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Abstract
The randomness of a high-speed elevator car system’s param-
eters was caused by manufacturing and installation error. In 
order to more accurately evaluate the dynamic behavior of the 
elevator car, the compound vibration problems containing both 
random excitation and random parameters were studied. The 
deterministic part and random part of the acceleration response 
were derived by the perturbation theory, and the vibration 
image in the time domain and frequency domain were analyzed. 
The sensitivity expressions of each parameter to the system 
response were established in the random vibration system. The 
acceleration standard deviation due to random excitation was 
calculated by the pseudo excitation method. The acceleration 
standard deviation due to the random parameters was obtained 
according to the displacement response covariance matrix and 
random parameters covariance matrix. The discrete degree of 
random excitation and random parameters on the transverse 
acceleration of the car was analyzed in an example, and the 
influence degree of each parameter on acceleration responses 
was quantitatively described by calculating the response sen-
sitivity of random parameters. This paper provides an effective 
method for the analysis of the vibration characteristics of the 
high speed elevator car system.

Keywords 
high-speed elevator, transverse vibration, random parameters, 
perturbation theory, sensitivity

1 Introduction
In modern society, there are more and more high-rise build-

ings. As an essential means of transport in high-rise buildings, 
elevators have become faster, and the proportion of high-speed 
elevator (the speed ≥2.5m/s) has increased year by year. The 
transverse vibration acceleration that is generated by the ran-
dom excitation and random parameters has become a major 
factor affecting the ride comfort of the elevator. In recent 
years many scholars have studied transverse vibration of ele-
vator cars. Feng et al. [1] established a dynamic model of the 
transverse vibration of an elevator car based on the rigid body 
dynamics theory, and she derived the differential equations 
based on Newton’s laws of motion and the Euler equations. 
Chang et al. [2] established a four degree-of-freedom eleva-
tor system to study the excitation characteristics and the car 
dynamic response, and developed an active mass driver based 
on H∞ direct output feedback control algorithm. Herrera et al. 
[3] considered the behavior of passengers in the car and estab-
lished a model to analyze the influence of the car dynamic 
characteristics under different loading conditions. However, 
for objective random excitation and random parameters of 
an elevator car, most literature did not consider or approxi-
mate the deterministic parameter. In fact, random parameters 
not only affect the system of each mode of eigenvalues and 
eigenvectors, but also have an effect on the numerical charac-
teristics of the response together with random excitation. So 
the study of dynamic response of the random parameter struc-
ture under random excitation is important for suppression of 
a vibration of elevator car, reliability sensitivity analysis, and 
safety assessment.

Xu et al. [4] analyzed the stochastic dynamic characteris-
tics of beams under the stochastic material properties by the 
random factor method. However, the authors did not do this 
research combining the random excitation. Marcin et al. [5] 
solved the dynamic response of the truss structure by using the 
Taylor expansion stochastic finite element method. The sto-
chastic finite element method needs to set up all kinds of ran-
dom parameters corresponding to the stochastic finite element 
characteristic matrix, and it causes much inconvenience to its 
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computer program design. Lasota et al. [6] obtained the digital 
characteristics of responses of the rotor shaft system by using 
the polynomial chaos method. Although the polynomial chaos 
method can quickly obtain the corresponding numerical char-
acteristics, it can not very well solve problems combining the 
correlation between parameters. Therefore, it is necessary to 
find a convenient calculation method to makes it easy to design 
the calculation program. In this paper, a random perturbation 
method was used to derive the dynamic equation of the system 
response under random excitation and random parameters, and 
then the sensitivity expression of response was derived. The 
standard deviation of the acceleration response of the system 
was solved by establishing the displacement response cova-
riance matrix and random parameters covariance matrix and 
combining with the pseudo excitation method.

2 High-speed elevator car system dynamics model
In order to solve the transverse acceleration response of a 

high speed elevator car system with random parameters under 
random excitation, a suitable model of the car’s dynamic 
model was established and the differential equation of the 
car’s vibration was derived. In the high-speed elevator, in 
order to improve the ride comfort, there are a certain number 
of damping blocks between the car frame and the car, so they 
are an elastic connection. [7] In Fig. 1, a car vibration model 
is presented. The car frame is in contact with the guide rails by 
four guide wheel-guide shoe systems. The guide wheel-guide 
shoe system and damping block are simplified into a spring 
damping system [8]. The stiffness and damping of four guide 
wheel-guide shoe systems are k1 and c1 , and the stiffness and 
damping of four damping blocks are k2 and c2 . This system has 
four degrees of freedom, including the car frame’s transverse 
translation and rotation around the center of mass, and the car’s 
transverse translation and rotation around the center of mass. 
OXY is the coordinate system taking the system center O of the 
equilibrium position as the origin. lai(i=1,...,8) is the Y-coor-
dinate of the car frame stress points in the coordinate system, 
and lbi(i=5,...,8) is the Y-coordinate of the car stress points in 
the coordinate system. li (i=1,…,4) are the random geometrical 
parameters, where 1 a1 a3l l l= = , 2 a2 a4l l l= = , 3 a5 a7l l l= =  
and 4 a6 a8l l l= = . The car frame mass ma, moment of inertia 
ja, car mass mb and moment of inertia jb are the random mass 
parameters.

According to Newton’s second law and the rigid body 
dynamics formula, the four degrees of freedom system’s differ-
ential equations of motion can be expressed as:

MX CX KX F + + = ( )t . (1)
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F(t) is random excitation due to the rail irregularity degree, and 
it can be expressed as:

Fig. 1 Model of vibrations for elevator cabin systems
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xdi(t)(i=1,...,4) are the four guide wheels’ position which change 
over time.

3 The transverse vibration response of high-speed 
elevator car system and analysis of parameter 
sensitivity

In this section, the transverse vibration dynamic response of 
the car system is discussed by using the random perturbation 
method [9-12]. Since this system has ma, ja, mb, jb, k1, k2, c1, c2, 
l1, l2, l3 and l4 a total of 12 random parameters, the mass matrix 
M, damping matrix C , and stiffness matrix K in the differential 
equations of motion also have randomness, and the following 
transformation is needed:

M M M= +
d r

ε , (3)

C C C= +
d r

ε , (4)

K K K= +
d r

ε , (5)

X X X= +
d r

ε , (6)

F F Ft t t( ) = ( ) + ( )d r
ε . (7)

Where ε is a small parameter, and subscript d and subscript 
r denote the deterministic parts and random parts of random 
parameters, and d d, ,...M C  are the main items. r r, ,...ε εM C  
are small items standing for the influence of random parts on 
the random parameters, and they are known as “perturbations”, 
and their mean of the random parts is zero. Eq. (3)-Eq. (7) are 
imported into the original differential equations Eq. (1), and 
expanded and compared with factor ε at the same power. Omit-
ting higher-order terms above ( )2O ε  the following equations 
are obtained:

ε 0
: ,M X C X K X F

d d d d d d

 + + = ( )t (8)

ε 1
:

.

M X C X K X

F M X C X K X
d r d r d r

r r d r d r d

 

 

+ +

= ( ) − + +( )t
(9)

By solving Eq. (8) the deterministic parts of response d
X , d

X , 
and dX  can be obtained. By solving Eq. (9) the random parts 
of response r

X , r
X , and rX can be obtained. The center of the 

car floor is regarded as observation point, and the transverse 
response of the observation point can be obtained by pre-mul-
tiplying transformation matrix [ ]40 0 1 l=T . With the aid 
of MATLAB fast Fourier transform, images in the frequency 
domain of each respond can be obtained.

It can be seen that the random parts of response r
X , r

X , and 
rX  consist of two parts from formula (9). r1X  represents the 

displacement response due to random excitation, and r2X  rep-
resents the displacement response due to random parameters, 
and they satisfy the following equation:

X X X
r r1 r2
= + . (10)

Equation (9) can be divided into two equations:
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   + + = − + +( ). (12)

Structural dynamic response sensitivity analysis is often 
used to assess the degree of influence of the changes in struc-
tural parameters on the response. The dynamic performance 
of the structure can be improved according to this sensitiv-
ity. It is an important part of structural dynamic optimization 
design. In order to facilitate solving Eq. (12) and derive the 
system dynamic response’s sensitivity sector ( )S X , ( )S X

 

, 
and ( )S X , when the parameters’ random parts rib  are much 
smaller than the deterministic parts dib , rM , rC , rK , r2

X , 

r2
X , and r2X  are expanded into the Taylor series in the vicin-

ity of ( )di i 1, 2,...,mb = , and substituted into Eq. (12), and com-
paring the rib  coefficients, the following equation is obtained:
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The system dynamic response’s sensitivity vector ( )S X , 
( )S X  and ( )S X  are obtained by solving Eq. (13), and the 

random parts of the system response can be obtained by substi-
tuting them into the Taylor expansion of r2

X , r2
X , and r2X .
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4 Analysis of means and standard deviation of a 
high-speed elevator with random parameters

The mean of the displacement response perturbation items is 
zero, which has the following expression:

E E EX X X X( ) = ( ) + ( ) =d r d
ε , (17)
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Similarly

E E E   X X X X( ) = ( ) + ( ) =d r d
ε , (18)

E E E   X X X X( ) = ( ) + ( ) =d r d
ε . (19)

The respond standard deviation due to random excitation 
( )r tF  can be calculated by using the pseudo excitation method 

[13-17]. Assuming ( )r tF  is the ergodic random process, 
then r1

X , r1
X , and r1X  also are the ergodic random process. 

According the random vibration theory, when the linear struc-
ture is subjected to multi-point stationary random excitations 
of which the Auto-spectral Density matrix is ( )
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Auto-spectral Density of response r1
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( )H ω  is frequency response. The frequency response con-
necting with the n-th mode is
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The Auto-spectral Density expression of the response is derived:
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The acceleration response standard deviation is

σ ϕ µ
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For the standard deviation of random excitation r2X  due to 

random parameters, first the displacement response covariance 
matrix xN , random parameters covariance matrix bN
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( )( )kVar X  represents the variance of the kth element in vec-
tor X, and Cov represents covariance. The following equation 
is obtained:
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Solving Eq. (27), the standard deviation of the displacement 
response is obtained:

σ σ σ ρx
i

b br2

d

i

j

d

i

k

bj bk jk

k=1

m

j=1

m

=
∂
∂

∂
∂









∑∑ X X

1 2/

, (28)

The σi
x is the standard deviation [Var(X(i)]1/2 of the ith element in 

vector X, pjk is the correlation coefficient of bj and bk ,and σbj 
is the standard deviation of bj .
Similarly, the standard deviation of the velocity response and 
acceleration response is obtained:
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In summary, the car transverse acceleration response standard 
deviation is

σ σ σ
  x x x= +

r1 r2

2 2
. (31)

It can be seen that as long as the standard deviation of the 
system architecture random parameters and their correlation 
coefficients are given, the standard deviation of the response 
can be obtained. This makes it easy to apply it to engineer-
ing practice. Simultaneously, in calculating the response sen-
sitivity, only the required degree of freedom is chosen, so as to 
avoid a large amount of computation.

5 Case analysis
A high-speed elevator, with a speed of 5m/s, was simplified 

into the model as shown in Fig. 1. The means and standard devia-
tions of random parameters are shown in Table 1. It was assumed 
that the random parameters are independent and subject to nor-
mal distribution, and their coefficient of variation CV=0.05.

Acommon pulse excitation was exerted on all guide wheels 
as the excitation’s deterministic part dF . A single rail length 
was 5m. The excitation is shown in Fig. 2.

5.1 The calculation of the high-speed elevator car 
system transverse acceleration response

Solving the response expression Eq. (8) by using Wilson-θ 
[18, 19], the acceleration response d

X  is obtained. Then the 
observation point acceleration dx  in the x direction is obtained 

(24)
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by letting the acceleration response d
X  pre-multiply the trans-

formation matrix T, as shown in Fig. 3. The White Gaussian 
Noise (its standard deviation 20Nσ = , letting the whole exci-
tation’s coefficient of variation CV=0.05) is defined of which 
the Power Spectral Density is ( ) 0 2 400 W HzS nω = = . The 
transverse acceleration caused by the randomness of the exci-
tation is obtained by solving Eq. (11), and pre-multiplying the 
transformation matrix T and superimposing over dx . Then the 
observation point’s transverse acceleration

1d+rx  with the deter-
ministic parameters under the random excitation is obtained, as 
shown in Fig. 4. The transverse acceleration r2

X  caused by the 
randomness of parameters is obtained by solving Eq. (13) and 
substituting it into Eq. (14), and pre-multiplying the transforma-
tion matrix T and superimposing over 

1d+rx . Then the observa-
tion point’s transverse acceleration 

1 2d+r +rx  with random parame-
ters under the random excitation is obtained, as shown in Fig. 5.

With the help of MATLAB, dx , 
1d+rx , and 

2d+rx
 
are trans-

formed into a Fourier series, and the images of dx , 
1d+rx , and 

2d+rx
 
in the frequency domains are shown in Fig. 6-Fig. 8.

Table 1 The parameters’ means and standard deviation of the elevator cabin system

Variable bj Mean Dbj Standard Deviation σbj Variable bj Means Dbj Standard Deviation σbj

b1 ma/kg 750 37.5 b7 ca/(N·s/m-1) 120 6

b2 ja/(kg·m2) 3000 150 b8 cb/(N·s/m-1) 320 16

b3 mb/kg 1200 60 b9 l1/m 1.6 0.08

b4 jb/(kg·m2) 1300 65 b10 l2/m 1.4 0.07

b5 ka/(N·m-1) 10000 500 b11 l3/m 1.2 0.06

b6 kb/(N·m-1) 20000 1000 b12 l4/m 1.0 0.05

Fig. 2 The common pulse excitation caused by guide rails Fig. 3 Deterministic part of acceleration response of the observation point

Fig. 4 Car system acceleration response with deterministic 
parameters under random excitation 
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Comparing Fig. 3-5, when the randomness of excitation and 
parameters are not considered, the image of the observation 
point’s transverse acceleration shows a smoother curve in the 
time domain. After considering the randomness of excitation 
and parameters, the acceleration image shows an irregular jag-
ged curve, and the maximum acceleration increased 21.4%. It 
can be seen that the randomness of the guide rails’ excitation 
and parameters have an impact on the transverse acceleration of 
the car, and the comfort is reduced. Comparing Fig. 6-8, in the 
frequency domain image, the maximum amplitude component 
is generally concentrated in the low-frequency range of 5Hz. 

The randomness of the guide rails’ excitation and parameters 
will only increase the amplitude, while it has little influence on 
the maximum amplitude frequency.

5.2 Analysis of Acceleration Response Sensitivity
The acceleration response’s sensitivity vector ( )S X  is 

obtained by solving Eq. (13), and the acceleration response’s 
sensitivity vector of the observation point is obtained by 
pre-multiplying the transformation matrix T. The root mean 
square ( )i rmss x  of each response sensitivity is calculated, and 
the results are shown in the Table 2.

Fig. 5 Car system acceleration response with random 
parameters under random excitation 

Fig. 6 Frequency domain image of deterministic part of the 
observation point acceleration response

Fig. 7 Frequency domain image of the car system acceleration response with 
deterministic parameters under random excitation

Fig. 8 Frequency domain image of the car system acceleration response with 
random parameters under random excitation
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Table 2 The root mean square of respond sensitivity

Parameter Sensitivity RMS Parameter Sensitivity RMS

b1(ma) 5.234e-05 b7(c1) 3.891e-05

b2(ja) 6.105e-06 b8(c2) 3.641e-05

b3(mb) 5.758e-05 b9(l1) 2.983e-02

b4(jb) 1.344e-05 b10(l2) 4.146e-02

b5(k1) 1.235e-05 b11(l3) 3.882e-02

b6(k2) 4.424e-06 b12(l4) 7.174e-02

As can be seen from the table, the response sensitivities of 
geometrical parameters l1, l2, l3, and l4 are much larger than 
other parameters, and should be treated as random parameters. 
In addition, the response sensitivities of other parameters are 
low and can be used as the deterministic parameters.

5.3 Analysis of the Observation Point’s Mean and 
Standard Deviation

The acceleration response of 6s-7s in which the amplitude 
is large was selected as the research object. The deterministic 
response dx  was regarded as the acceleration response mean 
x . The standard deviation 

r1xσ
  

caused by the randomness of 
the guide rails’ excitation is obtained by solving Eq. (23). The 
standard deviation 

r2xσ


 caused by the randomness of parame-
ters is obtained by solving Eq. (30). There are substituted into 
Eq. (31), and the standard deviation xσ



 of the acceleration 
response is obtained. The coefficient of variation CV is calcu-
lated. The results are shown in Table 3.

Table 3 The mean, the standard deviation, and the coefficient of 
variation of the acceleration response

Time 
t/s

Mean 
x /(m/s2)

Standard Deviation 

xσ


/(m/s2)
Coefficient
of Variation CV

6.0 0.0140 0.0096 0.6857

6.2 0.0473 0.0059 0.1247

6.4 -0.1100 0.0110 0.1000

6.6 -0.0697 0.0102 0.1463

6.8 -0.0357 0.0109 0.3053

7.0 -0.0176 0.0108 0.6136

As can be seen from the table, the mean of the CV of the 
acceleration response is 0.33 in the case of the CV of random 
excitation and random parameters is 0.05, and comparing 
the image of the deterministic part of observation point 
acceleration response and the total acceleration image, it can 
be shown that the response of the discrete degree was large, 
and the randomness of the guide rails’ excitation and the 
parameters have an obvious effect on the acceleration of the 
center of the elevator car.

6 Conclusions
(1) In this paper, an elevator car vibration model with random 

parameters under random excitation was established, and the 
dynamic response expressions for deterministic random parts 
of the arbitrary point were established by using the stochastic 
perturbation theory. It was discovered that the random exci-
tation and the random parameters let the acceleration response 
show a more discrete state by the analysis in the image of the 
time domain and frequency domain.

(2) Application of the response sensitivity expression can 
solve the transverse acceleration response’s sensitivity of each 
random parameter to the observation point. The acceleration 
sensitivity of geometrical parameters was much larger than the 
other parameters. For convenience of calculation, the random 
parameters that have a lower acceleration response sensitivity 
were simplified as the deterministic parameters. Only selected 
higher sensitivity parameter were treated as random parameters 
in order to improve the calculation accuracy. In the manufac-
turing and installation processes the parameters with high sen-
sitivity should be strictly controlled.

(3) The acceleration response’s mean and standard deviation 
caused by the randomness of excitation and parameters were 
calculated by the analysis of acceleration response digital fea-
tures. They accurately reflect the degree of dispersion of the 
transverse acceleration respond of the car under the influence 
of the latter.
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