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Abstract 
This paper presents a numerical study pertaining to on the 
active vibration control (AVC) of the 3-D rectangle simply 
supported plate bonded of the piezoelectric sensor/ actuator 
pairs. AVC is a large area of interest either in all sections of 
industry or in research. One way to control the vibration of 
dynamic systems is by using piezoelectric materials. A finite 
element method (FEM) analysis is used to model the dynamic 
behavior of the system. The frequencies of the isotropic pate 
and a smart structure are verified by the comparison between 
the analytical calculations and simulation. A LQR controller 
is designed based on the independent mode space control tech-
niques to stifle the vibration of the system. The change in the 
sizes of the patches was a clear impact on the control results, 
and also in the values of the voltage in actuator. The results 
were established by simulating in ANSYS and MATLAB.
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1 Introduction
Active vibration control (AVC) technology has been devel-

oped for more than 30 years. Combining the vibration theory 
with the control theory, it has been widely applied in the fields 
of civil engineering, aeronautics, astronautics, mechanical 
engineering and vehicle, etc. [7]. AVC using smart materials is 
being increasingly used for flexible structures in the aerospace 
industry. Over the last decade the usage of piezoceramics as 
actuators and sensors has considerably increased and they pro-
vide an effective means of high quality actuation and sensing 
mechanism [17].

Modeling smart structures often require a coupled modeling 
between the host structure and the piezoelectric sensors and 
actuators. They can be modeled as either lumped or distributed 
parameter systems, and usually these systems have compli-
cated shapes and structural patterns that make the development 
and solution of descriptive partial differential equations bur-
densome, if not impossible. Alternatively, various discretiza-
tion techniques, such as finite element (FE) modeling, modal 
analysis, and lumped parameters, allow the approximation of 
the partial differential equations by a finite set of ordinary dif-
ferential equations. Since the 1970s, many FE models have 
been proposed for the analysis of smart piezoelectric structural 
systems [16]. 

With a multiple-input and multiple-output (MIMO) con-
trol system, linear quadratic control methods are the preferred 
choice and can be used effectively for Multimode vibration 
suppression, and the Linear Quadratic Regulator (LQR) con-
trol approach is well suited for the requirements of damping 
out the effect of disturbances as quickly as possible and main-
taining stability robustness [8]. In this study a LQR control-
ler is designed based on the independent mode space control 
techniques to suppress the first three ranks modes vibration of 
the system.

The paper is organized as follows. In Section 2 the FE of 
smart plate is formulated, Sections 3 and 4 are presented the 
AVC procedure and LQR problem successively; the illustrative 
example is described in detail in Section 5. Finally, conclusions 
are drawn in Section 6.
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2 Finite element modeling of the smart plate
Modeling of piezoelectric smart structures by the finite ele-

ment method has been presented [8, 12, 15]. The global matrix 
equations governing a smart structure system can be written as:
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Where 
α  and  β : The Rayleigh’s coefficients
fb :  The vector of body applied to the volume V
fS :  The surface force applied to the surface  S1

fc :  The concentrated force
qs : The surface charge at surface S2

qc :  The point charge
S1 :  Is the area where mechanical forces are applied,
S2 :  Is the area where electrical charges are applied.

3 Active control vibration
The equations of active control vibration of a smart plate in 

modal coordinate can be written as [3]:
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Where:
N the first eigenmodes are considered.

αi , αi  and αi  represent modal displacement, velocity and 
acceleration.
ωi  and  ζi  are the natural frequency and damping ratio of i th 
mode. 
bil ui  is the i th modal constituent of the control force due to the 
electric potential  ui  applied to the l th actuator.

A continuous time state space representation of the system 
is given by:

x Ax But t t( ) = ( ) + ( )

y Cx t= ( )

Where [A], [B] and [C] denote the system matrix, the input 
matrix and the system output matrix, respectively. They can be 
obtained as.
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bij  represents the action of the j th actuator to the i th eigen-
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cij  is the sensing constant of the j-th sensor due to the motion 
of the l-th mode and equals to
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bij  and  cij  depend respectively of the l-th actuator location and  
j-th sensor location.
(ωi , ψ) represents the i-th couple of eigenvalue / eigenmode .
ζi  :  is a damping ratio of the of the i-th.
e31  and  e32  are the piezoelectric coefficient.

Assuming that the state equation is controllable, it consists 
in using a control law:

� Φ{ }= −[ ]{ }G x

Where  G  is the state feedback gain matrix.

To design such a LQR compensator, first, we consider the 
minimization of the quadratic cost function as follows:

J x Q x R dtT T
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Where
Q  Is a positive semidefinite matrix and  R  is a positive matrix 
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The selection of Q and R is vital in the control design pro-
cess. Q and R are the free parameters of design and stipulate the 
relative importance of the control result and the control effort. 
A large Q puts higher demands on control result, and a large R 
puts more limits on control effort [11].

The optimal solution is:

G R B KT T[ ] = [ ] [ ] [ ]

Where  [K]  satisfies the Riccati equation:

A K K A K B R B K QT T[ ] [ ] + [ ][ ] − [ ][ ][ ] [ ] [ ] + [ ] =−1
0

4 Linear Quadratic Regulator (LQR) problem
The state feedback approach can provide a complete model 

of the global response of the system under control. They are 
particularly applicable to the control of the first few modes of 
a structure. The state feedback (Fig. 1) approach provides the 
best performance that can be achieved under an ideal feedback 
control system (full information and no uncertainty) [4, 6].

Fig. 1 The principle of the state feedback 

In MATLAB, the command lqr is used to calculate the opti-
mal gain matrix G.

Syntaxe : G,K,e = lqr A,B,Q,R� � � � � [ ] ( )

Where  e  is the closed-loop eigenvalues.

e eig A BG= −( )

5 Example illustrative
The geometric model shown in Fig. 2 includes the plate 

equipped with two pairs rectangular PZT sensor/actuator pairs 
(Lp x lp x hp), attached to the top and bottom surfaces of the plate.

All simulations featured in this paper assume  α = 0  and  
β = 0.01 damping constants. The time step  Δt  for Transient 
analysis is taken as  1 / (20 fh ), where  fh  is the higher frequency. 

Consider an initial displacement field applied to the plate 
equal to 1 mm.

Table 1 contains the material property data for the plate, and 
piezoelectric patches.

Fig. 2 The geomitrical  model of the plate equipped with PZT patches

Table 1 Material properties of plate and piezoelectric 

Properties Units Plate PZT

E (Young’s modulus) Pa 207e9 69e9

ρ (Density) kg / m3 7800 7700

υ (Poisson) --- 0.3 0.3

e31 , e32 (Piezoelectric strain) C / m2 --- -12.351

ε (Piezo dielectric) F / m --- 1.6e-8

5.1 First application: modelling of the plate (Lp=100, 
lp=50, hp=0. 1 mm) by ANSYS apdl

To build an ANSYS finite element model of a piezoelec-
tric smart structure, the plate and the PZT materials have been 
modeled by the SOLID5 element, which has 8 nodes. The pro-
cessing of the geometry and finite element mesh generation is 
provided by ANSYS processing analysis. A coupling electro-
mechanical is created by the CP command and the appropriate 
voltage potential is assigned (Fig. 3).

Fig. 3 The electromechanical coupling between the plate and the 
piezoelectric patches

(20)

(21)

(22)
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The current structure is meshed by 104x84 eight-node solid 
elements, with 104 elements in width direction and 84 elements 
in the width direction. And each sensor and actuator is meshed 
with 91 identical elements (Fig. 4). The simulation denotes the 
mechanical response of the plate equipped with the piezoelec-
tric actuators without control.

Fig. 4 FEM of the simply supported plate and boundary conditions

As the geometrical properties of piezoelectric are small 
compared to those of the elastic plate, piezoelectric patches can 
be neglected in the computation of eigenmodes. 

Table 2 shows the first six natural frequencies of the smart 
plate. For simply supported thin isotropic plates; Leissa [9], 
presented the exact natural frequencies mathematically from 
the following closed form:

ω πrn
r
L

n
l

D
ph

= 





 + 




















2
2 2

Where  r and n are the number of half waves in the x and y 
directions.
And
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D  Is the flexural rigidity of the plate.
(L, l, h) Are dimensions of a thin rectangle plate.

Fig. 5 shows the first six vibration modes of the smart plate.

5.2 Second application for active vibration control
In this section, we consider the active control of the previ-

ous plate.
The FEM results were exported to the MATLAB software 

in order, to determine the cost function and the state space rep-
resentation of the system. This model was obtained by system 
identification commands from MATLAB software using the 
frequency response of the smart plate.

In this study, a linear quadratic optimal controller is consid-
ered to control the first three modes of the flexible plate. The 
dynamic response is calculated using the first three modes. As 
a result, the size of Size of system matrix [A] is 6x6 (13). In 
addition the size of the input matrix [B] is 2x6, the matrix [B] 
depend of the number of actuators (14) which two in our case.

Here, the control is started after an elapse of 0.5 s in order 
to compare the controlled and uncontrolled responses. Fig. 6 
shows the displacement response.

The Bode plot of the open-loop and closed-loop system are 
shown in Fig. 7, when the control is open-loop are also shown 
for comparison. 

As can be seen, in case of closed-loop the controller success-
fully damps the vibration of the plate. The actuator voltages are 
lower than the breakdown voltage of piezoelectric materials. 
Actuator voltages are shown in Fig. 8 and Fig. 9.

5.3 Third application: active control for different 
sizes of area piezoelectric patches 

In this application, we consider the active control of the pre-
vious plate with various ad sizes of the patches. 

The value of  bij  is given according to the size of the patches 
(16), and any change in value of these dimensions will change 
in the value of  bij . And therefore, we will have different values 
for the voltages in each and actuators. The effectiveness of the 
control related to the values of  bij .

The response displacements of the smart plate shown in 
Fig. 10 are different according to the size of the patch area.

The actuator voltages for cases 1, 2 and 3 are shown in 
Fig. 11 and Fig. 12.

The variation of surface values of the patches is very impor-
tant to obtain good control. The cases studied in this article are 
verified this approach. 

Table 2 The first six natural frequencies of the  plate and the smart plate 

Natural frequencies (Hz)

Mode (r,n) (1,1) (2,1) (1,2) (3,1) (2,2) (3,2)

Aluminum plate [10] (analytical) 10.628 22.107 31.035 41.238 42.513 61.644

Aluminum plate (ANSYS) 10.636 22.139 31.082 41.331 42.640 61.923

Smart plate (ANSYS) 10.499 21.769 30.632 40.637 41.857 60.656

(23)

(24)
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Fig. 5 The first six vibration modes of the simply supported smart plate.
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Fig. 6 Comparison of open-loop (no control) and the  closed-loop (with 
control) displacement response of a simply supported smart plate with LQR 

controller.

Fig. 7 Comparison of the Owen-loop and the closed-loop frequency response 
of a simply supported smart plate with LQR controller.

Fig. 8 Time history of actuator 1 voltage

Fig. 9 Time history of actuator 2 voltage

Fig. 10 Comparison of open-loop (no control) and the  closed-loop 
(with control) displacement response of a simply supported smart 

plate with LQR controller for cases 1, 2 and 3.

Fig. 11 Time history of actuator 1 voltage for cases 1, 2 and 3



121The LQR Control Active of Smart Plate Based on the Finite Element Method 2017 61 2

Fig. 12 Time history of actuator 2 voltage for cases 1, 2 and 3

6 Conclusion
This paper is concerned with the numerical modeling of 

discrete piezoelectric sensors and actuators for active modal 
control of a flexible simply supported rectangular plate, excited 
and sensed by rectangular actuators and sensors bonded sym-
metrically to both sides of the plate. Finite element model of 
the smart plate is constructed by an ANSYS APDL program.

A LQR controller is considered based on the independ-
ent mode control techniques to suppress the first three modes 
vibration of the system. Simulation results and the curves of 
open-loop and close-loop for different sizes of the piezoelectric 
patches are given by MATLAB demonstrate the effectiveness 
of the method in this paper.
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