air layer occurs at the bottom (Fig. 3b).

To make sure that this artefact is not caused by any mistakes 
in code Flag-S, a computational run for this test case was also 
performed with the commercial CFD code ANSYS Fluent-14.0 
using the same grid, and results are shown in Fig. 3c. One can 
see that in the solution obtained with Fluent a non-physical 
near-bottom air layer is observed as well (the reason of spatial 
oscillations seen in the Fluent-solver solution remains unclear).

Fig. 3 Occurrence of non-physical near-bottom air layer in computations of 
water flow spreading along a dry wall: (a) general view, (b,c) view of near-

bottom zone (stretched in the vertical direction) from results obtained with (b) 
code Flag-S and (c) ANSYS Fluent.

Obviously that this non-physical air layer leads to a radical 
under-estimation of wall friction. As a result, boundary layer 
separation phenomenon can not be predicted accurately. So a 
special numerical technique should be introduced to overcome 
this issue. In the present work, an artificial diffusion term act-
ing in a thin near-wall region was added to the marker-function 
transport equation as follows:

∂
∂

+∇⋅( ) = ∇⋅ ∇( )( )C
t

Cv Cmax ,χ 0

χ
χ

=
>

−
≤








0 ,

,
.
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d d
d d

d
d d
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cell
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Here χmax and dcell are user-defined parameters, and dcell 
defines distance from the wall within which the diffusion term 
is active. Typically, it can be set to one half of computational 
cell size in the flow core. With such a choice,  dcell is suffi-
ciently large to cover the area of the non-physical effect under 
consideration and at the same time it is sufficiently small to 
avoid noticeable influence on the flow field prediction.  χmax is a 
diffusion coefficient. For the present computations it was set to 
0.0001(gH3)1/2, where H is the initial height of the water. This 
relatively small value was sufficient to completely avoid occur-
rence of the non-physical air layer.

3 Results of computations for a triangular obstacle
3.1 2D computations

Experimental study of dam-break water flow interaction 
with a triangular obstacle was conducted in [1] under geometri-
cal and initial conditions defined in Fig. 4. In the experiments, 
the flow was treated as nominally two-dimensional. Confining 
side walls were transparent, and the free-surface shape at vari-
ous time instants was fixed with a photo camera.

Fig. 4 Experimental conditions in [1]. Dimensions are given in centimetres.

Basic two-dimensional computations were performed with 
no-slip conditions on the initially dry bottom of the channel and 
the obstacle surface. The computational grid had 25 000 quad-
rangle cells and was clustered near the wall so that Y+-values 
were less than unity. Additional run was done using slip condi-
tions, both on the bottom and the obstacle surface. For this run, 
the grid had 16 000 cells, with no clustering near the wall. For 
both the runs, the SST turbulence model [20] was employed.

Free surface shapes computed with two types of wall 
boundary conditions are compared in Fig. 5. The computa-
tional results are superposed onto experimental photos given 
in [1] for two time instants counted from the instant of sud-
den removal of retaining partition. One can see that the free 
surface shape predicted with the slip condition (Fig. 5a,c) 
disagrees with experimental observations dramatically. An 
accurate resolution of near-wall viscous effects results in a 
considerable improvement of the flow prediction quality. The 
most important difference between the solutions is attributed 
to manifestation of separation phenomena in the case of no-
slip conditions. Figure 5 shows that firstly one (at t = 3.0 s) and 
then two (t = 3.7 s) relatively large separation zones occur in 
front of and at the obstacle. Occurrence of these zones leads to 
formation of «hills» on the free surface, visible in the experi-
mental photos as well. 

(16)

(17)
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In more details flow patterns predicted in case of no-slip con-
ditions are illustrated in Fig. 6 where momentum vector fields 
for the same time instants are given (momentum vectors in every 
third computational cell along both the directions are displayed).

Fig. 5 Effect of bottom friction on the free-surface shape computed: (a,c) – 
slip condition, (b,d) – no-slip (separation zone is shown as well). Simulation 

results are superposed on the experimental photos given in [1] for (a,b)
t = 3.0 s and (c,d) t = 3.7 s.

Fig. 6 Near-obstacle momentum vector patterns predicted in case of no-slip 
condition for (a) t = 3.0 s and (b) t = 3.7 s. Free-surface shapes are shown by 

solid lines.

It can be seen that (i) near-wall velocity gradients are well 
resolved, (ii) reverse-flow zones characterized also by inten-
sive vortex motion are quite large in size, (iii) within the left 
separation zone, at t = 3.7 s, there is an additional smaller-size 
vortex adjacent to the bottom. 

Two more runs with accurate resolution of viscous sublayer 
were performed reducing the molecular viscosity by 10 and 
100 times, and keeping the sizes of the channel as in the experi-
ments [1]. Note that after rescaling of the problem according to 
the similarity theory, one can easily conclude that these runs 
are equivalent to cases of water flow developing after the dam 
breaks with the initial water levels of 55 cm and 240 cm cor-
respondingly. Despite a considerable increase in the Reynolds 
number, in both the solutions the separation effects remain sig-
nificant, and the separation zone size is reduced less than two 
times even in the case of the largest Reynolds number.

3.2 3D computations
Three-dimensional computations were performed to analyse 

the effect of the side walls confining the experimental channel 
in the spanwise direction (see Fig. 4). Due to the symmetry 
of the experimental configuration with respect to the middle 
plane, the computational domain covers only a half of the chan-
nel. The computational grid had one million hexahedral cells 
and was clustered both near the bottom and near the side wall, 
with the same evaluation of Y+-value as in the 2D runs. As pre-
viously, the SST turbulence model was used to introduce the 
eddy viscosity effects.

Figure 7 illustrates 3D free surface shape computed for the 
same time instants as in the experiments and 2D computations.

Fig. 7 3D free surface shape computed at (a) t = 3.0 s and (b) t = 3.7 s 
for flow over the triangular obstacle under conditions of experiments [1]. 

Vorticity lines originated from the middle-plane core of the separation zone 
are shown as well (dashed lines).

As one can see in the plot, a considerable deviation of devel-
oping waves from a 2D form takes place in the area cover-
ing more that one third of the channel. 3D effects are even 
more pronounced when considering the separation zones. 
For instance, vorticity lines originated from the middle-plane 
core of the separation zone(s) deviate from a straight line (that 
would be in a 2D flow) in the major part of the flow domain.
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For the time instant of  t = 3.0 s, Fig. 8 shows patterns of 
computed fluid velocity vectors projected on the 3D free sur-
face and on the symmetry plane. One can see that a rather large 
recirculation occurs by this time near the side wall, namely 
at the area where the water starts to interact with the obsta-
cle. This “local-in-time” recirculation zone evolves with time 
considerably.

For the same time instant, Fig. 9 partially illustrates wall 
friction distribution over the channel bottom, namely over the 
part that includes the obstacle front side (between lines A-A 
and B-B) and the adjoined horizontal segment of the bottom.

Fig. 8 Patterns of computed fluid velocity vectors on the 3D free surface and 
in the symmetry plane,  t = 3.0 s.

The map given in Fig. 9a shows that in the region of nearly 
two-dimensional flow the wall friction streamwise component, 
τ x
w , reaches extreme negative values twice: first near the front 

line of the obstacle and second at (approximately) one third of 
the obstacle front side. The second extreme is of higher abso-
lute value and corresponds to position of the core of the separa-
tion vortex depicted in Fig. 6a. 

The wall friction vector pattern given in Fig. 9b illustrates 
three-dimensional separation occurring in the region adjoined 
to the front edge point (being the point of intersection of three 
surfaces: sidewall, obstacle front side and horizontal bottom). 
Note also that in this region the wall friction reaches a maxi-
mum absolute value.

Figure 10 presents a comparison of side view of the com-
puted 3D free surface with the experimental photos from [1]. 
Due to 3D shape of the free surface, this view is not a line as 
in the 2D case, but looks like a complicated band. Notably that 
such a “band” is seen in the experimental photos as well: at 
each photo one can clearly see a dark area along the free sur-
face. Comparing Figs. 5 and 10, one can conclude that a much 
better agreement with the experiments is achieved on the base 
of the 3D formulation taking into account viscosity effects near 
the side walls.

Fig. 9 Wall friction distribution over the obstacle front side (bounded by lines 
A-A and B-B) and over adjoining part of the channel horizontal bottom: (a) 

streamwise component map computed at t = 3.0 s, (b) wall friction vector pat-
tern in the vicinity of the front edge point.

Fig. 10 Comparison of side views of the 3D free surface computed at (a)
t = 3.0 s and (b) t = 3.7 s with experimental photos from [1].

4 Conclusion
On the base of the VOF method, 3D computational tech-

niques have been developed providing accurate treatment of 
both the free surface evolution and viscous near-bottom layer 
in the flow developing after a dam break and interacting with 
obstacles. Computations under conditions of experiments with 
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a triangular obstacle have been carried out on the base of 2D 
and 3D formulations. Action of the bottom wall friction leads 
to formation of one or two separation “bubbles”, depending on 
the flow development phase, and to occurrence of associated 
hill-like waves at the free surface. Taking into account presence 
of the experimental channel side walls gives a solution with a 
considerably 3D shape of the computed free surface, and its side 
view much better agrees with the experimental photos than that 
given by 2D solutions. As well, local-in-time separation of the 
flow from the side walls is predicted with the 3D formulation.
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Nomenclature
v [m/s] velocity vector
p [Pa] pressure
C [-] marker function 
t [s] time
g [m/s2] gravitational acceleration vector
ρ [kg/m3] density
μ [Pa·s] dynamic molecular viscosity
F [m3/s] volumetric flux
V [m3] computational cell volume
S [m2] computational cell face area vector

Subscripts and Superscripts
l, g  liquid, gas
i, j  current and previous time layers
P  center of a computational cell
f  center of a computational cell face
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