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Abstract
The objective of this work is to present a numerical modeling 
of crack propagation path in functionally graded materials 
(FGMs) under mixed-mode loadings. The minimum strain 
energy density criterion (MSED) and the displacement extrap-
olation technique (DET) are investigated in the context of frac-
ture and crack growth in FGMs. Using the Ansys Parametric 
Design Language (APDL), the direction angle is evaluated as 
a function of stress intensity factors (SIFs) at each increment of 
propagation and the variation continues of the material prop-
erties are incorporated by specifying the material parameters 
at the centroid of each finite element (FE). In this paper, several 
applications are investigated to check for the robustness of the 
numerical techniques. The defaults effect (inclusions and cavi-
ties) on the crack propagation path in FGMs are examined.

Keywords
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1 Introduction
Functionally Graded Materials (FGMs) are inhomogeneous 

materials which are widely used in technological application. 
In recent years, those materials have been especially studied 
its mechanical behaviors using different approaches. For the 
fracture of the FGMs, many studies have considered various 
crack problems in non-homogeneous materials: Using finite 
element method (FEM) analysis, Kim and Paulino [1] evalu-
ated the mixed-mode fracture parameters in FGMs with three 
techniques: Jk*-integral method, the displacement correla-
tion technique (DCT) and the modified crack-closure integral 
method (MCC). The same authors [2] used the interaction inte-
gral method (M-integral) for evaluation of mixed-mode SIFs in 
FGMs to simulate the crack growth in homogeneous and FGMs 
materials using the FEM. Rao and Rahman [3] used the ele-
ment-free Galerkin method (EFG) for calculating SIFs in two-
dimensional FGMs of different arbitrary geometry of cracked 
plate. Marur and Tippur [4] studied the influence of material 
gradient and the crack position on the fracture parameters for 
edge-cracked FGM specimen. Tilbrook et al. [5] investigated 
the effects of gradient profile and crack geometry on crack-tip 
stresses and crack propagation path in FGMs. Chandran and 
Barsoum [6] used a generalized method to determine SIFs for 
cracks in FGMs, using the center cracked tension (CCT) speci-
men. Kim and Paulino [7] developed the FE methodology for 
fracture analysis in orthotropic FGMs where cracks are arbi-
trarily oriented. The displacement correlation technique (DCT) 
and the modified crack closure (MCC) are used to evaluate 
SIFs in orthotropic FGMs. Chang-chun et al. [8] used the cou-
pled method to calculate the Rice’s J-integral for dynamic frac-
ture in single edge cracked FGM panel. Eshraghi and Soltani 
[9] investigated weight function approach to obtain SIFs for 
internal central circular crack in solid cylinder. Bahr et al. [10] 
used the same technique to analyze the crack growth behavior 
in FGMs and in particular materials with a rising crack growth 
resistance curve. Steigemann et al. [11] presented the numeri-
cal modeling of quasi-static crack growth in FGMs using the 
compact tension shear (CTS) specimen. Sladek et al. [12] pro-
posed the meshless method based on the local Petrov-Galerkin 

1 Department of Mechanical Engineering, Faculty of Technology,
Laboratory of Materials and Reactive Systems, 
Djillali Liabes University of Sidi Bel-Abbes, 
BP. 89, City Larbi Ben Mhidi, 22000, Algeria
* Corresponding author, e-mail: benamara96@yahoo.fr

61(1), pp. 60-67, 2017
DOI: 10.3311/PPme.9682

Creative Commons Attribution b

research article

PPPeriodica Polytechnica 
Mechanical Engineering

mailto:benamara96@yahoo.fr
https://doi.org/10.3311/PPme.9682


61SED Prediction of Mixed-Mode Crack Propagation in FGMs� 2017 61 1

approach for 2D crack problems in 2D anisotropic and FGMs. 
Kim and Paulino [13] investigated FEM with mesh refinement 
techniques and interaction integral method to simulate the 
mixed-mode crack growth in homogeneous and FGMs. 

Under mixed-mode loadings, the crack propagation path 
is important for fracture behaviors analysis. In the literature, 
a number of fracture criteria have been developed by many 
researchers, such as the: the maximum circumferential stress 
(MCS) criterion proposed by Erdogan and Sih [14], the maxi-
mum energy release rate (MERR) criterion based on Griffith’s 
theory [15], the minimum strain energy density (MSED) crite-
rion introduced by Sih [16, 17] and the crack-tip opening dis-
placement (CTOD) criterion developed By Sutton et al. [18]. 

The objective of this study is to present a numerical mode-
ling of crack propagation in FGMs. Using the APDL code [19], 
the displacement extrapolation method and the strain energy 
density theory are used to determine numerically the SIFs and 
the crack growth direction. The FE analysis is used to carry out 
this study. The defaults effect on the crack propagation path in 
FGMs is highlighted. 

The present paper is organized as follows: Section 2 pre-
sents the numerical evaluation of SIFs and the crack growth 
direction. Section 3 explains methodology of crack extension 
modeling in FGMs. Section 4 provides some numerical appli-
cations. Finally, Section 5 presents some conclusions.

2 Determination of fracture parameters
2.1 Numerical evaluation of SIFs

There are several techniques are used to obtain stress inten-
sity factors (SIFs) in homogeneous and inhomogeneous materi-
als, such as the displacement correlation technique (DCT) [20], 
the J*k-Integral [21, 22] and the modified crack-closure integral 
(MCC) [23]. The displacement extrapolation technique (DET) 
used to calculate the SIFs KI and KII for homogeneous materials 
[24-27] is modified to calculate the SIFs for non-homogeneous 
materials, in present study. For the FGMs, the SIFs KI and KII 
can be expressed as follows:
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where: 
Etip is modulus of elasticity, νtip is Poisson’s ratio, Ktip is elastic 
parameter equals to 3-4νtip or (3-νtip)/(1+νtip) in the case of plane 
strain or plane stress, respectively.

L is element length. u and v are the displacement compo-
nents in the x and y directions, respectively; the subscripts indi-
cate their positions as shown in Fig. 1.

In this study, the special quarter point finite elements pro-
posed by Barsoum are used [28] to obtain a better approxima-
tion of the field around the crack-tip (Fig. 1), where the mid-
side node of the element connected to the crack-tip is moved to 
1/4 of the length of this element.

Fig. 1 Singular element around the crack-tip: 
a) Barsoum elements, b) FE simulation.

2.2 Crack increment direction
Sih [17] used the strain as a critical parameter in order to 

propose the minimum strain energy density (MSED) criterion. 
It states that the direction of crack initiation coincides with the 
direction of minimum strain energy density along a constant 
radius around the crack tip. The MSED-criterion showed a 
good agreement with the experimental results obtained earlier 
by Erdogan and Sih [14]. In addition, this criterion is the only 
one that shows the dependence of the initiation angle on mate-
rial property represented by Poisson’s ratio ν. In mathematical 
form, MSED-criterion can be stated as:
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where dW/dV is the strain energy density function per unit vol-
ume, and r is a finite distance between the crack-tip and the 
point of failure initiation.

Under mixed mode conditions, the strain energy density fac-
tor S was given by Sih as follows:
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where νtip is the shear modulus of elasticity.
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The unstable crack growth occurs when Smin reaches a criti-
cal value, Scr , i.e.,
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where Scr is the critical value of strain energy density factor at 
the critical distance rc. 

The value Scr is characteristic of the material and is related 
to KIc by the relation in the case of Mode-I crack extension, 
i.e., KII=0,

S Kcr Ic= −( ) 1 2 4
2ν πµ/

3 Finite element model
In this paper, the APDL code has been employed for creating 

the program to simulate the mixed-mode crack propagation in 
FGMs. The displacement extrapolation technique and the mini-
mum strain energy density theory are used, to determine the 
SIFs and the crack direction. The crack propagation in FGMs 
is characterized by successive propagation steps performed 
without user interaction. For this modeling, each step (at each 
increment of propagation ∆a) consists of:

1.	 Importing the initial geometry with the initial crack 
2.	 Input material properties data of the problem.
3.	 Discretization of the FE model by plane2 elements 

‘PLANE183’.
4.	 Mesh definition.
5.	 FE analysis.
6.	 FE evaluation of SIFs KI and KII .
7.	 Prediction of crack growth direction θ.
8.	 Continues analysis (SIF KI>0)? If no, go to step 9. If yes, 

go to step 10.
9.	 Stop.
10.	Automatic delete of the crack segment and insertion of 

the new crack-tip position. 
11.	Return to Step 4.
Figure 2 shows the algorithm of the main operations for the 

crack propagation modeling using SED theory. 

4 Numerical results and discussion
4.1 FE evaluation of SIFs

For this problem, the geometry of the single edge cracked 
FGM plate with an initial crack of length a is considered for 
2-Dimensional FE analysis (Fig. 3a). This geometry was origi-
nally investigated by Erdogan and Wu [29], and it is one of the 
few analytical solutions available for fracture in FGMs. 

The plate is subjected to uni-axial loading at the both ends. 
The elastic modulus for FGMs plate was assumed to follow an 
exponential function given by:

E x E x x w( ) = ( ) ≤ ≤
1

0exp ; ;λ

with E= E1 (0), E= E2 (w), and λ=ln(E2 / E1). 

The following data were used under plane strain conditions:
σ=1unite, E1 = 1unite; E2/E1 = (0.1, 0.2, 1, 5 and 10); ν=0.3; 

a/w = 0.2, 0.3, 0.5 and 0.6; L/w = 8.

Fig. 2 A flowchart of the crack propagation simulation in FGMs

The FE standard code ANSYS [19] has been used for mode-
ling the problem. The special quarter point finite elements pro-
posed by Barsoum are used [28] for modeling the singular field 
around the crack-tip (see Fig. 1b). For a/w=0.2, the mesh dis-
cretization consists of 710 elements and 2241 nodes (Fig. 3b).

Fig. 3 (a) Geometry and boundary conditions of FGM plate (a/w=0.2)

Figure 4 shows the variation of normalized SIFs obtained by 
the displacement extrapolation technique (DET) are compared 
with the numerical results obtained by Chen et al. [30] using the 
element free Galerkin (EFG) method and by Kim and Paulino 
[31] using Jk*-Integral method and the displacement correla-
tion technique (DCT), respectively. The results obtained indi-
cate good agreement between ours results and other author’s 

(7)

(6)

(8)
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solution [32, 33]. These results allow us to conclude that the 
numerical model implemented in FE code, correctly described 
the stress-strain field around the crack-tip and the behavior of 
elastic FGM. 

4.2 Crack propagation simulation in FGM
In order to show the robustness of our strategy of crack 

propagation simulation, four examples are presented (single 
edge cracked plate, FGM plate with an oblique pre-crack, sin-
gle edge cracked plate with one hole and another with an inclu-
sion). The variation of the elastic modulus for FGM is modeled 
by Eq. (8).

4.2.1 Single edge cracked FGM plate
In present problem, we consider the single edge cracked 

FGM plate with L/w=2 and a/w= 0.5. The plate is imposed by a 
plane stress condition under uni-axial loading (Fig. 5a). A typi-
cal integration grid of the cracked plate is illustrated in Fig. 5b. 
For first step of crack propagation, the number of element used 
in this analysis is 1043 elements with 3196 nodes.

Figure 6 illustrates three steps for extension of initial crack 
in FGM plate. As expected, the crack propagates horizontally, 
depending on mode-I loading. During crack propagation, the 
crack path is regular and the concentric mesh keeps good 
accuracy at the crack-tip. The results obtained allow us to 

conclude that the SED criterion incorporated in FE code gives 
a good crack growth under opening mode. Figure 7 shows the 
positions of the crack-tip during the crack extension obtained 
for homogeneous and FGM obtained for homogeneous (with 
E2/E1=1) and FGM plates. The results obtained show a good 
correlation between the trajectories estimated for the two plates 
using the SED theory.

Fig. 5 a) Geometrical model of the cracked FGM plate and 
b) final mesh for initial configuration 

Fig. 4 Normalized SIFs for edge cracked FGM plate for : a/w = 0.2, 0.3, 0.5 and 0.6
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Fig.6 Three steps of crack propagation trajectory for single 
edge cracked FGM plate

Fig. 7 Crack trajectories obtained for homogeneous and FGM.

4.2.2 FGM plate with an oblique pre-crack
In the present problem, we consider a thin rectangular FGM 

plate with an oblique pre-crack (with α=30°). This plate is sub-
mitted under uni-axial loading. A rectangular isotropic FGM 
plate with an oblique crack and final mesh for the first configu-
ration of crack propagation are illustrated in Fig. 8. The numer-
ical modeling is performed under plane stress conditions. 

Fig. 8 Geometry model and final mesh for initial configuration

Figure 9 shows three steps for crack propagation path 
obtained for inclined crack in FGM plate. Figure 10 illustrates 
the positions of the crack-tip during the crack extension obtained 
for homogeneous and FGM plates. For two materials, the crack 
propagated and reoriented horizontally under mode I loading.

Fig. 9 Crack propagation path of the inclined crack 

Fig. 10 Positions of the crack-tip during the crack extension 
obtained for homogeneous and FGM

4.2.3 Single edge cracked FGM plate with one hole
In order to determine the effect of a geometrical defect on the 

crack extension in FGMs, we represented in Fig. 11a the geom-
etry of the single edge cracked plate with one hole. This plate is 
simply fixed at the bottom edge and loaded by uni-axial traction 
along the top edge. The geometry is meshed using 8-node quad-
ratic elements and triangular elements concentric at crack-tip 
(Fig. 11b). The determination of SIFs, direction angle and crack 
growth path are made under plane stress problem.

Under plane stress conditions, the numerical calculations 
obtained for crack growth path will compare with other results, 
for a homogeneous material case. Figure 12 shows the final 
configuration corresponding to the last position of crack-tip for 
the results predicted in Refs [34] and [35], and that obtained in 
present study. The crack propagation paths obtained are similar 
between them [32].
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Fig. 11 a) Geometry model of cracked FGMs plate with one hole, b) typical 
FE mesh for initial configuration and c) singular element around the crack-tip

Fig. 12 Final configuration corresponding to the last position of crack-tip 
(with E2/E1=1): a) Bouchard et al. [33], b) Rashid [34] and c) Present study

Figure 13 shows four positions for crack extension in FGM 
plate. This crack would move in a straight path if there was no 
hole at the plate for opening-mode (mode-I) loading (Fig. 13a). 
However, due to the presence of the default, the crack did not 
follow a straight line path, but curved towards the hole as shown 
in Fig. 13b. This was due to the stress concentration effect; 
cracks are likely to initiate at a hole boundary. Once the crack-
tip has moved beyond the default, the crack reoriented horizon-
tally in the mode I loading as shown in Figs. 13c and 13d.

Fig. 13 Four steps of crack propagation trajectory for a single edge 
cracked FGM plate with one hole

Figure 14 illustrates the crack trajectories obtained for 
homogeneous and FGMs plates, respectively. One can notice 
the same crack propagation behavior for both plates but the 
two crack paths are different from each other. This may explain 
the fact that the stress distribution around the hole is different 
for the two plates, which may directly influence on the crack 
propagation trajectory.

Fig. 14 Positions of the crack-tip obtained for homogeneous and FGM

4.2.4 Cracked FGM plate with an inclusion
In the last application, we studied the inclusion effect on the 

crack path in functionally graded materials. For this purpose, 
we considered a pre-cracked FGM plate with a circular inclu-
sion, having the following dimensions: W/R=3.5 and L/W=0.5 
(Fig. 15a) [32, 33]. The FGM plate is fixed at the bottom edge 
and loaded by uni-axial traction along the top edge. A typi-
cal FE model of the FGM plate with an inclusion is shown in 
Fig. 15b. The determination of SIFs, direction angle and crack 
growth path are made under plane stress problem. 

Fig. 15 a) Geometrical model of the cracked FGM plate 
with an inclusion and b) typical FE mesh

The inclusion considered is characterized by its Poisson’s 
ratio νInc= ν=0.3 and Young’s modulus EInc . The mechanical 
properties of the FGM plate are given in Section 4.1. 

Firstly, our numerical model was to check for a homogene-
ous material and the results obtained are compared with the 
numerical results obtained by Bouchard et al. [36]. The crack 
propagation trajectories are obtained for two cases [32, 33]:

a)	 EInc /E1 = 0.1 and E2/E1=1 (Fig. 16a),
b)	 EInc /E1 = 10 and E2/E1=1 (Fig. 16b).
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The predicted crack propagation trajectory of the present 
study is quite similar to that obtained by Bouchard et al. [36].

Fig. 16 Final configuration corresponding to the last position crack-tip:  
a) EInc /E1 = 0.1, b) EInc /E1 = 10

For FGM plate case, the prediction of the crack propagation 
path, for two cases EInc <E1 (with EInc /E1 = 0.1) and EInc>E2 
(with EInc /E2= 10) is shown in Fig. 17. The obtained results 
show that:

•	 If EInc /E1 = 0.1, the inclusion is less rigid than the FGM, 
the crack is attracted to the inclusion (Fig. 17a).

•	 If EInc /E1 = 10, the inclusion is more rigid than the FGM, 
the crack is moving away from the inclusion (Fig. 17b).

Figure 18 illustrates the crack trajectories obtained in FGM 
plate for the two cases. 

Fig. 17 Crack propagation trajectory obtained for FGM plate with an 
inclusion: a) EInc /E1 = 0.1, b) EInc /E2= 10.

Fig. 18 Positions of the crack-tip obtained for FGM plate with an inclusion

5 Conclusion
This work investigates mixed-mode crack growth in FGMs 

plates using the Ansys Parametric Design Language. Under 
mode-I loading, the SIFs for a single edge cracked plate was 
evaluated and compared with available analytical and numeri-
cal solutions. The comparison shows that our numerical tech-
nique is capable of demonstrating the SIF evaluation and the 
crack path direction satisfactorily. The methodology of crack 
propagation modeling proposed in this investigation has been 
used successfully to predict the crack path for homogeneous 
(E2/E1=1) and FGM plates (E2/E1≠1).

The presence of holes and inclusions in the plates disturbed 
the stress and strain fields providing interesting crack trajecto-
ries. The results indicated that FE analysis for fracture mechan-
ics problems has been successfully employed for homogenous 
and FGM. Based on the results, it was recommended to add 
further development the APDL code to simulate crack propaga-
tion in orthotropic FGMs.
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