Abstract
A theorem for planar case and its generalization for spatial case are proposed to determine the projection of a virtual displacement to the orientation under the case of knowing the projections of a virtual displacement to the given two or three orientations for object systems subject to holonomic and scleronomic constraints. Some lemmas corresponding to the two theorems for special cases are given. Applications to structural static analysis are investigated using the two theorems in this paper. Result reveals that the two theorems and corresponding lemmas are easy to be used, shorten the distance between the principle of virtual displacement and its application, and the relating problems can be solved quickly with them.

Keywords
projection of virtual displacement, principle of virtual displacement, engineering mechanics, structural analysis

1 Introduction
It is well known that the principle of virtual displacement (or virtual work) is a main part in analytical statics, and the important basis for analytical dynamics and structural analysis. This principle provides an excellent tool for people to investigate the equilibrium laws of object systems, and plays a supporting role in classical mechanics.

Generally speaking, some current college textbooks [1-7] for engineering mechanics or structural analysis course often propose two main methods for building relations among virtual displacements of different points for the system with holonomic and scleronomic constraints, ie, analytical method and geometrical method. Using analytical method, one can determine the virtual displacements of interest points (usually points of forces) by taking differentials of their position coordinates, and geometrical methods by introducing the concept of the instant center of rotation of virtual displacements. These methods are very useful in application of the principle of virtual displacement. However, in actual experience, we realize that these methods are sometimes not sufficient for analyzing complex structures. For some difficult problems, such as the examples given in this paper, it is impossible or not sufficient to solve them out if only directly using the results given in these current textbooks. Then, how to shorten the distance between the principle of virtual displacement and its application, and give some feasible approaches to realize, is very important and great significance.

In this study, we will gain an insight into the application of the principle of virtual displacement and present two new theorems on how to build up the relations among the projections to different orientations of the virtual displacement of a point. Several examples are given to illustrate the application of two theorems and corresponding lemmas. The article is organized as follows. In Section 2, a theorem is given to find a projection under knowing the two projections to different orientations of a point for planar systems, and two lemmas for special cases are proposed. In Section 3, a theorem for spatial systems as the planar extending situation is given to find a projection under knowing the three projections to different orientations of a point, and three lemmas for special cases are proposed.
2 The first theorem for plane cases

For a planar object system, if the projections of a virtual displacement δr of a certain dot to orientations n_1 and n_2 are δr_1 and δr_2 separately, shown in Fig. 1, then the projection of the virtual displacement to orientation n_3 is

$$
\delta r_3 = \frac{\delta r_1 \sin(\theta - \phi) + \delta r_2 \sin \phi}{\sin \theta},
$$

where, angles θ and ϕ are angles between n_1 and n_2, n_1 and n_3 separately.

![Fig. 1 A virtual displacement and its projections](image)

Proof. Assume e_1, e_2, e_3, and e are the unit vectors of the orientations of n_1, n_2, n_3, and n_1, respectively. Take the start point A of the virtual displacement δr as the origin of the coordinate system Axy. Let a be the angle between n_1 and x axis. According to the given conditions, one reads

$$
\delta r \cdot e_1 = \delta r_1, \quad \delta r \cdot e_2 = \delta r_2.
$$

Hence, one can get

$$
\delta r \cdot (\cos \alpha i + \sin \alpha j) = \delta r_1, \quad \delta r \cdot [\cos(\alpha + \theta)i + \sin(\alpha + \theta)j] = \delta r_2
$$

where i and j are the standard unit vectors of x and y axis.

By taking the inner products $\delta r \cdot i$ and $\delta r \cdot j$ as unknowns, and solving the equations of (2) and (3), one can get

$$
\delta r \cdot i = \frac{\delta r_1 \sin(\alpha + \theta) - \delta r_2 \cos \alpha}{\sin \theta},
$$

$$
\delta r \cdot j = \frac{\delta r_1 \cos \alpha - \delta r_2 \cos(\alpha + \theta)}{\sin \theta}.
$$

Then, the projection of the virtual displacement to orientation n_3 is

$$
\delta r_3 = \delta r \cdot e_3 = \delta r \cdot [\cos(\alpha + \phi)i + \sin(\alpha + \phi)j] = \frac{\delta r_1 \sin(\alpha + \phi) - \delta r_2 \cos \alpha}{\sin \theta} + \frac{\delta r_2 \cos \alpha - \delta r_1 \cos(\alpha + \phi)}{\sin \theta} + \frac{\delta r_1 \cos \alpha + \delta r_2 \sin \phi}{\sin \theta}.
$$

Lemma 1. When $\theta \neq 0(180^\circ)$, $\delta r_1 = \delta r_2 = 0$, then $\delta r_3 = 0$.

Lemma 2. When $\theta = 90^\circ$, then $\delta r_3 = \delta r_1 \cos \phi + \delta r_2 \sin \phi$.

For demonstrating the effectiveness of this theorem in solving the balancing problems of planar object systems, two examples are given below.

Example 1. Determine the force in member CD of the truss, shown in Fig. 2. Assume all members are pin connected, and $AD = AE = ED = EC = CG = DG = DB = BG = a$.

![Fig. 2 Example 1](image)

Solution. To calculate the force in rod CD, it is isolated from the system in Fig. 2 (b). Then, the system in Fig. 2 (b) is a mechanism. Obviously, equilateral triangles AED and DBG can be regarded as rigid plates, and ΔADE can be assumed to rotate about A point with $\delta \theta$. Then, $\delta r_A = \delta r_B = a\delta \theta$. Considering the orientation of δr_1 and character of support B, point B is the virtual displacement center of ΔDBG, therefore $\delta r_B = \delta r_2 = a\delta \theta$. Based on the principle of virtual displacement, one reads

$$
F_\delta \cdot \delta r_1 + F_{CD} \cdot \delta r_2 + F_{CD} \cdot \delta r_1 = 0
$$

Based on the theorem of projection of virtual displacement (i.e. the projections of the virtual displacements of the points from a straight line belonging to a body, on that line, are equal.), the projections of δr_1 to the orientations $E \rightarrow C$ and $G \rightarrow C$ are zeros. Then, by employing the lemma of the above theorem, δr_2 must be zero. Therefore, based on the above analysis and (6), one can get

$$
-F_\delta \cdot a \delta \theta \cdot \cos 30^\circ = F_{CD}^0 \cdot a \delta \theta = 0.
$$

Because of $\theta \neq 0$, then

$$
F_{CD}^0 = F_{CD} = -F \cdot \cos 30^\circ = -\frac{\sqrt{3}}{2} F.
$$

(bar CD in compression).

Example 2. Determine the force in member DG of the truss, shown in Fig. 3. Assume all members are pin connected.

![Fig. 3 Example 2](image)
Solution. To calculate the force in rod DG, it is isolated from the system in Fig. 3 (b). Obviously, triangles ACE and DBE can be regarded as rigid plates, and $\triangle ACE$ can be assumed to rotate about A point with $\delta \theta$. Then, $\delta r_c = 4a\delta \theta$, $\delta r_e = 4\sqrt{2}a\delta \theta$.

Considering that the orientation of δr_g is horizontal, the virtual displacement δr_g must be horizontal, and

$$\delta r_g = \delta r_e \cdot \cos 45^\circ = 4a\delta \theta,$$

$$\delta r_g \cdot \cos 45^\circ = \delta r_e \cdot \cos \alpha = 8a\delta \theta.$$

For the bar BH, it is easy to get that

$$\delta r_h \cdot \cos (90^\circ - 2\alpha) = \delta r_g \cdot \cos \alpha$$

$$\delta r_h = \frac{1}{2 \sin \alpha} \delta r_g = \frac{4a}{\sin \alpha} \delta \theta.$$

Then, for the bar GH, the projection of δr_g to the orientation $G\to H$ is

$$\delta r_{Gh} = \delta r_h \cdot \cos \alpha = \frac{4a \cos \alpha}{\sin \alpha} \delta \theta.$$

For the bar CG, the projection of δr_c to the orientation $C\to G$ is

$$\delta r_{CG} = \delta r_c \cdot \cos (90^\circ - \beta) = 4a \sin \beta \delta \theta.$$

For the point G, the projections δr_{GH} and δr_{CG} are known. By employing the formula (1) of the above theorem, the projection of δr_c to the orientation $G\to D$ is

$$\delta r_{GD} = \frac{\delta r_{GH} \sin \left(\beta - \left[\beta + 2(90^\circ - \beta)\right]\right) + \delta r_{CG} \sin \left[\beta + 2(90^\circ - \beta)\right]}{\sin \beta}$$

$$= \left[-4a \cos \alpha \sin 2\beta + 4a \sin \beta \right] \delta \theta$$

$$= \left[-8a \cos \alpha \sin \beta + 4a \sin \beta \right] \delta \theta$$

$$= \left[-8a \cdot 4 + 4a \cdot \frac{1}{2} \sqrt{S} \right] \delta \theta = -\frac{24}{\sqrt{5}} a \delta \theta.$$

By employing the principle of virtual displacement, one can get

$$\mathbf{F} \cdot \delta r_D + F_{DG} \cdot \delta r_D + F'_{DG} \cdot \delta r_G = 0 \quad (7)$$

Therefore, based on the above analysis and (7), one can get

$$F \cdot 4a\delta \theta - F_{DG} \cdot 4a\delta \theta \cdot \cos (90^\circ - \beta) - F'_{DG} \cdot 24 \frac{\sqrt{S}}{5} a \delta \theta = 0.$$

Because $\delta \theta \neq 0$, $F_{DG} = F'_{DG}$, then

$$F_{DG} = \frac{F}{\sin \beta + \frac{6}{\sqrt{5}}} = \frac{F}{\frac{2}{\sqrt{5}} + \frac{6}{\sqrt{5}}} = \frac{\sqrt{5}F}{8} = 0.279F.$$

3 The second theorem for spatial cases

If the projections of the virtual displacement δr of a dot to three non-coplanar orientations \mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3 are δr_1, δr_2, δr_3, then the projection δr_i of the virtual displacement to the orientation \mathbf{n}_i is

$$\delta r_i = \left(e_{i1}, e_{i2}, e_{i3}\right) \begin{bmatrix} e_{1x} & e_{1y} & e_{1z} \end{bmatrix}^{-1} \begin{bmatrix} \delta r_1 \\ \delta r_2 \\ \delta r_3 \end{bmatrix}, \quad (8)$$

where e_{i1}, e_{i2}, e_{i3} are projections of unit vector e_i of spatial orientation \mathbf{n}_i to the Cartesian coordinate axes x, y, z, separately. ($i = 1, 2, 3, 4$)

Proof. Assuming that i, j, k are the standard unit orthogonal vectors of the spatial coordinate system, based on the given conditions, one reads

$$e_i = e_{ix}i + e_{iy}j + e_{iz}k, \quad i = 1, 2, 3, 4$$

and

$$\begin{bmatrix} e_{1x} & e_{1y} & e_{1z} \\ e_{2x} & e_{2y} & e_{2z} \\ e_{3x} & e_{3y} & e_{3z} \end{bmatrix} \begin{bmatrix} \delta r \cdot i \\ \delta r \cdot j \\ \delta r \cdot k \end{bmatrix} = \begin{bmatrix} \delta r_1 \\ \delta r_2 \\ \delta r_3 \end{bmatrix}.$$

Because the three orientations $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are non-coplanar, the coefficient matrix is reversible. Hence, one can get

$$\begin{bmatrix} \delta r \cdot i \\ \delta r \cdot j \\ \delta r \cdot k \end{bmatrix} = \begin{bmatrix} e_{1x} & e_{1y} & e_{1z} \\ e_{2x} & e_{2y} & e_{2z} \\ e_{3x} & e_{3y} & e_{3z} \end{bmatrix}^{-1} \begin{bmatrix} \delta r_1 \\ \delta r_2 \\ \delta r_3 \end{bmatrix}.$$
Thus, the projection of the virtual displacement δr to orientation n_4 is

$$\delta r_4 = (e_{4x}, e_{4y}, e_{4z}) \begin{bmatrix} \delta r \cdot i \\ \delta r \cdot j \\ \delta r \cdot k \end{bmatrix}$$

$$= (e_{4x}, e_{4y}, e_{4z}) \begin{bmatrix} e_{ix} & e_{iy} & e_{iz} \\ e_{ix} & e_{iy} & e_{iz} \\ e_{ix} & e_{iy} & e_{iz} \end{bmatrix}^{-1} \begin{bmatrix} \delta r_1 \\ \delta r_2 \\ \delta r_3 \end{bmatrix}.$$

Lemma 3. If the unit vectors e_i ($i = 1, 2, 3, 4$) are normal orthogonal unit vectors of the Cartesian coordinate axes x, y, z, separately, the projection of the virtual displacement to the orientation n_4 is

$$\delta r_4 = (e_{4x}, e_{4y}, e_{4z}) \begin{bmatrix} e_{ix} & e_{iy} & e_{iz} \\ e_{ix} & e_{iy} & e_{iz} \\ e_{ix} & e_{iy} & e_{iz} \end{bmatrix}^{-1} \begin{bmatrix} \delta r_1 \\ \delta r_2 \\ \delta r_3 \end{bmatrix}.$$

Lemma 4. If the unit vectors e_i of orientations n_i ($i = 1, 2, 3, 4$) are non-planar vectors, and the projections of the virtual displacement of a dot to n_i are zeros, then the virtual displacement must be zero vector, and projection of the virtual displacement to n_i (every orientation) must be zero.

Lemma 5. If the unit vectors e_i ($i = 1, 2, 3, 4$) are standard unit orthogonal vectors of the Cartesian coordinate axes x, y, z, separately, the projection of the virtual displacement to e_i is δr_i, then the projection of the virtual displacement to the orientation n_i is

$$\delta r_i = e_{ix} \delta r_i + e_{iy} \delta r_i + e_{iz} \delta r_i.$$

Example 3. Determine the force in member AC of the spatial truss, shown in Fig. 4. Assume all members are pin connected. $F_1=5kN, F_2=4kN, F_3=2kN, F_4=1.5kN, F_5=1.5kN$.

Solution. To calculate the force in rod AC, it is isolated from the system in Fig. 4. Obviously, hinge points E, D, C, and B are fixed. Therefore, the projection of point A to the orientations $B\rightarrow A$ and $D\rightarrow A$ are zeros. Assuming that the projection along the F_i direction is δr_i, considering that the unit vectors of the direction $B\rightarrow A, A\rightarrow C, D\rightarrow A$ and F_i are as follows

$$e_{4A} = \begin{bmatrix} 4 & 3 & 0 \end{bmatrix}, \quad e_{4C} = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix},$$

$$e_{4D} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}, \quad e_{4F} = \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}.$$

Then, utilizing the second theorem for spatial case, the projection along the $A\rightarrow C$ direction is

$$\delta r_i = (-1,0,0), \quad \delta r_4 = (-1,0,0).$$

By employing the principle of virtual displacement, one reads

$$\begin{bmatrix} 4 & 3 & 0 \end{bmatrix} \begin{bmatrix} e_{4A} \cdot \delta r_i + e_{4C} \cdot \delta r_i + e_{4D} \cdot \delta r_i \end{bmatrix} = (-1,0,0).$$

Based on the above analysis and (11), one can get

$$F_{AC} \cdot \delta r_i + F_4 \cdot \delta r_i = 0.$$

Because $\delta \theta \neq 0$, then one can get

$$F_{AC} = -\frac{4}{3}, F_4 = -\frac{4}{3} \times 1.5kN = -2.0kN.$$
4 Conclusions

This paper mainly faces to the difficulty of computation of virtual work, investigates on the projection of a dot’s virtual displacement to a given orientation, propose two theorems and corresponding lemmas, and discuss their application for analyzing the forces of structural members. Computation process reveals that the formula for planar situation is easy to use, and the formula for spatial situation is normalized and easy to be remembered. Combining with current methods, these results will be very helpful to analyze inner forces of complicit structures. It’s necessary to say that the two theorems can be used in dynamics when dynamical problems convert into static problems in form by utilizing D’Alembert’s principle.

Acknowledgement

This paper is supported by the 13th five-year educational scientific research planning programs in Fujian (Grant No. FJJKCGZ16-152). The authors gratefully acknowledge its financial supports.

References