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Abstract
A solitary wave in two-dimensional, incompressible, turbu-
lent free-surface flow over a plane bottom with small, con-
stant slope is considered. The flow is assumed to be slightly 
supercritical with Froude numbers close to 1. If the flow far 
upstream and far downstream is fully developed, a simple 
argument based on the law of momentum shows that for a 
solitary wave to exist, the bottom friction cannot be constant 
all along the channel bed. In [1] the situation was considered 
where the bottom roughness of the channel is constant over 
some distance and slightly higher than in the rest of the chan-
nel bed, giving rise to a higher bottom friction coefficient. In 
an asymptotic analysis in [1] an extended Korteweg-de Vries 
(KdV) equation was derived to describe the surface elevation 
of the fluid. Adopting this equation, we solved it numerically 
by posing a coupled boundary-value eigenvalue problem and 
obtained results for stationary and transient wave solutions 
as well as for the eigenvalue, which corresponds to distinct 
values of the bottom friction coefficient. While the numerical 
solutions as compared to the asymptotic solutions agree quali-
tatively in the stationary case, there were major differences 
found in case of the transient solutions. Preliminary studies to 
this work were reported in [2].

Keywords
extended Korteweg-De Vries equation, free-surface flow, 
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1 Introduction
A solitary wave in two-dimensional, incompressible, turbu-

lent free-surface flow over a plane bottom with small, constant 
slope  α  is considered, see Fig. 1.
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Fig. 1 A solitary wave in open-channel flow. The nomenclature was taken 
from [1], with overbars indicating ensemble-averaged quantities of the 
velocity  u(x, y, t)  in direction  x  parallel to the channel bottom and the 

surface elevation  h(x, t) . The subscript r denotes some reference position 
very far upstream where the flow is fully developed. The shaded region of 

length    indicates a region with increased bottom roughness.

If the flow far upstream and far downstream is fully devel-
oped, a simple argument based on the law of momentum shows 
that for a solitary wave to exist, the bottom friction cannot be 
constant all along the channel bed. Since the momentum flow 
rate far upsteam and far downstream is the same, the forces 
acting on a control volume of fluid must balance. Forces aris-
ing from the hydrostatic pressure cancel, too. If surface tension 
and surface shear forces are neglected, the increased weight of 
the fluid under the solitary wave must therefore be balanced by 
increased bottom friction forces. 

Following that argument, a situation as in Fig. 1 is consid-
ered, where the bottom roughness of the channel is assumed to 
be constant over some distance   and slightly higher than in 
the rest of the channel bed, giving rise to a higher bottom fric-
tion coefficient. The flow is assumed to be slightly supercritical 
with Froude numbers close to 1. 

In an analysis given by Schneider [1], a coupled asymptotic 
expansion of the Reynolds-averaged Navier-Stokes equations 
was performed for differences of the Froude number to 1, 
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(Fr −1) ≡ ε → 0 , the Reynolds number Re → ∞ , and the slope 
of the channel bottom  α → 0 , with the remarkable feature 
that any recourse to turbulence modelling was avoided. rh   
and  ru  were defined to denote the reference quantities of 
Reynolds-averaged fluid elevation and volumetric mean veloc-
ity, respectively, in fully developed flow. The main result of the 
asymptotic analysis was an extended KdV equation describing 
the surface elevation  h H hr= +( )1 1ε   of the fluid in terms 
of the dimensionless coordinate  X x hr= 3 ε   and dimen-
sionless time  T u h tr r= ( ) ( )9 2 3 2ε   and reads as follows: 

H H H H H XT XXX X1 1 1 1 11, , ,= + −( ) − −[ ].β Γ( )

The term extending the classical KdV equation includes a 
parameter  β , which is small within the assumptions of the 
asymptotic expansion and which characterizes the effect of tur-
bulent dissipation. The function  Γ(X)  describes the increased 
bottom friction due to the increased roughness over the bottom 
length   and was assumed to be given as 

Γ X X( ) = ( )λϕ

with 

ϕ

ϕ

X X L

X X
( ) ≡ < < ,

( ) ≡ ,

1 0

0

for

and for all other values of

where  L hr= 3 ε    was taken to be 1 in [1]. The eigenvalue  
λ  determines the amount of increase in bottom roughness as 
necessary for the fluid to fulfill the conditions of the law of 
momentum. Equation (1), together with the obvious boundary 
conditions for a solitary wave 

X H→ ±∞ : → ,1 0

was solved in [1] again by asymptotic methods for small values 
of  β .

2 Stationary Solutions
First, the stationary form of the extended KdV, Eq. (1) with  

H1,T ≡ 0  was considered. The results for this case were already 
presented in a previous work, see [3]. 

For the friction-free case  β = 0  and  Γ ≡ 0 , a well-known 
analytical solution of Eq. (1) is the solitary wave solution 

H X Xm1

0 2 03 2( ) ( )sech= −( )  ,

with its crest located at the undetermined position  Xm
( )0

 .
From the asymptotic theory in [1] it follows that to lowest order 

in the expansion parameter  β  the solution of Eq. (1) is given by  
H H1 1

0= ( ) , with  X X Xm m m
( ) ( ) ( )0 0 00 8164 1 8164= = − . , = .{ }− +   and  

λ λ= =( )0 12  . The two eigensolutions  H1

0( )−  and H1

0( )+  termed 
stable and unstable in [1], corresponding to positions of the wave 
crests  X Xm m

( ) ( )0 0= −   and  X Xm m
( ) ( )0 0= +

 , respectively, refer to 
the classical notion whether (full time-dependent) solutions of 
Eq. (1) starting close to the corresponding stationary solution 

will stay close to or rather diverge, respectively, from the stable 
or unstable stationary solution in the limit of large times.

Numerical solutions of Eq. (1) may be obtained by formulat-
ing a coupled boundary-value eigenvalue problem with respect 
to the space variable  X . In addition to the two boundary con-
ditions in Eq. (4), Eq. (1) needs to be supplemented by two 
further boundary conditions, which may be posed as to obtain 
the correct decay behaviour of  H1  for  X → ±∞ . Assuming  H1  
to decay as  H1 ~ exp(kX) , Eq. (1) gives 

k k3 0− − = ,β

with three roots which are real for   β ≤ βmax ≈ 0.383 . For small 
values of  β  these roots are 
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In the numerical solutions presented in the following, the 
two additional boundary conditions used were 

X H kX→ −∞ : → ,,1 3

X H kX→ +∞ : → ,,1 1

with the corresponding exact solutions of Eq. (6). The choice 
of  k1  instead of  k2  in Eq. (9) for  X → +∞  gives a “fast” 
decay behaviour as compared to the choice of  k2  and was 
motivated by the results of the numerical integration, which 
was carried out for both choices and revealed rather large 
gradients close to the right end of the integration domain in 
case of the choice of  k2 , which was therefore dropped in the 
following considerations. The numerical solutions of the full 
Eq. (1) for the stationary case were obtained with the package 
MATLAB R2010A using the bvp4c integrator. Typical values 
chosen were for the stepsize  Δ X ≈ 2 ∙ 10−3  and relative 
error tolerances of  10−15

 . The discontinuous function  φ(X)  
defined in Eq. (3) was replaced by the approximating function  
1
4
1 1+ ( )( ) − −( )( )tanh tanhX X Lδ δ   with  δ = 0.01  in order 

to avoid difficulties in determining numerical derivatives. 
Figure 2 shows two numerical solutions for  H1  obtained for the 
case  β = 0.1 ,  L = 1  in comparison to the asymptotic solutions 
obtained in [1]. The stable and unstable asymptotic solution, 
H1

0( )−   and  H1

0( )+
 , respectively, are shown in grey solid 

and grey dashed lines, respectively in Fig. 2, and were used 
as initial guess for the respective numerical solutions, which 
are shown in black solid and black dashed lines, respectively. 
Both the stable and unstable numerical solution are slightly 
shifted upstream. As for the stable solution, its crest is higher 
compared to the corresponding stable asymptotic solution, 
and its corresponding eigenvalue is also higher compared to 
the asymptotic value in the stable case, with the values being 
indicated in Fig. 2. The opposite is true for the unstable solution. 
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Employing the argument from the preceding section, larger 
values of the eigenvalue correspond to larger bottom friction 
forces, which have to be balanced by a larger weight of the 
fluid. Since the weight of the fluid is proportional to the spacial 
integral over  H1 , the larger value of the crest in the stabe case 
complies with this necessity.

It shall be mentioned that the asymptotic solutions depicted 
Fig. 2 are solutions to zeroth order in the expansion param-
eter β . From [4], an (so far unpublished) asymptotic solution 
extended to the order  β  is available, which is in perfect agree-
ment with the numerical solutions.
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Fig. 2 Numerical solutions of the stationary form of Eq. (1) with  β = 0.1 , 
L = 1 . Numerical integration domain:  X ∈ [−30, 30] . H1

−  represents the 
(stable) solution with the related eigenvalue  λ = 14.3228 ,  H1

0( )−   represents 
the corresponding stable asymptotic eigensolution with  λ(0) = 12  and its 

crest at  Xm
( )0 0 8164− = − . . H1

+  represents the (unstable) solution with the 
related eigenvalue   λ = 10.1166 , H1

0( )+  represents the corresponding unstable 
asymptotic eigensolution with  λ(0) = 12  and its crest at Xm

( )0 1 8164+ = . .

3 Transient solutions
In [1], a method originally due to Scott [5] was applied to 

obtain an asymptotic solution for transient values of the crest 
heights  H1m (T

 )  for  L = 1 , and a first-order ordinary differen-
tial equation valid for small values of  β  and slowly varying 
wave speeds  V  of the solitary wave was obtained: 

3
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1 V

The transient asymptotic solution thereby is still of the form 
of a  sech2  function, with its amplitude given by  3(1 − V)  and 
its crest being located at  X X VTm

( )0

0= + . For the special case 
of V ≡ 0 , Eq. (10) gives just an algebraic condition with the 
asymptotic values for the stationary crest positions  Xm

( )0 −   and  
Xm
( )0 +   as solutions, which were obtained earlier in the asymp-

totic analysis. 
In solving Schneider’s full time dependent extended KdV Eq. 

(1) numerically, transient solitary wave solutions were obtained 
and compared to the asymptotic transient solutions following 

from Eq. (10). For the case of the numerical transient solutions of 
the full Eq. (1), the stationary solution obtained from the eigen-
value problem of the stationary form of Eq. (1) was shifted in  X  
direction by values of  −β  and  + β , respectively, and posed as 
initial solution of the full time dependent problem. While the time 
integration was performed by a forward difference scheme, the 
space integration was performed by fixing the value of  λ  to the 
eigenvalue of the respective stationary solution. Since the space 
integration procedure then reduces to a simple boundary value 
problem not involving the determination of an eigenvalue, one 
of the four boundary conditions used in the stationary problem 
had to be dropped, which was chosen to be the condition (8). The 
other boundary conditions for the spacewise integration as well as 
the remaining conditions for the numerical integration were kept 
the same as in the stationary problem, in particular a fast decay 
behaviour of the solutions was assumed. The numerical solutions 
of the full Eq. (1) were again obtained with the package MATLAB 
R2010A using the bvp4c integrator in space and a forward differ-
ence scheme in time. Typically, a time step size of  Δ T ≈ 1 ∙ 10−1  
was used, yielding Courant numbers of about 0.4 or less. 

For the case of the asymptotic transient solutions, transient 
values of the crest heights  H Tm1

0( ) ( )   were obtained from 
Eq. (10) by solving an initial value problem, in which the ini-
tial position  Xm

( )0 −   of the asymptotic stable stationary solution  
H m1

0( )−   and Xm
( )0 +  of the asymptotic unstable stationary solu-

tion H m1
0( )+ , respectively, were shifted in  X  direction by  −β  

and  + β , respectively. 
In accordance between the numerical and the asymptotic 

analysis of Eq. (1), the transient numerical solutions show that 
solitary waves starting close to also converge to the stable sta-
tionary solution, whereas no convergence to an unstable sta-
tionary solution follows. Figure 3 shows this result for  β = 0.1  
and  L = 1 .

For the case of stable solutions, shown as solid black 
lines, the height of crests initially located at X Xm m= −− β  
or X Xm m= +− β  converge to the stable stationary position 
X Xm m= −   with the stationary crest height  H m1

− , shown with 
a black “+” symbol in Fig. 3, thereby justifying the identifi-
cation of these solutions as a stable solutions. Although with 
different absolute values as compared to the numerical solu-
tions, the same is true for the transient asymptotic solutions, 
shown as solid grey lines. The height of crests initially located 
at X Xm m= −−( )0 β  or X Xm m= +−( )0 β  converge to the stable 
stationary position X Xm m= −( )0  with the asymptotic value of 
the stationary crest height  H m1

0 3( )− = , shown with a grey “+” 
symbol in Fig. 3. In contrast to the numerical solutions, the 
convergence of the asymptotic solutions is different and shows 
no spiralling behaviour. This is a consequence of the asymp-
totic expansion performed to “lowest order” in  β , leading to 
Eq. (10) valid for slowly varying wave speeds, which cannot 
describe the oscillatory fast time behaviour of the wave crest 
heights seen in the numerical solutions.

(10)
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Fig. 3 Crest heights  H1m  of the transient numerical solutions of Eq. (1) 
(in black) in comparison to the asymptotic solutions (in grey) as function 
of their dimensionless position  Xm , with  β = 0.1 ,  L = 1  and fixed values 
of  λ . The solid lines represent stable transient solutions in the sense that 

they converge to the stable stationary solution with crest heights  H m1
−   and 

H m1
0( )− , respectively, shown as “+” symbol in black and grey, respectively, 

which were found in the corresponding coupled boundary-value eigenvalue 
problem of the stationary form of Eq. (1) and in the asymptotic analysis in 

[1], respectively. The dashed lines represent unstable transient solutions in the 
sense that they diverge away from the unstable stationary solution with crest 

heights H m1
+   and H m1

0( )+ , respectively, shown as “x” symbol in black and 
grey, respectively. Numerical integration domain in space:  X ∈ [−30, 50] .

For the case of unstable transient numerical solutions of 
Eq. (1), shown as dashed black lines in Fig. 3, the height of 
crests initially located at  X Xm m= −+ β  or X Xm m= ++ β  
diverge away from the unstable stationary position X Xm m= +   
with the stationary crest height  H m1

+ , shown with a black “x” 
symbol. Again, with different absolute values as compared to 
the numerical solutions, the same is true for the transient asymp-
totic solutions, shown as dashed grey lines. The height of crests 
initially located at X Xm m= −+( )0 β  or X Xm m= ++( )0 β  diverge 
away from the unstable stationary position  X Xm m= +( )0   with 
the asymptotic value of the stationary crest height  H m1

0 3( )+ =  , 
shown with a grey “x” symbol in Fig. 3. While the unstable 
asymptotic solution for the solitary wave initially shifted to the 
right by the value  + β  decays in the limit of large times, the 
corresponding numerical solution converges to a different sta-
tionary solution, with its values for the crest height and position 
seen as the lower terminating point of the black dashed line in 
Fig. 3. An analogon to this novel stationary solution is not pre-
sent in the asymptotic analysis in [1]. The unstable asymptotic 

solution for the solitary wave initially shifted to the left by 
the value  −β  finally converges back to the stable stationary 
solution. The corresponding numerical solution converges to a 
stationary solution again different to all the precedingly deter-
mined stationary solutions, where the convergence at the left 
side of the black dashed line takes place in a spiralling manner, 
with its limiting values for large times missing in Fig. 3. This 
stationary solution is different from the stable stationary solu-
tion determined previously, which is obvious since the value of  
λ  is different, but it is remarkable in the sense that it represents 
a different eigensolution with a different eigenvalue to the sta-
tionary eigenvalue problem subject to the same boundary condi-
tions as compared to the previously determined stable stationary 
eigensolution  H1

− . Also to this novel stationary solution there 
is no analogon in the asymptotic analysis considered here. This 
leads to the conclusion that the eigenvalue problem is degener-
ate and naturally raises the questions of how many eigensolu-
tions exist and which of them will actually be realized.

Figure 4 shows the shapes of the numerical solutions of 
Eq. (1) for  β = 0.1 ,  L = 1 . The line marked  T = 200  rep-
resents the solution resulting from perturbing the stable sta-
tionary solution  H1

−   obtained from the original eigenvalue 
problem from its original position  X Xm m= −   to the left by 
the amount  −β  after a time  T = 200 . This solution is almost 
identical with the stable stationary solution. The line marked 
H1

+   represents the unstable stationary solution obtained from 
the original eigenvalue problem. The line marked  T = 300  rep-
resents the novel stationary solution resulting from perturbing 
H1

+   from its original position  X Xm m= +   to the right by the 
amount  + β , the crest of which had appeared as the the lower 
terminating point of the black dashed line in Fig. 3. The line 
marked  T = 68  represents the solution which crest was seen 
as the the terminating point on the left end of the black dashed 
line in Fig. 3, resulting from perturbing  H1

+   from its original 
position X Xm m= +  to the left by the amount  −β . This solu-
tion may give an idea of how the novel stationary solution it is 
approaching to will be looking like. At least in the case of the 
solution marked  T = 300 , this makes clear why an analogon 
to this solution is not accessible via an asymptotic expansion to 
lowest order at the current stage, since the considerable differ-
ences to the solitary wave may not be seen as a small perturba-
tion in terms of the parameter  β .

4 Conclusion
Solitary waves in turbulent open-cannel flow are governed 

by an extended KdV equation which was derived in [1] without 
any recourse to turbulence modelling. The problem of finding 
stationary solitary waves for a piecewise constant enhanced 
bottom roughness in the cannel may be formulated as a cou-
pled boundary-value eigenvalue problem, with the eigenvalue 
determining the necessary amount of increase in bottom rough-
ness for the wave to comply with the law of momentum. For 
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given values of the parameters, two eigensolutions were found 
corresponding to a stable and an unstable stationary wave in 
the channel. This is in accord with an asymptotic analysis of 
the stationary problem, given in [1]. In determining transient 
solutions, waves starting close to also converge to the stable 
stationary solution, whereas no convergence to an unstable 
solution follows. Instead, the solutions starting close to the 
unstable stationary solution converge to novel stationary solu-
tions, a feature not being present in the asymptotic analysis. 
This reveals the problem that multiple solutions to the eigen-
value problem exist, with solutions differing considerably from 
the classical soliton solution.
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