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Abstract
This paper summarises the numerical and theoretical studies of 
the incompressible, laminar airflow through a single flow passage 
of a blade-less radial turbine. Furthermore, it yields the numeri-
cal validation of the simplified theoretical model for incompress-
ible rotor flows without the consideration of mechanical losses. 
It exposes the accuracy of the simplified, analytical performance 
prediction and flow field for a given geometry, which is based 
on an optimisation of performance by solving the simplified and 
incompressible Navier-Stokes-Equations in cylindrical coordi-
nates. The influences of the dimensionless machine parameters 
on performance and efficiency are obtained from a theoretical 
analysis. The stream-lines of the bulk flow are derived by ana-
lytical means. The inflow conditions for maximum performance 
and efficiency are theoretically determined and later compared 
to laminar CFD. In order to quantify the error of the simplified 
theoretical analysis, different inflow conditions and their influ-
ences on shaft power and flow behavior are examined by means 
of CFD. The development of the axial velocity distribution at 
the inlet zone is compared to the one from the theoretical inflow 
assumption. The influences of Reynolds number and revolution 
speed on the velocity profiles are investigated. In addition to that, 
a compressible flow model is introduced. Numerical results are 
obtained  and compared to the incompressible solution. More-
over, compressibility effects on turbine performance are derived.

Keywords
laminar, incompressible, flow model, streamlines, Tesla turbine, 
CFD, optimisation

1 Introduction
Tesla friction turbines were invented by the famous scientist 

Nikola Tesla [2] at the beginning of the 20th century. They are 
characterised by their particularly simple and blade-less rotor 
design and consist of several circular, parallel, flat disks with a 
central passage in the centre of rotation. 

Fig. 1 Principle of energy conversion in Tesla friction turbines

All disks are equally spaced with narrow gaps. Basically 
any fluid is able to feed this type of turbomachine without 
limitations. The flow enters the gap at the outer radius of the 
disks under a certain inlet angle. Driven by a pressure differ-
ence, the swirling flow delivered from nozzles or guide vanes 
follows its spiral path to the rotor outlet at the inner disk 
radius. Circumferential shear stress induces torque and power. 
Dependent on fluid, flow parameters and geometry, Tesla tur-
bines are able to work efficiently [3]. Their main advantages 
are the low-cost design, robustness and competitiveness for 
small scale turbomachinery, which has recently been discov-
ered by researchers [4, 5]. Renewable and sustainable energy is 
the main scope of application.

After Tesla’s approaches to make his turbine commercially 
available, the interest in his invention began in the 1950th. 
Theoretical and experimental research was performed, such 
as Rice [6]. Around the turn of the millennium, first CFD 
approaches came up. Currently, it is still an ongoing topic 
[7, 8]. Some researchers also deal with microscale friction tur-
bines, such as Romanin et al. [4] or Krishnan et al. [5].

This paper focuses onto the flow phenomena and momentum 
transport inside this turbine. Laminar flow is expected for Re 
numbers below 300, which is typical for Tesla turbine operations 
(cf. Romanin et al. [9]). The study constitutes a further develop-
ment of the paper of Schosser et al. [10]. The rotor dimensions 
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are based on the evaluation of the theoretical model for incom-
pressible rotor flows [1]. Furthermore, it is the mechanical design 
of an existing test rig, which is built for the determination of the 
inter-disk velocity distribution inside a Tesla rotor. The velocity 
profiles are measured by means of particle imaging and track-
ing. The test facility and the demonstration of the measurement 
method can be found in Schosser et al. [1, 11].

2 Theoretical flow model analysis
The radial and tangential velocity distributions between co-

rotating, parallel disks are illustrated in Fig. 2.

Fig. 2 Rotor flow decomposed into cylindrical coordinates

2.1 Incompressible, laminar flow description
From the semi-infinitesimal control volume, shown in 

Fig. 3, the governing equations for the incompressible, laminar 
rotor flow, which is averaged over the inter-disk spacing can be 
obtained. The absolute reference frame is used in here.

Fig. 3 Semi-infinitesimal control volume (integrated over the gap width)

In order to compute the tangential shear stress, the absolute 
coordinates are transformed to a relative frame by using the 
following expression.

u c r= + ⋅ω ,

The steady-state continuity equation, the tangential (φ-) and 
radial (r-) momentum equations for the bulk flow [1, 12, 13] 
can be written as
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Equation (1) and (2) are non-dimensionalised using the fol-
lowing algebraic expressions
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The dimensionless governing equations result in the dimen-
sionless tangential momentum equation in the absolute frame
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For the evaluation and comparison of theoretical and CFD 
results, the following coefficients are defined.
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The power coefficient is shaft power normalised with the 
maximum occurring power.
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A good indicator for optimum performance is another defini-
tion of shaft power.

C
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As a result of a typing error in [10], the total isentropic rotor 
efficiency for the incompressible flow has to be corrected and 
is therefrom given by
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The fully analytical solutions of Eq. (9) and (12) are already 
published in Schosser et al. [1]. Beginning with a two-dimen-
sional velocity distribution across the rotor radius, the momen-
tum transfer between wall and fluid is not yet describable. 
Therefore, torque and power are only obtainable with an addi-
tional assumption. This is done by assuming parabolic veloc-
ity profiles between the disks for laminar flow. The resulting 
wall shear stress in circumferential direction integrated over 
the radius leads to the performance map. The assumed profiles 
scale with the prevailing bulk velocities in radial and circum-
ferential direction. Development effects of the flow at the rotor 
inlet are neglected in this flow model. Parameter β describes 
the flow rate and determines the type of vortex in the gap and is 
therefore crucial for the generated performance. Other impor-
tant parameters for optimum performance are the inlet velocity 
angle V1 (or α), the radius ratio R and the angular speed Ω, as 
well as the real axial velocity distribution, which are investi-
gated and validated with CFD.

2.2 Extension to compressible, laminar flow
Based on the assumption of the incompressible model for 

laminar flow, the momentum equations are extended to com-
pressible flow conditions. The energy equation is additionally 
required in this case. Due to the change of density, the continu-
ity equation is then written as
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The tangential momentum equation is then defined as
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The energy equation in an algebraic definition is
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For the definition of the dimensionless governing equations, 
following relationships are used. The non-dimensional tem-
perature is
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Inserting the continuity equation (19) into the perfect gas 
equation leads to the non-dimensional density expression
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For the expression of the dimensionless dynamic viscosity, 
the Sutherland formula together with Eq. (21) is used.
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Using Eq. (5) to (8) and Eq. (21) to (24), the governing equa-
tions can be formulated in a non-dimensional description. The 
dimensionless tangential momentum equation is
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The differential equations are coupled solvable for certain 
fluid properties and initial conditions. For this numerical calcu-
lation Wolfram Mathematica or MATLAB can be used within 
a short computation time. The model allows the exploration of 
the compressibility effects of Tesla rotor flows. This is shown 
in Section 3.6.
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2.3 Mechanical constraints
A drilled disk under constant rotation (without accelera-

tion), generates tangential and radial mechanical stress, as 
illustrated in Fig. 4.

Fig. 4 Centrally drilled disk under constant rotation

The stress maximum is at the inner radius r2 [14]. Comparing 
this value from Eq. (17) with the yield strength of the disk 
material, determines the maximum angular velocity before the 
disks are destroyed.
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The maximum applicable angular velocity is clearly a func-
tion of the inner radius r2 , which limits the entire rev speed 
range of a Tesla turbine, as shown in Fig. 5. Therefore, Eq. (17) 
is solved for ω and made dimensionless with Eq. (8). The 
maximum angular velocity limit is decreasing with increasing 
radius ratio R (or higher inner radius rotor r2 ). The analyti-
cal mechanical stress calculation consumes low computational 
power and offers advantages during the design process. A disk 
geometry for optimum flow condition is not necessarily reason-
able in terms of mechanical design. This can now be judged 
immediately. The mechanical limitations are considered in the 
following model analysis and CFD.

Fig. 5 Angular velocity limitations

3 Turbine model analysis
The performance map of a Tesla turbine is exemplarily 

shown in Fig. 6. Shaft power Cpo is quadratic function of the 
angular velocity Ω, which increases with increasing values of  β.

The influence of the introduced design parameters of a Tesla 
rotor are presented in the following sections. The results are 
derived from the theoretical analysis. They offer the technical 
limitations of blade-less rotors. To simplify illustrations, Ω is 
normalised by  u1 = 100 m/s.

Fig. 6 Performance map of a Tesla turbine with  R = 0.8

3.1 Dimensionless friction parameter
Schosser et al. [1] showed, that  β  should exceed values above 

ten for a performance maximum. In this case, torque and shaft 
power are independent of  β  itself. This is shown in Fig. 6 and 7.

Fig. 7 Torque coefficient map of a Tesla turbine with V1 = 0.3

Torque is linearly decreasing with increasing angular veloc-
ity. The torque, converted from the kinetic energy of the flow 
is significantly higher, if  β  is not too low. As  β  increases 
with decreasing gap width, the mass flow per gap is restricted. 
Consequently, more gaps are needed for the same magnitude of 
power, which increases the price of a Tesla rotor. The selection 
of the friction factor  β  is an economical decision. As a result, 
an upper limit of  β-values between 20 to 30 is suggested.

(28)
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3.2 Dimensionless inlet conditions
Tesla rotors can either be efficient or powerful. The lower 

V1 , the higher is the isentropic efficiency. On the other hand, a 
low  V1 and radial mass flow leads to low shaft power per gap. 
Figures 8 and 9 show normalised shaft power and efficiency 
as a function of angular speed. The inlet velocity magnitude is 
kept constant, their velocity components instead are systemati-
cally varied. This leads to a change of  β  and influences power 
and efficiency. Low V1 corresponds to high  β.

Fig. 8 Influence of the inlet angle on performance (vertical dashed line 
represents the mechanical limit)

Fig. 9 Influence of the inlet angle on isentropic efficiency (vertical dashed 
line represents the mechanical limit)

3.3 Dimensionless geometry parameter
The most important geometry parameter for optimum perfor-

mance is the radius ratio  R. The influence of the radius ratio  R is 
similar to those of the inlet angle  V1  (see Fig. 10 and 11). Low 
radius ratios  R  lead to high shaft power per gap. With increas-
ing inner radius  R2 , the area of the disks inside the turbine’s 
gap, as well as the pressure drop across the rotor is reduced. 
Low pressure drops lead to highest efficiencies. In this investi-
gation,  β  and  V1  are constant, the radius ratio  R  is altered. It is 
of special denote that higher radius ratios, lower the maxi-mum 
applicable angular speed in terms of mechanical design.

Fig. 10 Influence of the radius ratio R on performance

Fig. 11 Influence of the radius ratio R on efficiency

3.4 Machine parameter relations
The power coefficient Cpt , defined in Eq. (15) relates shaft 

power to the total pressure difference between inlet and outlet. 
When  Cpt  is at its maximum, the best compromise between 
power per gap and efficiency is found. Figure 12 introduces the 
power mapping of a Tesla rotor in terms of machine parameters 
Ω  and  R  for constant and best possible values for inlet veloc-
ity ratio  V1  and friction parameter  β. Optimum performance 
is found for  β > 10,  Ω = 0.6, high radius ratios  R = 0.8 and  
V1 =0.3.

Fig. 12 Mapping of the power coefficient Cpt
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3.5 Streamline visualisation
In an initial approximation, it is sufficient to calculate the 

streamlines of the incompressible bulk flow through the rotor. It 
can be obtained analytically by solving Eq. (18) with the bound-
ary condition  φ(1) = 0 . Figure 13 shows the streamlines for 
different frictional conditions in the absolute reference frame.

d
dR

U R
V R

ϕ ϕ
= −

( )
−

1

Fig. 13 Streamlines with low (left) and high (right) β-values

The length of the streamlines with high-β conditions is higher 
compared to the low-β case. Therefore, the fluid makes more 
revolutions, before it leaves the rotor. Higher β-values indicate 
higher friction and therefore a better turbine performance.

3.6 Compressibility effects onto rotor performance
At first it is shown, that the results of the flow model for the 

incompressible and the compressible flow agree very well for 
Mach numbers below 0.1 (see Fig. 14). In order to compare 
Fig. 14 and 15 well, torque and power are made dimension-
less with the maximum values of the incompressible solution 
of Fig. 15.

Fig. 14 Performance map with radial Mach number Ma < 0.1

Figure 15 indicates, that the deviation between the in-com-
pressible and the compressible flow model expands more and 
more with increasing Mach number. Especially at high angular 

velocities, less power is delivered, because of com-pressibility 
effects. A closer look onto the trend of the radial velocity across 
the disk radius reveals that the divergence is rising constantly 
with the radial Mach number (Fig. 16). According to Eq. (13) 
and (14), higher outlet velocities lead to lower torque resp. to 
lower shaft power. For  Ma < 0.1 both models return identical 
results, as physically expected.

Fig. 15 Performance map with radial Mach number  Ma < 0.5

Moreover, low  β-values correspond to high Reynolds numbers.

Fig. 16 Development of radial Mach number across the radius

4 Laminar CFD model analysis
In order to analyse the theoretical, incompressible, laminar 

turbine investigation, various laminar CFD RANS calculations 
are performed.

4.1 Mesh independency and CFD settings
The hexa mesh is designed with ICEM 14.5. ANSYS CFX 

14.5 is used as a solver. To find a mesh independent solution, 
the grid has been refined until the outlet velocities had con-
verged. A stationary mesh with co-rotating sidewalls and a 
rotating mesh show identical results. Rotating domain results 
are presented here.

(29)
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Fig. 17 Mesh, ¼ disk, 756000 nodes, view 1

The CFD settings for the calculation applied here are:
•	 geometry:  r1 = 125mm,  r2 = 30mm, gap width  2s = 0.2mm
•	 meshes: 224000, 540000, 756000, 1458000, 3400000 

nodes (results from underlined mesh)
•	 rotating domain section (1:1 periodic interface)
•	 air at 25°C, laminar flow
•	 no turbulence model, no heat transfer
•	 inlet: velocity magnitude 105 m/s, variable V1

•	 outlet: ambient pressure  p2 = 1 bar
•	 residual convergence: 1∙10−5 RMS, 1∙10−3 MAX
•	 auto timescale, double precision
•	 Ω is made dimensionless with  u1 = 100 m/s

Fig. 18 Mesh, ¼ disk, 756000 nodes, view 2

4.2 Comparison of incompressible theory and CFD
This section reveals the limitations of the simplified incom-

pressible model in a comparison with the full set of three-
dimensional Navier-Stokes-Equations for laminar flow. In 
the laminar CFD, as well as in the theoretical model, the inlet 
velocity is kept constant. The inlet angle  V1  or  α, hence the 
velocity components  u1  and  v1  are changed to see the impact 
on turbine performance. The significant difference between 
theory and CFD is, that CFD can simulate the development of 
the velocity profiles across the rotor. All continuous curves are 
analytical results, the symbols represent CFD results. The ver-
tically dashed lines in Fig. 19, 20 and 21 denote the mechanical 
limits of the examined Tesla rotor. Figure 19 shows the per-
formance map of a Tesla turbine over the whole range of valid 
angular velocities and investigated inlet conditions.

Fig. 19 Performance map comparison between CFD (marks) and analytical 
results (lines); vertical dashed line represents the mechanical limit

It can be observed, that there is a very good quantitative 
agreement between laminar CFD and analytical solution at 
low inlet angles. With increasing α and Ω, the solutions differ 
more and more from each other. The analytical solution over-
predicts shaft power. Obviously, same applies to Fig. 20, where 
the torque map is plotted. Figure 21 illustrates the difference 
between both solutions regarding isentropic efficiency, where 
the deviation is at its worst. However, the qualitative agreement 
is satisfactory. To find the reasons for that, the velocity profile 
is examined in more detail in the next section. Figures 19, 20 
and 21 confirm the results from theory. More power per gap 
leads to lower isentropic efficiencies - or vice versa.

Fig. 20 Torque map comparison between CFD (marks) and analytical results 
(lines); vertical dashed line represents the mechanical limit

Fig. 21 Efficiency map comparison between CFD (marks) and analytical 
results (lines); vertical dashed line represents the mechanical limit

The inlet angle of about 15° and below is of technical impor-
tance for the application. The following sections are initiated to 
find explanations for the named deviations.
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4.3 The inflow effect
The inflow effect on turbine performance is investigated by 

CFD to estimate errors of the theoretical model. In contrast to 
the expected profile development across the rotor, the model 
simply scales parabolic z velocity profiles with the bulk veloci-
ties C(R), V(R) to compute turbine performance from the result-
ing circumferential shear stress. In the first CFD setup, „block 
profile” approximations are selected at the rotor. Due to the gap 
between stator and rotor, this is expected to happen in real Tesla 
turbines. To quantify the fully developed flow, velocity profiles 
Fn(R,Z) in circumferential and G(R,Z) in radial direction are 
analysed.

C R Z U R Z R V
R
F R Z, , ,( ) = ( ) − ⋅ = ⋅ ( )Ω 1

V R Z V
R
G R Z, ,( ) = − ⋅ ( )1

Furthermore, the continuity equation in radial direction requires

0

1

1∫ ( ) =G R Z dZ, .

The function Fn(R,Z) is normalised by dividing the profile F by 
its numerical integral

F R Z
F R Z

F R Z dZ
n ,

,

,

.( ) = ( )
( )∫ 0

1

Moreover, factorised solutions in circumferential

F R Z F Z C Rn n,( ) = ( ) ⋅ ( )

and radial direction

G R Z G Z V R,( ) = ( ) ⋅ ( )

are sought.  Fn(R,Z) and  G(R,Z)  are fully developed CFD 
profiles. Numerous CFD calculations were performed. As an 
example, the development of the velocity profiles in circumfer-
ential and radial direction of a typical operating point  Ω = 0.92, 
V1 = 0.27 is shown in Fig. 22 and 23. The fully developed pro-
files  Fn(R,Z)  and  G(R,Z)  are used as new inlet profiles in a 
second CFD.

The performance and efficiency of both numerical computa-
tions and of the theoretical solutions are illustrated in Fig. 24 
and 25.

At small inlet angles the results show very good agreement.

Fig. 22 Velocity profiles Fn(R,Z)

Fig. 23 Velocity profiles G(R,Z)

Fig. 24 Performance map comparison

Fig. 25 Efficiency map comparison

(30)

(31)

(32)

(33)

(35)

(34)
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With increasing inlet angles, the solutions slightly start to 
separate from each other. With increasing angular speed, the 
solutions begin to separate as well. The theory is generally 
overpredicting torque and power, the first CFD shows the low-
est performance. In terms of efficiency, the trends of the pre-
sented solutions are similar, but the deviations are a bit higher. 
Theoretical results are overestimating isentropic rotor effi-
ciency. Figure 26 shows the velocity distributions of both CFD 
calculations and of the theory. In general, the CFD results show 
higher velocity magnitudes compared to theoretical results. 
The block profile velocity magnitudes are slightly higher than 
those from the F, G-inlet profile CFD. In contrast to the results 
from the incompressible flow model, CFD shows higher pres-
sure drops across the rotor (cf. Fig. 28).

Fig. 26 Tangential, absolute bulk velocity comparison

The radial velocity distribution instead, show good agree-
ment between CFD and theory (see Fig. 27 for details).

Fig. 27 Radial bulk velocity comparison

Nevertheless, the tangential velocity distribution is crucial 
for turbine performance. The deviations in isentropic effi-
ciency (Fig. 25) are the result of the sum of the differences in 
the pressure drop and the differences in the tangential velocity 
distribution.

An interesting observation about the rotor flow in Tesla 
turbines is the radial development of the torque coefficient 
(Fig. 29). The block profile simulation generates a little more 

torque at high radius ratios. This can be explained by a higher 
tangen-tial wall shear stress at the inlet zone (Fig. 29). With 
decreasing radius ratio, the fully developed inflow simulation 
is gaining the upper hand again, now producing slightly more 
torque and power. This is valid for all simulated angular veloci-
ties. Obviously, block profiles’ higher wall shear stress in radial 
direction leads to a higher pressure drop. As the outlet pressure 
is kept constant, the inlet pressure must increase. This makes the 
flow marginally faster towards the outlet. Hence, the block pro-
filed inflow produces less total torque and power. Dependent on 
the angular velocity, shaft power differs by up to 5% in this case. 
The differences in torque and pressure drop between theory and 
CFD, explain the difference in isentropic efficiency of up to 
10% (see Fig. 25). The difference between theoretical analysis 
and CFD are depending on the selected values of  V1  and  Ω. 
They cannot fully be attributed to the inflow effect.

Fig. 28 Pressure drop across the rotor radius

Fig. 29 Torque coefficient comparison

4.4 Influence of Reynolds number on velocity profile
Figures 22 and 23 show examples of the development of the 

axial velocity distribution of a „block profile” inflow as a func-
tion of the radius. The fully developed velocity profiles were fit-
ted by a fourth-order polynomial for the whole range of typical 
Reynolds numbers. These fits are illustrated in Fig. 30 and 31. 
Neither in radial, nor in tangential direction, any dependency of 
the Reynolds number on the fully developed velocity profiles 
is detectable.
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Fig. 30 Fully developed velocity profiles Fn(R)

Fig. 31 Fully developed velocity profiles G(R)

4.5 Influence of revolution speed on velocity profile
The fully developed velocity profiles are determined from 

the laminar CFD. They depend only weakly on revolution 
speed. The radial velocity profile G(Z) approximates the par-
abolic profile quite well. Instead, the circumferential or tan-
gential velocity distribution Fn(Z) deviates from the original 
assumption of a parabolic velocity profile and influences the 
momentum transfer from fluid to wall. Fourth order polynomi-
als are preferable for a mathematical description of the axial 
velocity distribution. Obviously, this has a small impact on the 
model prediction of torque and shaft power.

4.6 Axial velocity distribution
Several Tesla rotor flow models like the ones presented in 

[3,  7, 9], as well as the models described before [1] assume 
that the third velocity component is zero compared to the radial 
and tangential velocity distribution. The axial velocity distri-
bution over the inter-disk spacing for different radial positions 
are shown in Fig. 32. The results come from the laminar CFD, 
described in Section 4.1. The axial velocity is non-dimension-
alised with the inlet velocity from the outlet of the guide vanes. 
Considering the velocity magnitudes, it seems that the assump-
tions underlying most theoretical description of those flows 
are correct. The axial velocities show maxima near the wall. 
Nevertheless, it is surprising, that the peaks are in the same order 
of magnitude for all examined revolution speeds. With decreas-
ing radius ratio, the velocities maxima are constantly reduced.

Fig. 32 Axial velocity component W(R,Z)

5 Concluding remarks
To simplify the process of designing a Tesla turbine, the flow 

analysis is coupled with the analytical equation for tangential 
stress in centrally, drilled and rotating disks. This exposes the 
maximum applicable angular speed from mechanical integrity 
considerations.

Furthermore, the influence of the dimensionless machine 
parameters on shaft power and isentropic efficiency are derived. 
The typical operational behaviour of a Tesla turbine is shown. 
As a consequence of these discrepancies, the best compromise 
between high efficiency and shaft power per gap is figured out.

In addition to that the incompressible flow model is extended 
to compressible flow conditions. Therefore, the governing 
equations are only coupled solvable by numerical means. 
Nevertheless, this offers the exploration of compressibility 
effects. The model is validated with a comparison to the incom-
pressible model, where it is shown, that both models behave 
similar under incompressible flow conditions.

Streamlines of the bulk flow are visualised. An analytical 
function is found. The development of the streamlines are 
related to the expected turbine performance and agrees well 
with the existing theoretical knowledge about Tesla rotors.

Moreover, various analytical results from theory are ana-
lysed and so to say validated by laminar CFD. The accuracy 
limitations of the theoretical analysis are explained. At higher 
inlet angles, the theoretical solution deviates more and more 
from the laminar CFD. Torque and power are up to 5% higher, 
isentropic efficiency is about 10% lower. The qualitative agree-
ment instead, is very promising.

In search of reasons for that, an investigation of the develop-
ment of the velocity profiles and their influence on shaft power 
and efficiency is performed by means of CFD. Fully developed 
profiles at the rotor inlet lead to higher predicted shaft power. 
This and the fact that CFD produces higher pressure drops, 
explain the deviations in efficiency. Nevertheless, the inflow 
effect is only a partial explanation. The difference increases 
with the parameters α resp. V1 and Ω.

The mathematical character of the velocity distribution 
between the disks is found for a typical range of Reynolds 
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numbers. The main difference between theory and laminar CFD 
is, that the CFD profiles in both directions are not fully para-
bolic and can best be approximated by fourth-order polynomial 
functions. However, the assumption of the parabolic velocity 
distribution in radial direction is closer to CFD than expected.

Despite certain differences to the CFD, the theoretical model 
is a very fast tool for dimensioning rotors. Applying suitable 
corrections, the accuracy of this method can be improved in 
the future.
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