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Abstract

In the time of industry 4.0 and big data, methods which are based on the collection and the processing of a large amount of data 

in order to support managerial decisions have outstanding significance. The learning curve theory pertains to these methods. The 

purpose of this paper is to explore some application possibilities of the classical learning curve in manufacturing and service operations. 

The learning effect assumes that as the quantity of units manufactured increases, the time needed to produce an individual unit 

decreases. The function describing this phenomenon is the learning curve. Various learning curves have been developed and applied 

in the area of production economics and much research studies the significance of the learning effect in management decisions. 

This study summarizes the main learning curve models and demonstrates how learning can be considered in three classical areas of 

operations management. First, the calculation of economic manufacturing quantity in the presence of learning is studied. Next, the 

effect of learning in break-even analysis and assembly line balancing is explored. The results show that with the consideration of the 

learning effect, calculations become more complex and require greater efforts, but the application of the learning curve concept can 

provide valuable insight both at operational and strategic levels.
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1 Introduction
Learning curves assume that performance improves as 
a task is repetitively performed. The application of the 
learning curve concept provides several benefits for firms. 
For example, learning curves can be applied to estimate 
the time needed to complete production runs when learn-
ing takes place, to set more accurate labor standards, to 
predict production output or to estimate the cost reduction 
in production costs due to the learning effect.

The first application of the learning curve phenome-
non was reported by Wright (1936). The use of this con-
cept began to gain importance during World War II when 
an accurate prediction of the time and cost of producing 
military ships and combat aircraft was needed (Yelle, 
1979). Data collected during the war were used by some 
researchers to study Wright’s learning curve in the aero-
space industry (Alchian, 1950; Asher, 1956). After the 
war, private companies also started to use the learning 
curve and an increasing amount of research has come to 
light on the subject.

Since then, an extensive number of research stud-
ies have reported the use of learning curves in industrial 
applications and research settings. The organizational 
learning characteristics (Argote and Epple, 1990), sched-
uling problems (Biskup, 1999; Mosheiov, 2001), statisti-
cal process control (Yang et al., 2009), construction pro-
cesses (Hinze and Olbina, 2009), online ordering systems 
(Kull et al., 2007), and manual order picking procedures 
(Grosse and Glock, 2013) are some examples of the appli-
cation of learning curves in the area of operations man-
agement. Learning models extended for forgetting and 
relearning in the production process also pertain to this 
field (Davidovitch et al., 2008; Jaber and Bonney, 2003).

The objective of our paper is to review the relevant liter-
ature related to the development, improvement and appli-
cation of learning curves, and to demonstrate the possible 
insight, which its application can provide in three spe-
cial areas of production and operations management. The 
remainder of this paper is structured as follows. Section 2 
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introduces the main learning curve models used in prac-
tice. Section 3 presents the calculation of economic man-
ufacturing quantity (EMQ) in the presence of the learn-
ing effect. Section 4 discusses cost-volume-profit (CVP) 
analysis and profit and cost planning with learning con-
siderations. Section 5 presents the effect of learning on 
the operation of simple assembly lines. Finally, Section 6 
provides some general conclusions.

2 Learning curve models
There is a widespread literature on the different types of 
learning processes. General surveys concerning the learn-
ing models and their applications have been published for 
example by Yelle (1979), Anzanello and Fogliatto (2011) 
or Grosse et al. (2015). In this section, the most frequently 
used learning curve models are introduced.

2.1 Log-linear models
The Wright model is considered by the literature as the 
basic curve. Wright (1936) analyzed assembly processes 
in the aircraft industry, where he observed that as the 
quantity of units manufactured doubles, the time required 
to produce an individual unit decreases at a uniform rate. 
Wright's learning curve is formulated as follows,

Y Q aQb( ) = ,     (1)

where Y(Q) is the cumulative average time (or cost) per 
unit required to produce Q units, a is the cost or time 
required to produce the first unit, Q is the cumulative 
number of units, and b is the slope of the learning curve. 
This learning curve is often referred to as the cumulative 
average model. Crawford (1944) defines Y(Q) as the unit 
time (or cost) for the Qth unit. For this reason, the Crawford 
approach is often referred to as the incremental unit time 
(or cost) model.

The range of b, in theory, runs from −∞ to 0, but accord-
ing to Keachie and Fontana (1966), b is never smaller than 
−0.6. The typical industrial values lie between −0.415 and 
−0.074, corresponding to 75-95 % learning rates (L). The 
relation of b and L is as follows,

b L= log log .2     (2)

If the learning rate is 80 %, then b equals to −0.322. Note 
that the smaller the learning rate is, the higher the progress 
ratio. It means that as the learning rate decreases in percent-
ages, the unit manufacturing time or cost decreases as well.

Wright's model can be applied to describe the reduction 
in both time and costs, but it ignores a number of factors 

(Lolli et al., 2016). First of all, Wright's model is unre-
alistic if the cumulative volume of production tends to 
infinity, because it does not include any stabilization value 
(plateau effect). It suggests that total cost approaches zero 
as the volume of production approaches infinity, which 
is impossible for both time and costs. Secondly, Wright's 
learning curve is based on the assumption of defect-free 
conditions, that is, the operations are repeated frequently 
without disruption. Next, the negative value of b implies 
that only learning, that is the decrease of time, is possible, 
while forgetting, that is the increase of time, is excluded. 
Finally, Wright's model is not concerned with the experi-
ence from performing the same task previously.

Many versions of the learning curve have been pro-
posed to overcome the shortcomings of the basic model. 
The models summarized in Table 1 are the most widely 
used curves in practice.

The plateau model included in Table 1 completes 
Wright’s model with a constant C in order to overcome 
the problem of zero time/cost at large quantities. The con-
stant C refers to the phenomenon of plateauing, which 
means that the learning effect is finite (Baloff, 1971). The 
unit cost/time can only decrease to Qs (steady state level), 
which is followed by a steady state, where the unit cost/
time is considered as constant.

De Jong's model makes a distinction between manual 
and machine controlled parts of the processes. While the 
manual operations are compressible, this is not true for the 
machine controlled operations. Production time is divided 
into two parts. One becomes shorter due to the learning 
effect, while the other remains constant. De Jong (1957) 
added a factor M to Wright's model, which represents the 
proportion of the "incompressible" component. The value 
of M (0 ≤ M ≤ 1) depends on the degree of automation. 
When M = 0, the operation is completely manual, the 
model is equal to the basic Wright model, thus, Eq. (1) 
can be applied. According to Baloff (1971), plateauing is 
much more likely to occur in machine-intensive than in 
labor-intensive industries, due to the higher proportion of 
machine-paced labor.

The Stanford-B model completes Wright's basic model 
with prior work experience (Badiru, 1992). A parameter 
B is added to the function in order to express the accumu-
lated knowledge. This parameter shifts the learning curve 
downwards.

The S-curve model is the combination of the Stanford-B 
model and the DeJong's model, and it uses parameters M 
and B as well (Carlson, 1973). This model is named after 
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the shape of the learning curve when graphed on a double 
log paper.

2.2 Exponential models
The group learning curve is based on the assumption that 
individual skills are enhanced by the prior experience of 
others, when one works in a group, and therefore learning 
takes place sooner. In this model, Z(T) represents the num-
ber of units produced by the group over time T ; Yi(T) is the 
amount produced by individual i over time T ; and Xij(T) is 
the amount produced by individual i over time T as a result 
of the knowledge transfer by individual j .

2.3 Hyperbolic models
The last two learning curves in Table 1 belong to the 
class of hyperbolic models. Mazur and Hastie (1978) 
proposed a learning curve model relating the number of 
conforming units to the total number of units produced. 
They also included the worker's prior experience in exe-
cuting the task. Nembhard and Uzumeri (2000) improved 
the original parameters in these models and created the 
2- and 3-parameter hyperbolic learning curve models. 
Hyperbolic learning curves, which have become particu-
larly popular in recent years, can be widely used to display 
both the increase and the decrease of unit time.

Table 1 Summary of learning curve models (Grosse et al., 2015:p.404)
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In the 2-parameter hyperbolic model, Y(t) is the number 
of units produced over time t, L denotes the learning rate, 
and K is the maximum output over time t without learning/
forgetting. If L = 0, no learning takes place, and Y(t) = K for 
any t. If learning takes place, L < 0, and K is multiplied by a 
number which is higher than 1. The increase in the produc-
tion time per unit due to fatigue is expressed by L > 0. In 
that case, K is multiplied by a number which is less than 1.

The 3-parameter hyperbolic model incorporates the 
prior experience of the workforce with parameter p (p ≥ 0).

As presented above, researchers have defined the form 
of the learning curve in many different ways. Although 
there has been much research conducted on the selection 
of the model type, Wright's basic learning curve is still 
the most widely used model and it is found to fit empirical 
data quite well (Jaber, 2006).

3 Calculation of the Economic Manufacturing Quantity 
with the learning effect
This section reviews the main literature and its results 
related to the calculation of Economic Manufacturing 
Quantity (EMQ) in the presence of the learning effect. The 
EMQ model determines the optimal manufacturing lot size 
in batch production, assuming that the production rate is 
constant. It means that the produced quantities are constant 
in each production period; furthermore, the set-up and unit 
variable manufacturing costs are constant. These assump-
tions, however, are not valid under certain circumstances, 
especially when working with a new workforce, with new 
products, with new technology, or with long production 
runs over an extended product lifecycle (Jaber and Bonney, 
1999; Cheng, 1994; Keachie and Fontana, 1966).

Plenty of EMQ models which take into consider-
ation the effect of learning can be found in the literature. 
Keachie and Fontana (1966) were among the first who 
applied the learning curve in EMQ calculations. They 
limited their study to the simple case when demand is 
known, there is no cost of shortage, and set-up costs are 
independent of the produced quantity. They assumed that 
the manufacturing quantity is so large that the learning 
effect could be encountered. According to their model, 
there is worker learning in processing times, but there is 
no worker learning in setups. Consequently, the set-up 
and the holding costs are not influenced by learning, only 
the unit manufacturing cost.

Keachie and Fontana (1966) calculated the cumulative 
average unit cost by Eq. (3) in the case of a lot size equal 
to n.

Y Q n Y Q a n Qn
Q

n
b

Q

n

( ) = ( ) =
= =
∑ ∑1

1 1
.   (3)

Approximating the value of the summa by integral, the 
average unit cost is calculated as follows,

Y Q n Y Q a n Qn
Q

n

Q

n
b( ) = ( ) =

= =
∑ ∑1

1 1

/ / .    (4)

Fig. 1 shows that at the beginning of each manufacturing 
period, the learning curve starts with the first unit costing a. 
This amount decreases by a constant slope (b) in a log scale 
in every period. It can be seen that longer manufacturing 
periods have a significant advantage on profit because of the 
cost decrease. Longer reorder intervals lead to smaller aver-
age unit cost – if n is higher, nb is smaller (b < 0) – which 
results in smaller manufacturing and total costs.

In the Keachie-Fontana model, the total cost function is 
formulated as follows,

TC Q AD Q Q vr a b D Q b( ) = + ( ) + +( ) 
−

2 1 ,  (5)

where A denotes set-up cost, D/Q is the number of set-ups 
(D – demand), v is the unit purchasing cost and r is the 
inventory holding rate. The first part of the equation refers 
to the set-up costs, the middle part refers to the holding 
costs and the last part represents the manufacturing costs 
influenced by learning. The optimal lot size (Q*) can be 
calculated by taking the derivative of Eq. (5) and equating 
it with zero.

Steedman (1970) examined the results from the pre-
sented method and proved that the optimal lot size Q* is 
always larger than the lot size calculated by the classical 
EMQ model (Q0). It was also observed that the optimal 
lot size decreases as the negative b parameter increases, 
which means that the higher the learning rate, the less it is 
worth applying large lot sizes.

Fig. 1 Effect of learning on optimal lot size 
(Keachie and Fontana, 1966:p.105)
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Wortham and Mayyasi (1972) recommended the appli-
cation of the classical square-root formula for the calcula-
tion of the optimal lot size, but instead of a constant hold-
ing cost, a lower average cost should be used.

Muth and Spremann (1983) suggested some additions 
to the findings above. First, they claimed that the manu-
facturing cost consists of two components; one of them is 
affected by the learning curve, the other is linear. Next, 
they assumed that the Q*/Q0 ratio is a function of two 
parameters: the progress rate and the cost ratio. Finally, 
they proposed a simple approximation formula for Q*.

Chand (1989) analyzed the effect of learning on the lot 
sizes and on the setup frequency. He assumed learning in 
the case of the setup time and the process quality, but he 
ignored learning in the case of the processing time. He 
concludes that learning in setups increases the setup fre-
quency and reduces the total cost. The effect can be sig-
nificant for companies where the production rate and the 
cost of error are high. He also concludes that the effect 
of learning in process quality is not significant. These 
results support the theory of zero inventory systems and 
the just-in-time approach.

Cheng (1994) compared the optimal solutions obtained 
with equal and unequal manufacturing sizes. His results 
indicate that the application of the classical EMQ model 
simplifies the process and provides close approximations 
to the optimal solutions.

Applying algorithms which incorporate the learning 
effect in EMQ calculations requires extra computational 
efforts compared to the classical EMQ formula. The main 
conclusion is, however, that the classical model can serve 
as a very good approximation even in the case of learning.

4 Profit and cost planning with learning considerations
In Section 4 the effect of learning on cost-volume-profit 
analysis and production cost planning is presented.

4.1 CVP analysis with the learning curve
The cost-volume-profit (CVP) analysis is a useful tool for 
planning and monitoring different managerial decisions 
and their effects. It is used to determine how changes in 
costs, production quantity, selling price, product mix and 
other related factors influence a company's operating and 
net profit (Jaedicke and Robichek, 1964; Adar et al., 1977; 
Magee, 1975).

The traditional CVP analysis applies several assump-
tions, including, for example, that the unit selling price, 
the unit variable cost and the total fixed costs are constant. 

Consequently, the classical CVP analysis applies linear 
cost and revenue functions. When production involves 
labor intensive new products or new technology, the learn-
ing effect becomes a factor in the analysis, and linearity 
cannot be assumed any more.

Fig. 2 shows the traditional CVP diagram with lin-
ear functions. Quantity produced below the break-even 
point – the point at which total costs equal total revenue 
– results in net loss, while quantity produced above this 
point results in net profit. Fig. 3 shows how the CVP dia-
gram changes when learning is introduced into the anal-
ysis. The variable cost function is degressive, because the 
slope of this function (unit variable cost) decreases as a 
consequence of learning.

As a result of the degressive cost function, break-even 
output becomes lower than in the case of the traditional 
model. Since the break-even point in the non-linear case is 
reached sooner, the expected profit is larger.

McIntyre (1977) developed a model for CVP analysis, 
which incorporates a nonlinear cost function in order to 
express the learning effect. In his paper, he examined the 
effects of learning on the break-even equation and he per-
formed a sensitivity analysis on the estimated profit and 
break-even quantities when estimation errors occur.

Fig. 2 Traditional CVP diagram

Fig. 3 CVP diagram with nonlinear cost function
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The analysis uses the cumulative average time model 
to consider learning. It is formulated as the basic Wright 
learning curve, that is,

Y Q aQb( ) = ,      (6)

where Y(Q) refers to the cumulative average unit produc-
tion time if Q units have been produced.

The basic profit equation can be written as follows,

π = − ( ) −pQ cQY Q f ,     (7)

where p is the unit selling price reduced by all variable 
costs other than labor costs, c is the unit labor costs and f 
is the fixed costs per period. Substituting Eq. (6) in Eq. (7) 
and assuming parallel production runs, we get the follow-
ing multiprocess profit function,

π = − ( ) −+pQ nca Q n fb 1

,    (8)

where Q units are produced by n labor teams, and each 
team produces Q/n units.

McIntyre (1977) extended Eq. (8) for the plateau model 
and determined the steady-state production conditions. 
He concluded that it is possible to estimate the number 
of units required to reach the steady-state production (Qs ) 
with the following formula,

Q t b as s
b

= +( ) 1
1

,     (9)

where ts represents the steady-state marginal time and is 
calculated as follows, 

t b aQs s
b= +( )1 .      (10)

Using the estimates of ts and Qs , the cumulative profit is 
formulated as follows,

π = − − −( ) −pQ ncT ct Q nQ fs s s ,    (11)

where Ts is the total production time for the first Qs units 
and it is calculated as follows,

T aQs s
b= +1

.      (12)

Equation (11) shows that the cumulative profit for 
Q≥nQs can be expressed as the difference of the total rev-
enue and the total costs, where total costs consist of the 
total labor cost of the first nQs units, the total labor cost of 
all units over the first nQs units and the fixed costs.

The general solution of McIntyre (1977) to break-even 
(QB ) under these conditions can be calculated as follows,

Q cn T t Q f p ctB s s s s= −( ) +  −( ).   (13)

McIntyre's results extend the application possibility of 
CVP analysis for cases where learning influences the unit 
variable cost.

4.2 Competitiveness and learning
An important consequence of learning is the change of 
competitiveness. This section reviews some relevant 
research results dealing with the connection of learning 
and competitiveness.

Harvey (1976) was among the first who examined the 
effects of learning on production start-ups. In his study, the 
cumulative average model and the incremental unit model 
were used. He extended these models for the analysis of 
profit and cash flow planning in start-ups. Harvey (1976) 
divided total cost into three major components, direct 
material costs, direct labor costs and fixed costs of produc-
tion facilities (rent, heat, light, etc.). After this division, he 
created the formula of profit and net operating cash flow.

Majd and Pindyck (1989) examined the effects of the 
learning curve on production leveling and pricing. They 
showed how a firm’s current production decision can be 
determined in order to be consistent with financial objec-
tives. They noted that learning affects production in such 
a way that part of the production cost converts into an 
investment in reduced future costs.

Spence (1981) analyzed competitive interaction and 
showed how the presence of a learning curve can be 
taken into account when setting price and output levels. 
He declared that the presence of the learning curve in an 
industry can create entry barriers and protection against 
cost reduction based competition.

Morse (1972) studied the effect of learning on production 
costs. First, he described the production process assuming 
two products, a physical product and an intangible product. 
The intangible product refers to the learning phenomenon, 
which helps to produce additional units with lower produc-
tion costs. Next, he illustrated a learning curve (L-C) cost 
allocation model, which can be used to project the produc-
tion costs of a product to its entire anticipated life cycle. 
After the comparison of the actual cost model and the L-C 
cost allocation model, the study concluded that the second 
model considers the cost reducing value of the production 
know-how or the intangible product.

Lolli et al. (2016) introduced a new accounting model 
for production cost in a single-product case. They pro-
posed a cost curve which incorporates both the learning 
and the forgetting phenomenon during production and 
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reworking operations. The total cost function in their 
model is composed of four parts: production cost, failure 
cost, prevention cost and appraisal cost. They noted that 
the cost model is suitable only for firms which have the 
ability of high level data collection.

Petrakis et al. (1997) created a model to examine the 
relationship between perfect competition and the learning 
effect. They showed that these two concepts are compati-
ble. Their results also showed that in the presence of learn-
ing, firms must enter an industry early or they will never be 
competitive. Furthermore, some firms who entered earlier 
may be forced to exit the market despite their experience.

While the study of Petrakis et al. (1997) excluded the 
possibility of learning spillovers and considered only 
firm-specific learning, Lieberman (1987) examined learn-
ing when diffusion is possible. Lieberman (1987) used a 
game-theoretic model in order to explore how the learn-
ing curve affects competitive strategy. He concluded that 
information diffusion plays a very important role in the 
process of developing competitiveness with the help of 
the learning effect. The study noted that firms can develop 
their competitiveness even with late entry, as entry barriers 
become more eroded as the diffusion of learning increases.

Based on the reviewed literature we can conclude that 
learning curves affect many aspects of a firm's competi-
tiveness. Consequently, the learning effect should not be 
missed when important managerial decisions have to be 
made about pricing policy, cost or profit planning.

5 Assembly line balancing with learning curves
The assembly line balancing (ALB) problem was first stud-
ied by Salveson (1955). Assembly lines are flow-oriented 
production systems. The objective of ALB is to balance 
workloads of workstations, while meeting the required 
production rate and to satisfy technological conditions. 
An assembly line consists of several consecutive worksta-
tions, where operators perform the same tasks repetitively. 
Each task is associated with a processing time, called task 
time. The parts are launched down the line and are moved 
on from station to station until they are finished. The dif-
ference between the completion time of two consecutive 
parts is called the cycle time. Due to technological or orga-
nizational requirements, tasks assigned to workstations 
are determined by precedence constraints. General input 
information of an assembly line can be structured into a 
precedence graph, where each node represents a task and 
the node weights refer to the task times.

Classical ALB models assume that task times are inde-
pendent of the produced quantity. As a consequence of the 
repeated performance of several identical tasks at a work-
station, however, learning in most cases is present. In the 
case of the presence of learning, task times and station 
times decrease.

The literature on the effect of learning on ALB is not 
very extended. Globerson and Shtub (1984) examined the 
possibilities of the minimization of makespan in assembly 
lines with long cycle times. They developed an 11-stage 
long model to identify the optimum equilibrium point 
(referring to the number of repetitions), in which the line 
utilization reaches its maximum value.

Cohen and Dar-El (1998) formulated several nonlin-
ear mathematical programming models which determine 
the optimal number of workstations in an assembly in the 
presence of learning. They discussed two approaches, a 
cost minimization problem and a profit maximization 
problem, and they developed a formula for finding the 
optimal number of stations.

Cohen et al. (2006) defined the optimal upper envelope 
of the learning curves of the stations of an assembly line. 
They formulated a non-linear mathematical programming 
model for work allocation under homogeneous learning 
and they proved that balancing in not an optimal policy. 
They showed that the decrease of the ratio of the makespan 
of the optimal allocation of work and the makespan of the 
balanced allocation are higher if the number of stations is 
higher, the learning rate is lower and the lot size is higher.

Cohen et al. (2008) analyzed decreasing, increasing and 
constant pattern stations’ learning in order to find the opti-
mum allocation of work to the stations of an assembly line. 
They presented optimal solutions to all three cases.

Toksarı et al. (2008) illustrated the operation of a sim-
ple assembly line balancing problem and a U-type line bal-
ancing problem with the learning effect. They proposed 
heuristics for the minimization of the total flow time and 
tested the proposed algorithm.

Koltai et al. (2015) presented an algorithm to determine 
the throughput time of a simple assembly line in the pres-
ence of learning. They demonstrated that while classical 
ALB models consider constant cycle time, in the case of 
learning, cycle time can change for two main reasons. 
First, cycle time decreases exponentially according to 
the station time function with learning. Second, the bot-
tleneck may shift from station to station, causing further 
changes in the cycle time.
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Let sj(Q) denote the station time of station j at the Qth 
performance of the operations. Fig. 4 shows the station 
time functions of station l and k, where k is a preceding 
station of station l. At the intersection of the two functions 
(Ql (k,l)), the bottleneck shifts from one station to another 
station. At this quantity station l leaves the bottleneck and 
station k enters the bottleneck.

The formula for calculating the throughput time in a 
simple assembly line in the presence of learning can easily 
be calculated, if the bottleneck shifts are known. The algo-
rithm is based on the selection of the relevant station time 
function intersections (see Koltai et al., 2015).

Koltai and Kalló (2017) analyzed the sensitivity of the 
throughput time with respect to the learning rate in simple 
assembly lines. They concluded that if the learning rate 
decreases, the production quantity belonging to bottle-
neck shifts increases. It means that if learning is under-
estimated, bottleneck shifts may occur more frequently 
than expected. Second, throughput time is very sensitive 
to learning rate changes, especially in cases with small 
quantities or high learning rates.

We may conclude that if learning is present in simple 
assembly lines, the revision of the traditional assembly line 
balancing methods is required. Balancing does not necessar-
ily provide an optimal solution to capacity related problems.

6 Conclusion
Nowadays, we are living in the world of industry 4.0 and 
big data, which causes various changes in production and 
service processes. It is shown, for example in Belvedere et 
al. (2018) or Cavata et al. (2018), that industry 4.0 technol-
ogies have positive impact on a firm's performance and the 
use of such technologies can lead to a significant increase 
in productivity.

In the time of these new manufacturing approaches, 
methods which are based on the collection and process-
ing large amounts of data in order to support managerial 
decisions have outstanding relevance. The learning curve 
theory pertains to these methods, because detailed infor-
mation about operation times is required, advanced sta-
tistical methods are used, and the results are embedded in 
complex mathematical models. The advanced information 
technology environment of today makes the application of 
learning theory more feasible than ever.

In this paper relevant literature related to the applica-
tion of learning in three major areas of production and 
operations management was explored.

The consideration of the learning effect in the tradi-
tional area of inventory management showed that the clas-
sical EMQ formula becomes very complicated and its 
result can be considered a very good approximation for 
the learning curve case.

The consideration of the learning effect in traditional 
break-even analysis showed that if learning is ignored, 
financial possibilities are considerably underestimated; 
furthermore, opportunities of competitiveness are 
overlooked.

Finally, in the case of the presence of learning in assem-
bly lines the traditional balancing principles are not rele-
vant anymore, and a new approach is required to deter-
mine the optimal operation.

As a summary it can be concluded that if learning is 
present, its effect should be analyzed. Several traditional 
operations management models can be completed with 
the consideration of learning; furthermore, new areas of 
its application can be found. The advanced information 
technology environment requires as well as facilitates the 
application of the learning curve theory more than ever.
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Fig. 4 Illustration of bottleneck shift (Koltai et al., 2015:p.316)
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