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Abstract 
A theorem for planar case and its generalization for spatial 
case are proposed to determine the projection of a virtual dis-
placement to the orientation under the case of knowing the 
projections of a virtual displacement to the given two or three 
orientations for object systems subject to holonomic and scle-
ronomic constraints. Some lemmas corresponding to the two 
theorems for special cases are given. Applications to structural 
static analysis are investigated using the two theorems in this 
paper. Result reveals that the two theorems and corresponding 
lemmas are easy to be used, shorten the distance between the 
principle of virtual displacement and its application, and the 
relating problems can be solved quickly with them.

Keywords 
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1 Introduction
It is well known that the principle of virtual displacement (or 

virtual work) is a main part in analytical statics, and the import-
ant basis for analytical dynamics and structural analysis. This 
principle provides an excellent tool for people to investigate 
the equilibrium laws of object systems, and plays a supporting 
role in classical mechanics.

Generally speaking, some current college textbooks [1-7] 
for engineering mechanics or structural analysis course often 
propose two main methods for building relations among virtual 
displacements of different points for the system with holonomic 
and scleronomic constraints, ie, analytical method and geomet-
rical method. Using analytical method, one can determine the 
virtual displacements of interest points (usually points of forces) 
by taking differentials of their position coordinates, and geomet-
rical methods by introducing the concept of the instant center of 
rotation of virtual displacements. These methods are very useful 
in application of the principle of virtual displacement. However, 
in actual experience, we realize that these methods are some-
times not sufficient for analyzing complex structures. For some 
difficult problems, such as the examples given in this paper, it 
is impossible or not sufficient to solve them out if only directly 
using the results given in these current textbooks. Then, how to 
shorten the distance between the principle of virtual displace-
ment and its application, and give some feasible approaches to 
realize, is very important and great significance.

In this study, we will gain an insight into the application of 
the principle of virtual displacement and present two new the-
orems on how to build up the relations among the projections 
to different orientations of the virtual displacement of a point. 
Several examples are given to illustrate the application of two 
theorems and corresponding lemmas. The article is organized 
as follows. In Section 2, a theorem is given to find a projection 
under knowing the two projections to different orientations of 
a point for planar systems, and two lemmas for special cases 
are proposed. In Section 3, a theorem for spatial systems as the 
planar extending situation is given to find a projection under 
knowing the three projections to different orientations of a 
point, and three lemmas for special cases are proposed.
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2 The first theorem for plane cases
For a planar object system, if the projections of a virtual 

displacement dr of a certain dot to orientations n1 and n2 are dr1 
and dr2 separately, shown in Fig. 1, then the projection of the 
virtual displacement to orientation n3 is 

δ
δ θ φ δ φ
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r r
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−( ) +sin sin
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,

where, angles θ and φ are angles between n1 and n2 , n1 and n3 
separately.

Fig. 1 A virtual displacement and its projections

Proof. Assume e, e1 , e2 and e3 are the unit vectors of the 
orientations of n, n1 , n2 and n3 , separately. Take the start point 
A of the virtual displacement δr as the origin of the coordinate 
system xAy. Let a is the angle between n1 and x axis. According 
to the given conditions, one reads

δr ∙ e1 = δr1 ,

δr ∙ e2 = δr2 .

Hence, one can get

δ δr i j⋅ +( ) =cos sinα α r
1

δ δr i j⋅ +( ) + +( )  =cos sinα θ α θ r
2

where i, j are the standard unit vectors of x and y axis.
By taking the inner products  δr ∙ i  and  δr ∙ j  as unknowns, 

and solving the equations of (2) and (3), one can get
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Then, the projection of the virtual displacement to orienta-
tion n3 is 
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Lemma 1. When  θ ≠ 0(180°), δr1 = δr2 = 0 , then  δr3 = 0 .
Lemma 2. When θ = 90°, then  δr3 = δr1 cosφ + δr2 sinφ .

For demonstrating the effectiveness of this theorem in 
solving the balancing problems of planar object systems, two 
examples are given below.

Example 1. Determine the force in member CD of the truss, 
shown in Fig. 2. Assume all members are pin connected, and 
AD = AE = ED = EC = CG = DG = DB = BG = a .

Fig. 2 Example 1

Solution. To calculate the force in rod CD, it is isolated 
from the system in Fig. 2 (b). Then, the system in Fig. 2 (b) is 
a mechanism. Obviously, equilateral triangles AED and DBG 
can be regarded as rigid plates, and DAED can be assumed to 
rotate about A point with  δθ . Then,  δrE = δrD = aδθ . Con-
sidering the orientation of  δrD  and character of support B, 
point B is the virtual displacement center of DDBG, therefore 
δrG = δrD = aδθ . Based on the principle of virtual displace-
ment, one reads

F r F r F r⋅ + ′ ⋅ + ⋅ =δ δ δG CD D CD C 0

Based on the theorem of projection of virtual displacement 
(i.e. the projections of the virtual displacements of the points 
from a straight line belonging to a body, on that line, are equal.), 
the projections of  δrC  to the orientations  E→C  and  G→C  are 
zeros. Then, by employing the lemma 1 of the above theorem,  
δrC  must be zero. Therefore, based on the above analysis and 
(6), one can get

− ⋅ ⋅ ° − ′ ⋅ =F a F aCDδ δθ θcos .30 0

Because of  θ ≠ 0 , then 

′ = = − ⋅ ° = −F F F FCD CD cos .30
3

2

(bar CD in compression).

Example 2. Determine the force in member DG of the truss, 
shown in Fig. 3. Assume all members are pin connected.

(1)

(3)

(2)

(5)

(4)

(6)
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Solution. To calculate the force in rod DG, it is isolated from 
the system in Fig. 3 (b). Obviously, triangles ACE and DBE can 
be regarded as rigid plates, and DACE can be assumed to ro-
tate about A point with  δθ . Then, δ δ δ δr a r aC E= =4 4 2θ θ, .  
Considering that the orientation of  δrB  is horizontal, the virtual 
displacement  δrD  must be horizontal, and

δ δ δr r aD E= ⋅ ° =cos ,45 4 θ

δ δ δ δr r r aB E B⋅ ° = =cos , .45 8 θ

For the bar BH, it is easy to get that 

δ δr rH B⋅ ° −( ) = ⋅cos cos90 2α α
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Then, for the bar GH, the projection of  δrG  to the orienta-
tion G→H is
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For the bar CG, the projection of  δrG  to the orientation 
C→G  is

δ δ δr r aCG C= ⋅ ° −( ) =cos sin .90 4β β θ

For the point G, the projections  δrGH  and  δrCG  are known. 
By employing the formula (1) of the above theorem, the projec-
tion of  δrG  to the orientation  G→D  is 
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By employing the principle of virtual displacement, one can get

F r F r F r⋅ + ⋅ + ′ ⋅ =δ δ δD DG D DG G 0

Therefore, based on the above analysis and (7), one can get

F a F a F aDG DG⋅ − ⋅ ⋅ ° −( ) − ′ ⋅ =4 4 90
24

5
0δ δ δθ θ β θcos .

Because  δθ ≠ 0 ,  F FDG DG= ′ , then 
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3 The second theorem for spatial cases
If the projections of the virtual displacement  δr  of a dot 

to three non-coplanar orientations  n1 ,  n2 ,  n3  are  δr1 ,  δr2 , 
δr3 , then the projection  δr4  of the virtual displacement to the 
orientation  n4  is 
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where  eix , eiz , eiz  are projections of unit vector  ei  of spatial ori-
entation  ni  to the Cartesian coordinate axes  x, y, z, separately. 
(i = 1, 2, 3, 4)
Proof. Assuming that i, j, k are the standard unit orthogonal 
vectors of the spatial coordinate system, based on the given 
conditions, one reads
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Because the three orientations  e1 , e2 , e3  are non-coplanar,  
the coefficient matrix is reversible. Hence, one can get
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Fig. 3 Example 2

(7)

(8)
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Thus, the projection of the virtual displacement  δr  to ori-
entation  n4  is
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Lemma 3. If the unit vectors  ei (i = 1, 2, 3, 4)  are normal 
orthogonal unit vectors, the projection  δr4  of the virtual dis-
placement to the orientation  n4  is 
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Lemma 4. If the unit vectors ei of orientations ni (i = 1, 2, 3, 4) 
are non-planar vectors, and the projections of the virtual dis-
placement of a dot to  ni  are all zeros, then the virtual displace-
ment must be zero vector, and projection of the virtual displace-
ment to  n4  (every orientation) must be zero.
Lemma 5. If the unit vectors  ei (i = 1, 2, 3, 4)  are standard 
unit orthogonal vectors of the Cartesian coordinate axes x, y, 
z, separately, the projection of the virtual displacement to  ei  
is  δri , then the projection of the virtual displacement to the 
orientation  n4  is

δ δ δ δr e r e r e rx y z4 4 1 4 2 4 3
= + + .

Example 3. Determine the force in member AC of the spatial 
truss, shown in Fig. 4 (a). Assume all members are pin con-
nected. F1=5kN, F2=4kN, F3=2kN, F4=1.5kN, F5=1.5kN.

Solution. To calculate the force in rod AC, it is isolated from 
the system in Fig. 4 (b). Obviously, hinge points E, D, C and 
B are fixed. Therefore, the projection of point A to the orienta-
tions  B→A  and  D→A  are zeros. Assuming that the projection 
along the F4 direction is  dr , considering that the unit vectors 
of the direction  B→A,  A→C,  D→A  and  F4  are as follows
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Then, utilizing the second theorem for spatial case, the pro-
jection along the A→C direction is
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By employing the principle of virtual displacement, one 
reads

F r F rAC A A⋅ + ⋅ =δ δ
4

0.

Based on the above analysis and (11), one can get

F r F rAC ⋅ + ⋅ =
3

4
0

4
δ δ

Because  δθ ≠ 0 , then one can get

F FAC = − = − × = −
4

3

4

3
1 5

4
. .kN 2.0kN

Fig. 4 Example 3

(9)

(10)

(11)

a)

b)
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4 Conclusions
This paper mainly faces to the difficulty of computation of 

virtual work, investigates on the projection of a dot’s virtual 
displacement to a given orientation, propose two theorems and 
corresponding lemmas, and discuss their application for ana-
lyzing the forces of structural members. Computation proces-
sion reveals that the formula for planar situation is easy to use, 
and the formula for spatial situation is normalized and easy to 
be remembered. Combining with current methods, these results 
will be very helpful to analyze inner forces of complicit struc-
tures. It’s necessary to say that the two theorems can be used in 
dynamics when dynamical problems convert into static prob-
lems in form by utilizing D’ Alembert’s principle.
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