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Abstract

Organizations all over the world use Business Analytics (BA) to gain insight in order to drive business strategy and planning. With the 

increasing amount of available data larger models are created to support decision making, but managers also must deal with the 

uncertainty of the input parameters. In this perspective Linear Programming (LP) models have two valuable properties: the required 

computation time allows large models to be solved and further valuable insight can be gained about the problem using sensitivity 

analysis. There is a wide range of tools available to solve LP problems. Many of these tools use an implementation of the simplex 

method and provides an optimal solution related sensitivity information. The sensitivity information generated by such solvers are 

often used by managers in the decision making process. There are situations when managers may have a hard time taking decision 

based on the information provided by most of the commercially available LP solvers. If the optimal solution of the primal problem 

(dual degeneracy) or the dual problem (primal degeneracy) is not unique, the resulting sensitivity information can be misleading for 

managers. In other cases, the resulted ranges may be too tight for decision support, thus information about a wider range is required. 

In this paper parametric analysis information is recommended to complete the traditional LP results in order to increase the insight 

of operations managers when using LP models for operation improvement.
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1 Introduction
Organizations all over the world use Business Analytics (BA) 
to gain insight in order to drive business strategy and plan-
ning. With the increasing amount of available data, larger 
models are created to support decision making, but manag-
ers also must deal with the uncertainty of the input parame-
ters. In this perspective LP models have two valuable prop-
erties: the required computation time allows large models to 
be solved and further valuable insight can be gained about 
the problem using sensitivity analysis. There is a wide range 
of available tools to solve LP problems. Many of these tools 
use an implementation of the simplex method and pro-
vide an optimal solution related to sensitivity information. 
The sensitivity information generated by such solvers are 
often used by managers in the decision making process. 

Every linear programming problem, referred to as a 
primal problem, can be converted into a dual problem, 
which provides an upper bound to the optimal value of the 
primal problem. The optimal solution of an LP problem 

provides the optimal allocation of limited resources, while 
the optimal solution of the dual problem provides informa-
tion about the marginal change of the objective function 
of the primal problem (shadow price), if a Right-Hand-
Side (RHS) parameter changes.

Sensitivity analysis provides information about the 
validity range of the primal and dual optimum. The valid-
ity range of the Objective Function Coefficients (OFC) 
provides a range for each coefficient, within which the 
primal optimal solution will not change. Validity range of 
the RHS elements provides a range for each RHS element. 
Within this range the dual optimum will not change.

There are situations when managers may have a hard 
time taking a decision based on the information provided 
by most of the commercially available LP solvers. If the 
optimal solution of the primal problem (dual degeneracy) 
or the dual problem (primal degeneracy) is not unique, the 
resulting sensitivity information can be misleading for 
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managers. In other cases, the resulted ranges may be too 
tight for decision support, thus information about a wider 
range is required.

The objective of this paper is to present a practical imple-
mentation of LP parametric analyses that provides correct 
LP sensitivity information even in the case of degeneracy 
and presents the objective value function for the whole fea-
sible range of any required OFC or RHS parameter.

The paper is structured as follows: First, two problems 
related to the interpretation of the information provided by 
LP sensitivity analyses are presented. The first problem is 
degeneracy, and the second problem is the case of overly 
tight sensitivity ranges. Next, the objective value func-
tion is recommended to overcome the problems described 
and a possible practical implementation to calculate the 
objective value function is described. Finally, an AIMMS 
implementation and illustration example of the suggested 
method is presented.

2 Interpretation problems of LP sensitivity analyses
2.1 Decision making under degeneracy
Evans and Baker (1982) provided examples to show that 
under degeneracy the interpretation of sensitivity infor-
mation calculated by most commercial LP solvers can be 
erroneous and have significant managerial implications. 
Problems and possible solutions related to LP Sensitivity 
analysis has an extensive literature since then. 

Aucamp and Steinberg (1982) demonstrated that shadow 
prices are not necessarily equal to the dual variables, 
except in the case when the primal problem is nondegener-
ate, and suggested an alternative definition for the shadow 
price. Akgül (1984) separated the positive and the negative 
shadow prices. Gal (1986) made an extensive survey on the 
managerial interpretation of shadow prices. Many papers 
demonstrate erroneous management decisions based on 
the misinterpretation of sensitivity analysis results (see for 
example: Jansen et al., 1997; Rubin and Wagner, 1990). 

The sensitivity information provided by commercially 
available solvers are correct from a mathematical point of 
view but may lead to erroneous decisions when used by 
managers. To differentiate between the mathematical and 
the managerial interpretation of sensitivity information 
Koltai and Terlaky (2000) classified three types of sensi-
tivity information for which descriptive names were given 
by Hadigheh and Terlaky (2005).

• Type I (Basis Invariancy) is the traditional sensi-
tivity analysis and determines those values of some 
RHS or OFC parameters for which a given optimal 
basis remains optimal.

• Type II (Support Set Invariancy) sensitivity deter-
mine invariant support set ranges of some parameters 
so that variables with a zero and with a positive value 
in the given optimal solution remain zero and posi-
tive in the optimal solution of the perturbed problem.

• Type III sensitivity (Optimal Partition Invariancy) 
returns ranges of some parameters for which the rate 
of change of the objective value function remains 
unchanged. Type III range of some parameters 
depends only on the problem data. The objective 
value function is a piecewise linear function of the 
parameter when the perturbation occurs in either 
the RHS or the OFC parameter of an LP model. The 
intervals, in which the rate of change of the optimal 
value function is constant, are sometimes referred to 
as the linearity intervals.

In non-degenerate cases the three types of sensitivities 
return identical ranges, but in a degenerate case different 
sensitivity information could be provided by LP solvers. 
Most of the commercial LP solvers provide only type I 
sensitivity information but from a management standpoint 
type III sensitivity information is far more important. 

A practical approach to calculate type III sensitivity 
information was presented by Koltai and Tatay (2011). 
The suggested approach uses additional LP’s to calculate 
the related sensitivity ranges.

2.2 The problem of too tight sensitivity ranges
To illustrate the problem of too tight sensitivity ranges 
three simple but similar problems are presented in Table 1.

The objective function and constraints  and  are identi-
cal for all the three problems, but LP2 has a different RHS 
parameter for constraint and LP3 has an additional con-
straint. The shadow price and the linearity interval related 
to the current value of the RHS parameter of constraint 
2 are identical (1.15,15) for all three LP problems. If the 
current value of a right-hand-side parameter is the result 
of an estimation or forecast – which is often the case – a 
value such close to the edge of the linearity interval is not 
a reliable information and requires further considerations.

The examination of the objective value function in a 
larger interval may help to evaluate the unreliability of the 
critical parameter. The change of the slope of the objective 
value function when leaving the upper limit of the linear-
ity interval related to the RHS parameter of constraint 2 
of LP1, LP2 and LP3 parameters illustrates the problem in 
Fig. 1. Bold values mark the current value and the related 
objective value, a continuous line marks the current 



Dimény and Koltai
Period. Polytech. Soc. Man. Sci., 28(2), pp. 91–100, 2020|93

linearity interval and a dashed line marks other linearity 
interval of the objective value function if exists. The dif-
ferent evolution of objective value function requires dif-
ferent managerial actions.

The slope of the objective value related to constraint 2 
in case of the LP1 problem is almost linear for a wide 
range. The slope changes from 1.04 to 1.00 when the RHS 
value of constraint 2 enters the next interval. In case of 
LP2 the problem becomes infeasible for values higher than 
the upper bound of the current linearity interval. Finally, 
in case of the LP3 problem the slope of the objective value 
function related to the same RHS parameter changes sig-
nificantly (from 1.04 to 0.43). 

Similarly, the visualization of the objective value func-
tion related to some OFC parameters could further clarify 
the different decision making context.

The parameters of problems LP4 and LP5 presented in 
Table 1, are identical except of the RHS parameter related 
to constraint 2. Fig. 2 (a) shows the objective value func-
tion related to the objective function coefficient of the x2  
variable for problem LP4 while Fig. 2 (b) shows the objec-
tive value function for the objective function coefficient of 
the x2 variable for problem LP5. 

In case of the LP4 problem, the slope of the objective 
value function related to variable x2 has a minor modifica-
tion when leaving the linearity interval to right. In case of 
the LP5 problem, increasing the OFC parameter related to 
variable x2 above the upper limit of its validity range, the 
optimal value is no longer 0. This means that not only will 
the quantities change, but also the structure of the plan. 

Based on the two illustrations presented, it can be 
concluded that evolution of the objective value function 
in a wider domain of the critical parameter may help 
the decision maker.

3 Objective value function 
The development of the mathematical modelling tools 
and the increasing computational power of commercially 
available computers makes it possible to map the effect 

Fig. 1 (a) Objective value function related to the RHS parameter of 
constraint 2 for problem LP1; (b) Objective value function related to 

the RHS parameter of constraint 2 for problem LP2 (c) Objective value 
function related to the RHS parameter of constraint 2 for problem LP3

LP1 LP2 LP3 LP4 LP5

Objective max x x x
1 2 3
+ +( ) max x x x

1 2 3
+ +( ) max x x x

1 2 3
+ +( ) max x x x

1 2 3
+ +( ) max x x x

1 2 3
+ +( )

Constraint 1 x x x
1 2 3
26 15+ + ≥ x x x

1 2 3
26 15+ + ≥ x x x

1 2 3
26 15+ + ≥ x x x

1 2 3
2 10+ + ≤ x x x

1 2 3
2 10+ + ≤

Constraint 2 x x x
1 2 3
2 14 5+ + = . x x x

1 2 3
2 14 5+ + = . x x x

1 2 3
2 14 5+ + = . x x

1 3
3+ ≤ x x

1 3
10+ ≤

Constraint 3 x x x
1 2 3
2 60+ + ≤ x x x

1 2 3
2 15+ + ≤ x x x

1 2 3
2 60+ + ≤

Constraint 4 4 4 60
1 2 3

x x x+ + ≤

Other constraints x x x
1 2 3

0, , ≥ x x x
1 2 3

0, , ≥ x x x
1 2 3

0, , ≥ x x x
1 2 3

0, , ≥ x x x
1 2 3

0, , ≥

Table 1 Illustration LP problems
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of changes of the OFC and RHS parameters for the whole 
feasible/bounded region. 

This map could give managers a complete overview 
on how the change of some critical parameters affects the 
objective value of the LP model and could give valuable 
additional information when sensitivity ranges provided 
by the LP solvers are overly tight.

3.1 Domain of the objective value function 
The domain set of the objective value function of some 
OFC or RHS parameters contains those values for which 
the related perturbed LP problem is feasible and bounded.

The modification of an OFC parameter does not influ-
ence the feasibility of the LP problem, however, after a cer-
tain point, the previously bounded problem may become 
unbounded. In this case the domain of the related objec-
tive value function will become bounded in one direction. 
In any other cases the domain of an objective value func-
tion related to an OFC parameter will be a set of all real 
numbers, with infinite linearity intervals at both ends. 
Change on the RHS parameter in one direction decreases 
the feasible region of the LP problem, while changes on 
the opposite direction expands the feasible region while 

the corresponding constraint is active. Once the corre-
sponding constraint is no more active the related shadow 
price will turn to 0 and the length of this last linearity 
interval will be infinite.

To create the objective value function related to one of 
the OFC or RHS parameters a set of consecutive intervals  
I k Kk
, ..=( )1 with constant rate of change of the objective 

value function within each interval must be defined. For 
each interval the rate of change of the objective function 
Irate
k( )  and the value of the objective function at the start-

ing and ending points must be calculated ( Is
k  and Ie

k ). 

3.2 Initial steps to calculate the objective value function
Consider the max , ,c x Ax b xT( ) ≤ ≥ 0  standard form of 
the linear program (Hillier and Lieberman, 1995). The ele-
ments of the c OFC vector are c1, c2,..., c3, furthermore, the 
elements of the b RHS parameters vector are b1, b2,..., b3.

As an initial step, a parametric model for solving the 
original LP with modified RHS or OFC values must be 
implemented. Let LP λ ν←( )  note a modified version of 
the original LP where parameter λ is modified to ν  and 
let OF * λ ν←( )  be the corresponding optimal objective 
value of the modified LP. 

For the calculation of the correct sensitivity ranges even 
in the degenerate case, a parametrized version of the addi-
tional LPs described by Koltai and Tatay (2011) must also 
be implemented. 

Type III sensitivity provides information about the 
invariance of the rate of change of the objective value func-
tion. Let ξ j b

+ ′( )  and ξ j b
− ′( )  denote the maximal increase 

and the maximal decrease allowed for the b' right-hand-
side parameter of constraint j to remain within the type III 
invariancy interval related to the modified LP b bj ←( )′  
problem. 

Similarly let γ i c
+ ′( )  and γ i c

− ′( )  denote the maxi-
mal increase and the maximal decrease allowed for the 
c' objective function coefficient of variable i to remain 
within the type III invariancy interval related to the mod-
ified LP c ci ←( )′  problem. 

3.3 Algorithm for calculating the consecutive RHS 
intervals
Intervals are calculated starting from the original RHS 
parameter separately for increasing and for decreas-
ing directions and only when the original LP has at least 
one feasible solution. 

As an initial step, the maximal feasible change of the 
RHS parameter in the selected direction that allows the LP 
problem to remain feasible must be calculated. To calculate 

Fig. 2 (a) Objective value function related to the OFC parameter of the  
variable for problem LP4; (b) Objective value function related to the 

OFC parameter of the  variable for problem LP5
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these values, an additional LP must be solved for each RHS 
parameter and to each direction. The maximal increase as 
well as the maximal decrease are nonnegative numbers. In 
the additional LP’s, the constraint related to the selected RHS 
parameter becomes the objective value function. Assume 
that β j

+  and β j
−  are the maximal feasible increase and the 

maximal feasible decrease of the RHS parameter related to 
constraint j. One of these values may be infinite.

The rate of change denoted by SP+ and SP– are the right 
and left shadow prices of the modified LP b bj j

k
( )←  prob-

lem where bj
k  is the RHS parameter of constraint j when 

calculating interval k.
In the initialization step the maximal feasible modifi-

cation of the RHS parameter is calculated. Next, the fol-
lowing steps are repeated until the calculated maximal fea-
sible modification is reached, or the maximum increase/
decrease is infinite:

• create and solve the modified LP b bj j
k←( )  problem,

• calculate the type III range for the required direc-
tion, (ξ j j

kb+ ( )  and ξ j j
kb− ( )  respectively),

• collect interval data and shadow price: 
• b I bj

k
s
k

j j
k, + ( )( )+ξ  and SP+ for increasing intervals,

I b be
k

j j
k

j
k− ( )( )−ξ , and SP– for decreasing intervals,

• set b Ij
k

e
k+ −=1 1  for increasing intervals and b Ij

k
s
k+ −=1 1  

for decreasing intervals.

3.4 Algorithm for calculating the consecutive OFC 
intervals
The modification of an OFC parameter does not influence the 
feasibility of the LP problem, however, after a certain point, 
the previously bounded problem may become unbounded. 

In case of OFC parameters, the objective value is 
changed exclusively by the change of the OFC parameter 
and the rate of change is equal to the value of variable i 
in the optimal solution (xi) of the modified LP c ci i

k←( )  
problem where ci

k is the OFC parameter related to vari-
able i when calculating interval k.

The following steps are repeated while the maximum 
increase/decrease is finite:

• create and solve the modified LP c ci i
k←( )  problem,

• calculate type III range for the required direction ( 
γ i i

kc+ ( ) and γ i i
kc− ( )  respectively),

• collect interval data and optimal value:

• c I ci
k

s
k

i i
k, + ( )( )+γ  for increasing intervals and 

I c ce
k

i i
k

i
k− ( )( )−γ ,  for decreasing intervals and 

I xrate
k

i= ,
• set c Ii

k
e
k+ =1  for increasing intervals and c Ii

k
s
k+ =1  

for decreasing intervals.

4 AIMMS implementation
From a practical point of view, creating a tool that can cal-
culate and visualize the parametric objective value func-
tion requires a good solver, good algorithmic capabilities 
and graphical user interface editing option. Such a tool 
is provided by the AIMMS Platform, which is often used 
for solving commercial optimization problems in a wide 
range of industries including retail, consumer products, 
healthcare, oil and chemicals, steel production and agri-
business (Roelofs and Bisschop, 2018).

AIMMS Prescriptive Analytics Platform offers a 
straightforward mathematical modelling environment and 
a wide range of available solvers. AIMMS also features an 
advanced graphical user interface editor which allows the 
creation of optimization application to individuals without 
a technical or analytics background. 

AIMMS’ own structural language allows the creation 
of procedures which connect the multiple models required 
to calculate the type III ranges for all the parameters. 

The list of available solvers in AIMMS also includes 
simplex method-based solvers such as CPLEX which 
can be instructed to use an initial solution and this way 
the calculation time can be significantly decreased. 
(Dimény and Koltai, 2018)

Since many of the OFC and RHS parameters are related 
to technical constraints and not relevant for managerial 
decision, the computation time can be decreased if irrel-
evant parameters are left out of calculation. With the use 
of the build-in user interface editor, a user-friendly inter-
face can help the decision makers for selecting the relevant 
parameters of the model.

AIMMS version 4.42 was used to create the required 
mathematical models, implement the algorithms and cre-
ate simple user interface, while CPLEX version 12.7.1 was 
used to solve the generated LP problems and obtain type 
I sensitivity information. Four parametrized models were 
created in AIMMS:
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• general parametrized linear program to solve the  
LP c ci i

k←( ) and the LP b bj j
k←( )  problems,

• modified parametrized linear program to calcu-
late the maximal feasible increase/decrease of the 
RHS parameters,

• parametrized linear program to calculate the type III 
ranges of the RHS parameters,

• parametrized linear program to calculate the type III 
ranges of the OFC parameters.

To collect all type III intervals, the implementation of 
the algorithms presented previously are needed. The algo-
rithm collects the data related to the intervals, which can 
then be visualized using tables and line charts on pages 
created with the AIMMS user interface editor. The imple-
mented solution consists of the following pages:

• LP definition page is the input page, where the 
desired LP can be formulated.

• LP solution page contains the original results pro-
vided by the solver.

• Two pages for presenting the RHS interval data 
using table and line charts.

• Two pages for presenting the OFC interval data 
using table and line charts. 

5 Illustration example
To illustrate the benefits of having type I, type III or the 
complete OVF range available, a production planning prob-
lem taken from Nahmias (1993) is presented. The problem 
was used by several earlier papers to demonstrate different 
approaches to LP sensitivity analysis (Borgonovo et al., 
2018; Koltai and Tatay, 2011). The objective of the prob-
lem is to find the lowest cost production plan for 6 months. 
Production quantity can be influenced by hiring or firing 
workers and excess production is kept in inventory.

Let ht denote the cost of hiring, ft the cost of firing, it the 
inventory holding cost in period t t = …( )1 6, , . Decision 
variables Wt, Ht, Ft, Pt, It denote the workforce, hired work-
ers, fired workers, production and inventory for period t, 
respectly. An initial W0 workforce and I0 inventory level 
and I6 closing inventory level is assumed. Demand for 
period t is denoted by Dt and the value of D2 is set to 552 
instead of 640 of the original problem, to make the LP 
degenerate. The relation of workforce and productivity is 
expressed using the K = 0.1465 productivity constant. 

The optimal production plan can be calculated using 
the following LP:

min

t
t t

t
t t

t
t th H f F i I

= = =
∑ ∑ ∑+ +










1

6

1

6

1

6

 

subject to
W W H F tt t t t− − + = =−1 0 1 6, ..

P I I D tt t t t− + = =−1 1 6, ..

P KnW tt t t− = =0 1 6, ..

W
0
300=

I
0
500=

I
6
600=

K = 0 1465.

Fig. 3 contains part of the AIMMS page displaying the 
parameters of the model, the optimal solution, further-
more, the shadow price and validity range information of 
the OFC and RHS parameters.

The problem is solved as a continuous variable problem 
and according to the optimal solution 34 workers must be 
fired in period 1 and hiring of 472 workers is required in 
period 5. With the modified demand for period 2, became 
dual degenerate. The optimal solution of the dual problem 
is non-unique which leads to non-unique shadow prices 
for some of the RHS parameters of the primal problem. 

For the RHS element d1 the shadow price calculated by 
the solver is –24.18 while the validity range of the shadow 
price is (–2152, 1280). Due to the degeneracy of the opti-
mal solution, the shadow price and validity interval cal-
culated by the solver provides only information about the 
consequences of a decrease in demand for this period.

The consequences of a small increase in demand on the 
objective value function are provided by type III sensitiv-
ity range and the right shadow price. This could suggest to 
managers that an increase in demand is not desirable. The 
complete objective value function provides a much better 
insight for the decision maker. The increase in demand by 
more than 12 % increases the objective value and further 
increase in demand will increase the objective value even 
more. In this case even the type III information could mis-
lead managers. 

Fig. 4 displays the objective value function related to 
the RHS parameter d1. Note that the domain of the objec-
tive value function may contain negative demand values 
as well which, in most of the cases, are irrelevant from a 
management stand point.
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Fig. 5 displays the objective value function related to the 
OFC parameter h4 and shows the consequences of the change 
in the hiring cost. The figure presents the difference between 
the domains of the type I range, type III range and the objec-
tive value function. In this case the left edge of the type III 
interval is smaller than the left edge of the type I range. 

It must be noted that the domain of this function is left 
bounded. For h

4
100< −  the problem becomes unbounded. 

In this case the cost of firing would be smaller than the gain 
of hiring and the objective value could be increased to infin-
ity by hiring and firing unlimited amount of workforce.

Fig. 6 and Fig. 7 shows the results of the OFC and RHS para-
metric analyses results created by the AIMMS application. 

The figures contain the interval start and end points, 
the rate of change of the objective value function within 
the interval, the value of the objective value function at the 
start and end point and the optimal solution related. 

Compared with the results provided by the basic AIMMS 
solver, it can be noticed that the solver calculated mislead-
ing information about the validity intervals. The mislead-
ing information is the consequence of degeneracy. The pre-
sented method provides correct LP sensitivity information 

Fig. 3 Part of the AIMMS page displaying the optimal solution, shadow price and validity ranges related to the OFC and RHS parameters 
as calculated by CPLEX

Fig. 4 Objective value function related to positive values of the  
RHS parameter

Fig. 5 Objective value function related to the  OFC parameter
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in case of degeneracy as well. Furthermore, the implemented 
AIMMS algorithm presents the objective value function for 
the whole feasible range of any required objective function 
coefficient and right-hand-side parameter.

6 Conclusion
In this paper, the implementation of parametric analysis of 
LP models in AIMMS to support operations management 
decision making is presented. The information provided by 

Fig. 6 AIMMS page with table containing the OFC intervals
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Fig. 7 AIMMS page with table containing the RHS intervals
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the suggested method describes the objective value func-
tion in the feasible range of any OFC and RHS parameters. 

The benefits of this information are twofold:
Since all values of the objective value function are 

known, there are no misleading results as a consequence 
of degeneracy. If appropriate, the left and right shadow 
prices (slope of the objective value function in case of 
decrease and increase) are given, and the correct ranges of 
all parameters are calculated.

The traditional sensitivity ranges provided by most 
commercial LP solvers are completed with further infor-
mation. In our case, the effect of the parameter change is 
known, not only in the close neighborhood of the original 
value, but also in the whole feasible region. 

Compared to parametric linear programming, whose 
theory is described by Nozicka et al. (1974), although the 
method presented in this paper will result the same objec-
tive value function, two difference has to be noted:  

• the focus of the presented method is on finding linear-
ity intervals of the objective value function instead 
of ranges of some parameters for which the optimal 
basis remains optimal, and therefore less iteration is 
needed to construct the objective value function

• the presented method completely reveals the objec-
tive value function with its largest domain set for 
which the problem is feasible and bounded.

The method can be used to support OM decision when-
ever the problem of the allocation of scarce resources 
must be solved, and LP models can properly describe or 
approximate the problem. The created AIMMS applica-
tion, beside showing the consecutive type III intervals 
in a table format, also contains a graphical presentation 
of the results, to create a better overview of the decision 
situation. The presented objective value function of any 
of the critical parameters can help operation managers to 
see directly the effect of planned or random parameter 
changes, or the possible consequences of the inaccuracy 
of data applied in the operation planning phase.
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