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Abstract

The unsteady dispersion of a solute has been discussed by
the method of generalized dispersion technique in a blood-
like liquid flowing through a pipe under the combined effects
of finite yield stress and irreversible absorption into the wall.
The solvent is enacted as a three-layered liquid by considering
the center liquid as a Casson liquid (a core of red blood cell
suspension) and a peripheral layer of plasma as a Newtonian
liquid. An asymptotic representation for the convection and
dispersion coefficients has been shown only for large values
of time, which will not hamper the study of physical behavior
of the system. The objective of the present study is to examine
the nature of exchange coefficient, convective coefficient and
in particular, dispersion coefficient together with mean con-
centration distribution under the effect of absorption param-
eter (), yield stress (r}) (equivalently the plug radius (RP)) and
peripheral layer variation (i.e., ratio of central core radius
to normal artery radius (R)). It is found that the presence of
peripheral layer makes some important increment in disper-
sion coefficient compared to single phase Casson liquid for
small absorption. Increase in both diffusivity (D) and Peclet
number (Pe) make a significant decrement in the magnitude
of dispersion coefficient with respect to absorption rate. The
decrease in peak of the mean concentration distribution with
the increase in reaction rate is found irrespective of the nature

of reaction.
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1 Introduction

The rate of broadening of a cloud of matter in a flowing
stream is due to dispersion phenomena and thus it can be
utilized as an efficient means to accomplish dilution or mixing.
Because of its wide applications in the arena of chemical
engineering, physiological fluid dynamics, environmental
sciences, bio medical engineering etc., investigations of
longitudinal dispersion of a solute in an exceedingly solvent
flowing through a conduit (pipe/channel) is gaining additional
attention among the scientific community. Specifically, through
blood flow, matters like nutrients, metabolic items, drugs and so
on are transported as a consequence of diffusive and convective
mechanisms in physiological systems.

The first fundamental study on dispersion was initiated by
Taylor [1], discussing the dispersion of a soluble matter in a
viscous liquid flowing through a circular pipe under laminar
condition. He observed that the spreading of solute under the
joint effects of the lateral molecular diffusion and the radial
velocity distribution over the cross section is symmetrical
about a point moving with the average velocity of the liquid.
Using the mathematical approach of moment analysis, Aris [2]
extended Taylor’s theory by considering streams with lower
Peclet number and found that axial diffusion would play an
important role in longitudinal dispersion. Sankarasubramanian
and Gill [3] developed a derivative expansion method viz.
‘generalized dispersion method’, for large as well as small time
while comparing dispersion coefficients with time. Further
more, a lot of researchers added their valuable contribution to
understand dispersion process more and more precious way.

Following different dispersion techniques, a large number
of studies are available in literature dealing with longitudinal
dispersion in steady and unsteady flows both in Newtonian
and non-Newtonian liquids (pipe/channels). Using his own
particular methodology, Aris [4] first examined longitudinal
dispersion by considering periodic pressure gradient as the
driving force in an infinite tube. The reason for making flow
unsteadiness, Bandyopadhyay and Mazumder [5] and Paul [6]
considered the boundary wall movement. Using method of
moments Bandyopadhyay and Mazumder [7] studied the effect
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of pulsating flow on the dispersion process in a channel and
Sarkar and Jayaraman [8], Mazumder and Mondal [9] investi-
gated the effect of wall absorption on dispersion in oscillatory
flow in an annulus and explained the application of their study
to a catheterized artery.

In modern days, dispersion in non-Newtonian liquids has its
applications in the field of bio-chemical processing, cardiovas-
cular system, polymer processing etc. In 1993, Sharp [10] stud-
ied the dispersion phenomena in non-Newtonians fluids (Cas-
son, Bingham plastic and power law fluids) through conduits
using Taylor-Aris dispersion model. A brief review on dis-
persion in power law fluids was done by Agarwal and Jayara-
man [11]. Using generalized dispersion model of Sankarasu-
bramanian and Gill [3], shear augmented unsteady dispersion
of a solute in a Casson fluid flowing through a conduit was ana-
lyzed by Dash et al. [12] and discussed its application in blood
flow and found that yield stress considerably affects the rate of
dispersion of a fluid. In recent days, Nagarani et al. [13] dis-
cussed the longitudinal dispersion and its application in cathe-
terized artery assuming Casson fluid model through an annulus.

In some of the above investigations, the effectiveness of
longitudinal dispersion in blood flow were discussed where
blood has been treated as Newtonian and non-Newtonian lig-
uid depending on the value of shear rates. Experimental studies
on blood (Scott Blair [14], Charm and Kurland [15]) with the
variety of haematocrits, anticoagulants, temperature and so on
and recommended that the behaviour of blood at low shear rate
can be described sufficiently by the Casson model. In particu-
lar, when blood flows through small blood vessels, the presence
of a peripheral layer of plasma (Newtonian liquid) and a core
region of suspension of all the erythrocytes as a non-Newtin-
ian liquid can be seen, which was experimentally shown by
Bugliarello and Sevilla [16] and Cokelet [17]. The assumption
of Newtonian behavior of blood is acceptable for high shear
rate flow through larger arteries [18]. But, blood, being a sus-
pension of cells in plasma, exhibits non-Newtonian behavior at
low shearrate < 10/s in small diameter arteries (0.02-0.1 mm)
[19]. Thus for a practical portrayal of blood stream, it is more
fitting to regard blood as a two-liquid model comprising all
the erythrocytes assumed to be a Casson liquid and a periph-
eral layer of plasma as a Newtonian liquid. There are several
works available in the literature revealing the significance of
the peripheral layer in the functioning of the flow characteris-
tics in the arterial system. Srivastava and Saxena [20] showed
that the resistance to flow increases as yield stress increases and
also the magnitudes of the flow resistance found to be decreas-
ing with the increase in the thickness of the peripheral layer.
In a two-fluid blood flow analysis, Sankar [21] observed that
both the velocity distribution and flow rate decrease whereas
the wall shear, width of the plug flow region and longitudi-
nal impedance increase when the yield stress increases. While

following literature, we have seen very few works (Shukla and
Parihar [22], and Shukla and Gupta [23]) of dispersion consid-
ering peripheral layer effect.

To the best of our knowledge there is hardly any work where
the effect of peripheral layer is considered on dispersion pro-
cess, when core region is a Casson liquid and peripheral layer
of plasma is a Newtonian liquid. In addition, the present work
deals with the irreversible absorption at the boundary of pipe.
Also, in a significant change from previous modeling exercises
in the study of hydrodynamic dispersion, we consider, different
diffusivity yet constant in the three regions viz., Plug, Casson
and Newtonian regions, which we think is the most suitable
study for the blood-like liquid flow analysis.

2 Mathematical formulation

A uni-directional, steady laminar, axial, fully-developed
flow of an incompressible, three-layer liquid through a circu-
lar pipe of radius R is considered. It is assumed that the core
region is the red blood cell suspension enclosed by a peripheral
layer of plasma. The Casson model is used for characterizing
the blood rheology in the core region whereas the peripheral
layer of plasma follows Newtonian liquid.

Fig. 1 shows the flow geometry with a cylindrical coordinate
system where the axial and radial coordinates are represented
by z and 7 respectively (the bar denotes dimensional quanti-
ties). Once the flow is fully developed and for the low Reynolds
number flow it can be shown that the radial velocity is negligi-
bly small and can be neglected. Thus the fully developed flow
is only in the axial direction hence all quantities are indepen-
dent of 6.
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Fig. 1 Schematic diagram of the setup under consideration

We assume that Casson liquid occupies the region

R, ={(F.2)/0<F<R,~0<Z <o}, (1)
and Newtonian liquid the region
R,={(F.2)/R, <7 <R-o0<Z <. 2)
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Again, within the Casson liquid region, plug flow is assumed
in the region:

hll

3)

R, ={(7,E)/0S Skp,—oo<7<oo}.

The governing equations of motion for the axial flow are given by
Continuity equation:

o
a_) 4
i @
Momentum equation:
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where, &_‘j_l’ is the constant pressure gradient.
The shear stress in the regions R, and R, are given by the
constitutive relations:

y P 0
%o, 7<% F<R Q)
<=0, 7,<7,and 0<7 <R, s
or
ou, = -
T =—f,—, R <F<R
n lv‘naf o

where 7, is the yield stress. In Eq. (7) whenever 7, < T, the
velocity gradient will be zero and as a consequence plug flow
isseenin R,.

The boundary, symmetry and matching conditions for
solving Eqgs. (5)-(7) are:

7 is finite and G _ 0 a7 =0,

or
T =7, and u,=u, at ¥ =R, (8)
=0 at 7 =R,

n

Let us now consider the transport and spreading of a chemi-
cal species with the blood-like liquid flowing through the tube
(rigid artery) which is supposed to be completely miscible with
the liquid. The species are supposed to involve irreversible ab-
sorption into the wall.

In the present scenario the transport equation that governs
C(t,r,z) is the unsteady, convective diffusion equation:

6C_D6[ ac] ~'C

& For

oC  _._ _
§+u(r) F— +D(f2’ )

or
where D is the constant molecular diffusivity and considered to
be different in the three regions R,, R, and R,. So we assume
inR,
inR,
inR,

P

D= (10)

c

1.1

n

The initial and boundary conditions for the transport Eq. (9) are
considered as

C(0,7,z)=C,B(F)y(z), 0<F<R (11)
a—f:o at 7 =0, (12)
or

€L BE=0 at F=R, (13)

or
where B(F) and w(z) are needed to be specified to solve
Eq. (9), C, is the initial concentration of slug input. The absorb-
ing boundary condition at the wall of the tube is represented by
Eq. (13), where B is the irreversible absorption parameter.
Using the following dimensionless quantities

N7 — n = 2
t= ! r=_ Z=D”Z U =——R @

R’ R T Ru, ° 4@, &

p— p— C_j p—
uc:u_c, un:u_”’C:T’ T, = T”u R

Uy Uy Cy —n(%)

_ — _ (14)
Tn = Tn > Ty = Ty k] RO = R_—O’

o (% T ED R

m(x) AR

_ 5 7
R,==L, B=PR, D ==, Pe="U-

R D, D,

the above system of Egs. (9)-(13) can be written in dimension-
less form as:

ocC
+

. .
Lra)e-Z2( L 22C
ot 0z r or\ or) Pe oz

D, inR,
D'={D. iR, (16)
1 inR,
along with initial and boundary conditions
C(0,r,z)=B(r)y(z), (0<r<l) (17
o at r=o, (18)
or
E=f/3C at r=1, (19
or

Here u, is the time averaged axial velocity and f is the
absorption parameter or first order reaction rate representing
the rate of loss on the wall. Pe is the Peclet number which mea-
sures the relative characteristic time of the diffusion process
(%) to the convection process (f)

3 Velocity distribution

With the help of above boundary conditions (8) in dimen-
sionless form, the velocity distribution is given by Sankar and
Lee [24].
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(20)

u"(r):[l—rz] R <r<li,

Where u, and u, are the velocities for shear flow in Casson
and Newtonian regions. The constant velocity u, appears only
=3.Also R (<1)is the
ratio of the central core radius to the normal pipe radius.

in plug flow region having radius R

4 Generalized dispersion model

According to and Sankarasubramanian and Gill [3], the
expansion of concentration C subject to axial derivatives of
mean concentration can be written as

C(r,z,1) Zfrt 8” 21

where f’s are the time-dependent coefficients to be deter-
mined and the dimensionless area-average concentration C_
is given by

j dej rCdr

C 2
jo dejo rdr

=C,(21)= =2 rcdr, 22)

Using Eq. (22) in Eq. (15) along with Eq. (21) and also the
boundary conditions (18) and (19), the following dispersion
model for C  gives

6C

0C iM() :

(23)

According to Sankarasubramanian and Gill [3], it will be suf-
ficient to truncate the infinite sum of Eq. (23) after first three

Because of the non-zero solute flux at the outer boundary of
wall, M, (¢) arises, which corresponds to the absorption param-
eter. As the solute undergoes with irreversible reaction at the
outer boundary it will deplete with time that makes negative
exchange coefficient (M, (¢)). In such a case, exchange coeffi-
cient would be positive as f in the Eq. (19) has been considered
with negative sign. M, () and M, () correspond to the convec-
tive and dispersion coefficients respectively. It is necessary to
mention here that M, (¢) is analogous to the dispersion coeffi-
cient (D) obtained from Aris ‘Moment method’.

To obtain the above coefficients one needs to find the cor-
responding functions f’s (k = 0,1,2). So, Eq. (21) is used in
Eq. (15) along with Eq. (23) and equating the coefficient of

%% | the resulting partial differential equations are

5ﬂ+zM () o (rt)u(r) £ Da@r( aairj
pet

where f' =/ =0 and k = 0,1,2
From Eq. (17)-(19), the initial conditions for C, and f, are

C, (2.0)=2y (2)[ B(r)rdr, (26)
1 fork=0
,0)= 27
7:(r,0) {0 fork =1,2 @7)
and the boundary conditions for the pipe are
%:0 at r=0 for k=0,1,2. (28)
or
%:—ﬁfk(r,t) at r=1 for £=0,1,2. (29)
also
C, (1,0) = o (1,0) =0, (30)
" oz
and
1 1
Jofk(t,r)rdr:ESkO for k=0,1,2. (31)

4.1 Estimation of Exchange Coefficient (1)
The solution for f (#,7) that satisfies the Eq. (27), (29) and

terms, i.e. (31) can be obtained from Eq. (25) as
2 —
oo My (1) M, () oy (1), r)= 2 ATy ()e (32)
o oz oz hlor)= =y o
2 () (5)e
Where Where J, and J, are the Bessel functions of the first kind of
M, (1)==2BD",(1.7) (24a) order zero and one respectively and A ’s are constants that can
0 - o\t )
be calculated from the initial conditions using the concept of
orthogonality of the eigen functions .J (7). The eigen values
M,(1)=-2pD"f(L1) 2! r)ify (rit)dr, (24b) w,’s are the root of the transcendental equation
. ,unJ( } ﬁDJ( J 0 n=0,1,2,3,.. (33)
M,(1)= }?2 (L)=2[ u(r)r i(rt)dr,  (240) "\ D’
e
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Further on using Eq. (24a), the exchange coefficient can be
obtained as

X ()e

Zo (%)Jl (%)e*ﬂ;l
From Eq. (34), it is clear that M () does not depend on

velocity distribution though it depends on the initial solute

M,(1)=— (34)

distribution.

4.2 Estimation of Convection Coefficient (1/,)

The coupling connection between Eq. (24b), (24c) and
Eq. (25) ensures that the outcomes for the transformed prob-
lem, say f; (¢,r) and M, () is a complicated one. Even f, (£,7) and
M, (f) are more difficult to solve. Therefore, keeping physical
insights in mind the asymptotic steady-state representations of
J.(t,r) and M, (¢) for the case of steady flow are considered in
this work.

The asymptotic representation for £, and M, can be obtained
from Eq. (32) and Eq. (34), as t — o

o) = Hy Ko
Soler) 2D*J1(f;)J°[D" j (33)
o) = _ Hy ’
M, () (Dj (36)

where u, is the first root of the transcendental equation (33)
with the smallest magnitude.

Due to large values of time the steady state function f (r)
will satisfy the equation

condition in Eq. (37) gives the expression for M, as

5){ )=t 10~ S0
[ () (55

M =

k 5

for k=1,2.

Thus the form of convection coefficient M, obtained from
Eq. (42) and Eq. (33) is:

M, =

2
=24 Ilu(r) rJﬁ(lgfjdr, (43)

(1 +(DB) )73 ()

4.3 Estimation of Dispersion Coefficient (1))
Now, using Eq. (43) in Eq. (37) the solution for f () satisfy-
ing the boundary conditons (38), (39) and (40), we have

-3 Har
r)—anJO[ s ) (44)
where
& (2
Ho 1(D*)
B, = B, , (45)
e E

Combining both the Eq. (44) and Eq. (45) we get

-3 wr)__m H(5)
ﬁ_;B{J"(FJ_A(gﬁ) H, J"(D*j -0
where B ’s are given by
B0 N R A VA e 3 L

D d( df D B,= ;
r dr( drj 'uOfk_u( )fkfl Pesz*2 (,ug—,un)(un+(D B) ) ( )
. (37)
+> M, f, . for k=1,2. . . .
; ¥ Now using Eq. (47) in Eq. (46) and then in Eq. (42), we have
the dispersion coefficient as
. . 1 .
The boundary conditions on f, () are o 4uDY, (%)J‘O (u(r)+M1)f1(r)rJ0(%) dr 45)
_ : 2T 52 >
fk(())—ﬁnlte, (38) Pe? (u§+(D*ﬁ)2)J§(%)
(1)
or ==pf(1) for k=12. (39) 5 Distributions of mean concentration
On truncating the terms beyond M, (), the solution of the
also Eq. (23) with initial and boundary conditions (26)-(30) is given by
1 2
[ fi(r)rdr=0 for k=12. (40) Cline b o, 2 49
0 m( ,Z) 2P€\/E p g 45 s ( )
Again Eq. (24b) and Eq. (24c¢) reduces to
M, = 28D £ (1 .[ ), (r (41a) where
¢ ()= M,(n)dn, (50a)
M, =2 )-2f u(r (41b)
z(t,2)=z+ j M,(n)dn, (50b)
Since Eq. (37) and Eq. (41a), (41b) are coupled, subsequently .
. . . . &(1)=| M,(n)dn, (50¢)
an option representation for M, regarding known function f 0
and the known M, (i=1,2) is coveted. The use of the solvability
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Fig. 2 Variation of the (a) Negative exchange coefficient; (b) Negative convection coefficient and
(c) Dispersion coefficient with respect to £ ; when Rp =0.0,R =10, Dp =D_=1.0 and Pe = 100.

For large values of time, the coefficients M, M, and M, in
Eq. (50) represents their asymptotic values. Also, as the asymp-
totic values of M, M| and M, [obtained from Eq. (36), Eq.
(43) and Eq. (48)] are not the functions of radial non-unifor-
mities in the initial distribution, hence it has no effect in the

results of Eq. (49).

6 Results and Discussion

The present analysis mainly deals with the dispersion of
a solute in a blood-like liquid flowing through a narrow pipe
under the effect of peripheral layer variation and irreversible
absorption into the wall. In a very particular way the present
study tries to simulate mathematically the behaviour of the
flowing liquid as blood-like liquid flow. It was already dis-
cussed that the unsteady dispersion coefficient has to be ana-
lyzed by generalized dispersion technique, so the entire process
is based on three effective transport coefficient, viz. exchange
coefficient (M), convection coefficient (M) and dispersion
coefficient (M,). As we have experienced some difficulties to
present the expressions relating /s and M,’s (k > 1), we focus

on asymptotic values of these coefficients for a large values of
time, though it will not affect the physics of the system. It is
observed from the asymptotic formulation that the exchange
coefficient does not depend on the finite yield stress of the fluid,
but the other two coefficients depend on yield stress or plug
radius. Again the absorption parameter £ has an important role
on all three coefficients in their asymptomatic state.

A MATLAB code is developed for estimating the coupling
effect of different parameters and the integrations appear in the
expressions are all calculated by Simpson’s 1/3 rule. To ver-
ify the accuracy of our procedure of handling, we have suc-
cessfully tested few of our results with some existing results,
viz. when R = 1, R = 0 and D =D =1, the asymptotic
value of all three transport coefficients are totally agreed with
Sankarasubramanian and Gill [3] which are shown in Fig. 2.
To investigate the coupled effect of the irreversible absorption
(B), peripheral layer variation (R ) and yield stress (z) or plug
M, and M,

1
practically significant values of the parameters which ensures

core radius (R) on figures have been drawn using

the character of the flowing liquid as blood-like liquid flow.
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Fig. 3 Plots of asymptotic negative convective coefficient against / for fixed D, =D =1 and Pe = 100, (a) Newtonian liquid represented by dished line when

R,=0 and R = 1, two-layer flow is given by solid line when R,=0.02,R =0.95 and the single phase casson liquid is represented by dotted line when R,=
0.02 and R =1 (b) when R,=0.02 (c)and R =0.95.

For example, absorption parameter () is taken in the range
from 0.01 to 100 to account for small to large absorption; the
range for R is 0.92 to 1; plug flow radius (R) varying from 0.0
to 0.03 etc.

From Eq. (24a) it is clear that, only absorption parameter is
the reason for the appearance of exchange coefficient. Hence it
can be realized easily that (—A4) is independent of both yield
stress (ry) and peripheral layer variation (R ).

Fig. 3 shows the variation of negative convection coeffi-
cient with absorption parameter in the presence of periph-
eral layer. It can be clearly seen from Fig. 3(a) that asymp-
totic absolute value of M, steadily increases as absorption
increases, for a fixed R = 0.95 and Rp = 0.02. In this case
when = 100, M, has increased by 1.50 times the value cor-
responding to f = 0.01, whereas for the case of single phase
Casson model and Newtonian model this increments are 1.53
and 1.55 times respectively. The reason behind the increment
is the rapid enhancement in S, so the reaction at the wall con-
sumes material in a quick manner and hence the solute moves
towards the faster moving core region. Also from Fig. 3(b) it

is found that the negative convective coefficient increases with
S when the thickness of peripheral layer increases. Due to the
lower value of R will lead to greater region of Newtonian lig-
uid and hence larger value of the convection coefficient. Fig.
3(c) shows the variation of negative convective coefficient
vs absorption parameter for different central core region with
fixed R = 0.95, the negative convective coefficient decreases
with Rp and increases with £, which completely satisfies the
physical behavior of the system, since the increase of R results
the decrease in corresponding velocities.

From the investigation in Fig. 3, we see that, for large time,
when R = 0.02 and R = 0.95 and f ranges from [0.01 -
100], the value of —M, increases in the range of [0.02 - 0.03]
in comparing the corresponding values of Casson model say
R =002,R =1 Though —M, decreased in the range from
[0.21 - 0.12] as collating the values of corresponding Newto-
nian flow, say R =0 andR = 1.

Fig. 4 demonstrates the functional relationship between
dispersion coefficient (M,) [from that the additive contribu-

tion of axial diffusion has been withdrawn] and . From

7Pez
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Fig. 4 Plots of asymptotic dispersion coefficient against £ for fixed D,=D =1 and Pe = 100, (a) Newtonian liquid represented by dished line when R =0, and

R =1, two-layer flow is given by solid line when R, =0.02, and R = 0.93 and the single phase casson liquid is represented by dotted line when R, =0.02, and
R,=1(b)whenR =0.02(c)R,=0.95.

Fig. 4(a), it has been seen that the dispersion coefficient signifi-
cantly decreases as absorption increases. On the basis of physi-
cal perception, the increase of £ leads to an increase in the num-
ber of moles of reactive material undergoing chemical reaction
or absorption resulting in a change in the concentration distri-
bution across the tube and hence there is a drop in dispersion
coefficient. The most remarkable thing is the effect of periph-
eral layer, which makes some increment of M, in comparison to
the corresponding values of Casson model alone. The physical
explanation for this increment in initial reaction domain is the
interaction between £ and the thin-Newtonian region at the tube
boundary, though as f increases M, nearly approaches to the
corresponding values in Casson model, but eventually they do
not overlap. It is observed that when g = 100, M, has been
decreased by 0.22 times the values corresponding to 5 = 0.01
, but for Casson and Newtonian models the decrements are
found to be 0.23 and 0.25 times respectively. From Fig. 4(b)
it is clear that, as R decreases (or peripheral layer thickness
increases) the value of dispersion coefficient has a signifi-
cant increment for small absorption rate, whereas for large f
, the values are close to Casson state. Because of the presence
of Newtonian layer at the boundary having large velocity as

compare to the Casson layer and also due to the initial reaction
with the solute, dispersion coefficient increased for weak reac-
tion, which completely indicates the effect of peripheral layer
on dispersion process. Also from Fig. 4(c), it is clear that the
dispersion coefficient decreases significantly with the increase
in the values of R . Due to increase in yield stress or plug core
radius of the liquid, flow velocity decreases and hence the sol-
ute dispersion decreases.

From the above investigation in Fig. 4, we can conclude that
for a fixed R, = 0.02 and R = 0.95, asymptotic dispersion
coefficient decreases in the range [2.81 - 0.80], in comparison
with the corresponding values in Newtonian liquid. Though,
for small and large f these values ranging from [0.0358 -
0.0002], following corresponding values of Casson model, say
R =0.02andR = 1.

The molecular diffusivity or diffusion coefficient (D*) is a
kinematic property of the fluid which implies that the mass
of the substance diffuses through a unit surface in a unit time
at a concentration gradient of unity. So, diffusion coefficient
represents the spreading process, the larger values of D* indi-
cates the rapid spreading of the tracer curve whereas smaller D*
means slow spreading of solute in the liquid.
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3.5

Fig. 5 Plots of asymptotic dispersion coefficient against f for fixed R = 0.95, R,=0.02 and Pe = 100, (a) with various values of D_ (b) with various values of D,

Fig. 5 shows the variation of dispersion coefficient with
respect to absorption for various values of D*. It can be
depicted form Fig. 5 (a, b), for both the regions viz., plug
(R,) and Casson (R,), large values of D, and D, decrease
the magnitude the solute dispersion coefficient and reaches
to its steady value when absorption is so high. The reason for
this decrements is due to fast spreading of molar flux which
completely agrees the physics of the system.

The convective characteristic scales are used for the dimen-
sionless formulation that incorporates the Peclet number (Pe)
into the convection diffusion equation as a measure for fluid
dispersion. Higher values of Peclet number means the effects
of convection exceed those of diffusion in determining the
overall mass flux, which could be the reason for small mag-
nitude in dispersion coefficient. Fig. 6 shows that dispersion
coefficient decreases as Peclet number increases.
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Fig. 6 Plots of asymptotic dispersion coefficient against f for fixed R = 0.95,
Rp =0.02,D, = Dp =1 and P, = 100,with various values of Peclet number (Pe).

Using the Eq. (49) and Eq. (50a), (50b), (50c¢), the axial vari-
ation of mean concentration distribution (C, % Pe) has been pre-
sented in Fig. 7 against dimensionless time (¢) at z = 0.5, for
different values of plug core radius (R), absorption parameter

(B) and peripheral layer variation (R ). It is seen from the figure
that, due to constant depletion occurring at the tube wall as
the dispersion time ¢ increases, the peak of mean concentra-
tion decreases with £ and it may becomes falter at large time.
Hence for large absorption, the dispersion coefficient may
not have practical importance. From Fig. 7(c), it is observed
that, when Rp = 0,8 =0.0l and R = 1 (i.e. for Newtonian
liquid model), the peak concentration is about 3.82 and when
R, = 0.02, B =001 and R = 1 (i.e. for single phase Cas-
son model) this value is 4.66, and finally, when Rp = 0.02,
B = 0.01landR = 0.95 (i.e. for two-phase Casson model) this
value is 4.79.

7 Conclusions

From the aforementioned discussion, it can be said that the
utility of the upgraded mathematical model explained in this
paper has a significance in the study of solute dispersion. A
qualitative analysis for scalar dispersion has been studied by
evaluating the values of all the three coefficients using analytic
approach of Sankarasubramanian and Gill [3] for large time.
Most of the previous works show that Casson model is the most
reliable equation for analyzing the blood behavior in mathemat-
ical way of study. But the importance of peripheral layer on
blood-like liquid flow has been mentioned by few authors while
studying resistance to flow, wall shear stress, plug core radius
etc. Again, the study of dispersion with the effect of absorption
has lots of physiological relevance and so, in this present paper,
we established the effect of peripheral layer on dispersion pro-
cess in addition with absorption effect and plug core radius.

The exchange coefficient is independent on both peripheral
layer and yield stress but the convection coefficient increases
with absorption in the present model which is more than a
Casson liquid model and less than the single layer Newto-
nian liquid. The effective diffusion coefficient decreases with
absorption, but for small absorption this decrement is less than
corresponding values of Casson model, however, more than
the single layer Newtonian liquid. Therefore one can conclude
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Fig. 7 Variation of mean concentration distribution with time for different values of Rp, R, and §, when Dp =D =1.
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