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Abstract

Demands that the Vietnam People's Air Force (VPAF) have new modern training aircraft have been growing recently. Although other 

training aircraft such as the Yak-52 and L-39 have performed well for decades, they are no longer able to perform the full range of 

training tasks required of them due to an increasing technology gap. In 2016, the United States government lifted a decade-long ban 

on lethal arms sales for Vietnam. This has created opportunities for Vietnam to access a variety of weapons suppliers from many 

countries that have a strong, global defence industry. However, one of the most difficult decisions the VPAF must make concerns the 

type, configuration, and capabilities of future training aircraft. This study therefore proposes a Multi-Criteria Decision Making (MCDM) 

model by combining the Best Worst Method (BWM) and a Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (Fuzzy 

TOPSIS) to choose a modern training aircraft that can replicate the characteristics of several fourth-generation or better fighter planes, 

with the fifth-generation fighters also being able to perform light-attack and reconnaissance duties for VPAF. The case study employing 

the hybrid BWM-Fuzzy TOPSIS method reveals that the Yak-130 training aircraft is the best selection for VPAF. To validate the robustness 

of the proposed framework, sensitivity analysis has been conducted with the result compared to Analytic Hierarchy Process (AHP).
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1 Introduction
The operations of an air force require a large financial 
and time investment, particularly where training combat 
pilots is concerned. An experienced combat pilot must be 
able to adapt to circumstances and make instantaneous 
judgments. His/her experience has been accumulated in 
daily and routine training, using both flight simulators and 
real training aircraft. After passing initial training tasks 
on propeller-driven training aircraft (including all basic 
flight programmes), trainees gain the required experience 
for high-level flight. To shorten the combat training cycle 
and improve financial savings, beginners can be trained 
using advanced training aircraft rather than operational 
jet fighters. Therefore, a sufficiently advanced training air-
craft is critical for flight training success while balancing 
the training system's efficiency.

In recent years, the Vietnam People's Air Force (VPAF) 
and the Vietnamese Navy have received special attention 
from the government and the defence force. For the Air 
Force alone, Vietnam equipped two regiments of modern 

multi-role fighter-bomber Su-30MK2 aircraft and more 
modernised military equipment from Russia. This is a 
strong move by Hanoi to respond to intensifying military 
threats from the East Sea in recent years. Concurrently, 
Vietnam also retired all Mig-21bis fighters, which have 
served for a long time in the VPAF. However, there is a 
need to upgrade the training aircraft after retiring Mig-
21bis and modernising combat aircraft (Tuan, 2019). 

The VPAF currently trains pilots on the L-39C and Yak-
52: the Yak-52 is a propeller aircraft used to train pilots 
at the elementary level, while the L-39C, which trains 
high-class pilots, is suitable for training Mig-21bis air-
craft’s pilots; however, the L-39C does not replicate the 
characteristics of the current Su-30MK2 aircraft. This 
means that pilots have to retrain in the regiment using 
Su-30MK2 aircraft after graduation, leading to a corre-
sponding increase in the training budget. Therefore, the 
task facing decision makers is quickly to choose a mod-
ern training aircraft that will be able to replicate the 
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characteristics of fourth-generation fighter planes or bet-
ter, with the fifth-generation fighters also being able to per-
form light-attack and reconnaissance duties (Tuan, 2019).

Previously, the only market option for Vietnam was 
Russia and allied countries and therefore this issue did not 
arise. However, this issue must be carefully considered 
now because of the Obama administration's 2016 lifting 
of the decade-long ban on lethal arms sales for Vietnam. 
It has created opportunities for Vietnam to access global 
weapons suppliers. Therefore, the final choice of a training 
aircraft must be methodically and systematically analysed 
to ensure a feasible, acceptable, and suitable selection is 
finalised for the needs of the VPAF. 

This study proposes a hybrid BWM (Best Worst Method) 
and Fuzzy TOPSIS (Technique for Order of Preference by 
Similarity to Ideal Solution) method for supporting the 
systematic selection of training aircraft in VPAF. The case 
study is presented with real survey data from experts in 
Vietnam and offers a practical solution. Furthermore, to 
validate the robustness of the proposed framework, sen-
sitivity analysis is conducted, and the result is compared 
to Analytic Hierarchy Process (AHP) (Balaji et al., 2019).

2 Literature review
In the literature, the aircraft selection process has been 
studied in various ways with a range of criteria and meth-
ods applied to choose suitable aircraft in both civilian and 
military fields as shown in the following studies.

In the civilian field, Bharda (2003) attempted to dis-
cover the relationship between the selection of an aircraft 
and passenger demand, and thereby answer the question: 
is it possible to derive the selection of aircraft and fleet 
mix for origin and destination pairs based on the passen-
ger demand for considered destinations? It was revealed 
that passengers, distance, and types of airport hubs can 
support the selection of an aircraft quite well. Listes 
and Dekker (2005) gave a scenario aggregation-based 
approach to determine fleet composition considering 
travel demand changes. They deal with this problem from 
the strategic point of view. Harasani (2006, 2013) intro-
duced a model for the selection of aircraft in the case of a 
Saudi Arabia airline. Based on aircraft range and payload 
for a given route network, specific aircraft types were cho-
sen to be considered. As a result of the Excel application 
created by the author, aircraft efficiency and its contribu-
tion to the net profit of the airline were obtained to help 
planners choose the right aircraft.

Ozdemir et al. (2011) considered both qualitative and 
quantitative criteria such as time, purchasing, maintenance, 
operation, etc. as the criteria to solve aircraft selection prob-
lems for Turkish Airlines. The focus was middle range, sin-
gle-aisle aircraft, and the proposed method was Analytic 
Network Process (ANP). Meanwhile, a two-stage model 
was proposed by Dožić and Kalić (2013a) to plan an airline 
fleet. In the first stage, to get a combined fleet in terms of 
aircraft size (small or medium-sized), input factors were the 
demand of passenger and distance. As a result, two sets of 
representative routes covered with small and medium-sized 
aircraft. Based on the two sets of routes corresponding to 
those aircraft sizes, the authors divided the planned flights 
into subsets to solve the problem in two independent fleet 
sizing problems. They extended their research with aircraft 
selection as the last stage (Dožić and Kalić, 2013b) and sug-
gested the even swap method as a possible tool to choose 
the appropriate fleet. Dožić and Kalić (2014) used AHP to 
solve the aircraft type selection problem for a known route 
network and forecasted air travel demand.

In the military field, Wang and Chang (2007) pro-
posed a systematic evaluation model to help the Air Force 
Academy with a selection of an optimal training aircraft 
in a certain environment mainly focused on technical per-
formance and neglected other characteristics, such as pro-
curement and operation cost, logistics capability, reliabil-
ity, armament capability, avionic and safety. They utilised 
a multi-criteria decision-making method to determine the 
importance weights of evaluation criteria, and TOPSIS to 
obtain performance ratings of feasible alternatives in lin-
guistic terms described with triangular fuzzy numbers. 
Wibowo et al. (2016) combined AHP with TOPSIS in a 
hybrid multi-criteria decision-making methodology to try 
to select new fighters for the Indonesian Air Force. AHP 
has also been combined with TOPSIS within a fuzzy envi-
ronment as a proposed solution to the air combat effec-
tiveness assessment problem by Wang et al. (2008). Ali et 
al. (2017) used AHP to select a fighter aircraft to improve 
the effectiveness of air combat in the War on Terror. 
Paul et al. (2017) approached the assessment alternatives 
of fighter aircraft based on TOPSIS by considering qual-
itative and quantitative criteria. This study also showed 
that cost or price is usually one of the prime criteria, and 
some measure of quality is ideally another criterion. 

Sánchez-Lozano et al. (2015) evaluated military train-
ing aircraft through the combination of MCDM with 
ambiguous logic for the Spanish Air Force Academy. Their 
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study aimed to attach weight to the criteria using AHP 
and further evaluated the aircraft using TOPSIS. In 2018, 
Sánchez-Lozano et al. (2018) once again solved the mili-
tary training aircraft selection problem for the Spanish Air 
Force Academy by using a pseudo-Delphi technique com-
bined with a fuzzy AHP methodology. Various criteria 
information was considered by the experts, with human 
factors, flying and handling qualities, etc. coexisting with 
service ceiling, stalling speed, endurance, etc.

Based on the analysis above, it is noteworthy that most 
studies have originated from developed countries and 
have specifically focused on civilian applications in which 
the questions are relatively well-explained. There have 
been very few studies that were carried out in the context 
of developing countries (Wibowo et al., 2016; Ali et al., 
2017; Paul et al., 2017) and to date, no study has been con-
ducted in the context of Vietnam concerning aircraft selec-
tion. Another consideration is that these previous stud-
ies have used a variety of methodologies, both individual 
and integrated for aircraft selection, and they have used 
AHP, ANP, or TOPSIS for calculating weights of criteria. 
Another method named BWM has proven its significance 
to calculate the weights of criteria (Rezaei, 2015), but this 
has not yet been considered in relation to aircraft selection. 

The advantage of BWM and Fuzzy TOPSIS over the 
other MCDM methods is that while AHP, Multi Criteria 
Optimisation and Compromise Solution (VIKOR), 
Decision Making Trial and Evaluation Laboratory 
(DEMATEL) require numerous pairwise comparison 
matrices for calculating criteria weights, and these matri-
ces often suffer from the issue of inconsistency due to the 
large amount of data involved. BWM requires less data 
(pairwise comparison matrices) and the result obtained is 
also more consistent, as shown by Rezaei (2015). Rezaei 
compared the results of AHP and BWM, showing that the 
result of BWM is more consistent and accurate. Moreover, 
BWM can also work well with only 4-10 experts as men-
tioned by Rezaei et al. (2018) in their paper on baggage 
service quality assessment. For ranking the alternatives, 
Fuzzy TOPSIS is the most widely employed technique 
and it is an approach capable of dealing effectively with 
the inherent imprecision, vagueness, and ambiguity of the 
human decision-making process with uncertain data. A 
combination of BWM and Fuzzy TOPSIS is therefore a 
coherent, consistent, and clear approach.

In fact, the combination of these two methods has been 
applied in other fields: for instance, supplier selection among 
small and medium enterprises on the basis of their green 

innovation ability (Gupta and Barua, 2017) and an evalua-
tion of an organisation's performance on the basis of green 
human resource management practices (Gupta, 2018), but 
not aircraft selection. To the best of the authors' knowledge, 
this study represents the first attempt at using both BWM 
and Fuzzy TOPSIS methods to overcome some limitations 
of the other proposed approaches.

3 Methodology
3.1 Research development
In this study, a new three-phase framework is proposed 
using a hybrid BWM-Fuzzy TOPSIS method for training 
aircraft selection in Vietnam, as shown in Fig. 1:

•  Phase 1: Determining the goal and criteria through a 
review of the extant literature and expert interviews.

•  Phase 2: Implementing the BWM model. Each crite-
rion and sub-criteria will be determined the weighs 
by applying BWM.

•  Phase 3: Ranking the list of training aircraft (alter-
native) concerning determined criteria and choosing 
the training aircraft with the highest rank by using 
Fuzzy TOPSIS.

3.2 Determining criteria
The criteria for considering the selection of aircraft are 
determined by team of experts and not all the criteria 

Fig. 1 Proposed framework for phases of methodology
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which influence this kind of decision-making problem 
have the same importance. Additionally, despite deci-
sion-making problems that could be similar, the selected 
criteria depend on the specific context and requirements of 
each country. Therefore, not only is it important to carry 
out an appropriate selection of criteria, but also to choose 
the way of obtaining their weights. The experience and the 
background of the expert team are utilised in the deter-
mination of the criteria and the questionnaire should be 
answered by each one of the experts.

3.3 Calculating the weights of criteria using BWM
MCDM techniques are utilised in situations of complex 
problems where decision-makers are assigned a task of 
selecting the best alternative among many alternatives. A 
new MCDM method known as BWM had been developed 
by Rezaei (2015) using an optimisation model to determine 
the weights of the criteria. This is possible by doing pair-
wise comparisons. The best criterion compares with other 
criteria, while other criteria compare to the worst criterion. 
This technique has been successfully utilised by Rezaei et 
al. (2016). For this method a linear minmax model is used; 
the steps which are explained by Rezaei are discussed below:

•  Step 1: A set of decision criteria are identified that 
must be used to reach a decision. Decision criteria 
will be taken and are denoted as {c1, c2, ... , cn} for n 
main criteria.

•  Step 2: Determination of the best and the worst cri-
terion among main as well as sub-criteria among the 
available set of criteria by decision makers.

•  Step 3: The decision maker then carries out pairwise 
comparisons between the best criterion and other cri-
teria. This is done by determining references using a 
number between 1 to 9, where "1 = equally import-
ant" and "9 = more important". The best criteria over 
other criteria vector can be written as:

A a a aB B B Bn� �� �1 2
, , , ,  (1)

where aBi represents the rating of the best-selected 
criteria B over any other criteria j. In this case, 
aBB = 1. The consensus of various experts is taken for 
finalisation of preference ratings.

•  Step 4: Similarly using a scale of 1 to 9, calculate the 
ratings of all other criteria over one worst criterion, 
the worst criteria is to be determined by experts. The 
comparison of other criteria to worst criteria can be 
attributed in the form of a vector as:

A a a aW W W nW� �� �1 2
, , , ,  (2)

where aiW represents the rating of any criteria j with the 
worst selected criteria W. In this case, aWW = 1. In this 
case, also the final value can be arrived by consensus 
of all the experts involved in decision making.

•  Step 5: The final step is to optimise the weights of 
all the criteria W W W* *

n
*

1 2
, , , .�� �  The objective is to 

calculate the weights of criteria so that the maximum 
absolute differences for all j are minimised of the 
following set W a W W a WB Bj j Bj jW W� �� �,  to obtain 
a unique solution of weights. Following optimiza-
tion, the model can be formulated thus:

Min

for all
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Eq. (3) can be solved by representing it in the form of a 
linear model as:
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Solving the above Eq. (4), the optimised weights 
W W W* *

n
*

1 2
, , ,�� �  and optimal value ξ L are obtained.

To ensure the rationality of the assessment, two con-
sistency measurements can be calculated: the input-based 
consistency measurement and the output-based consistency 
measurement. The output-based consistency ratio CRO is 
defined in the original version of BWM (Rezaei, 2015).

CRO L
max� �� ��*

/ ,  (5)

where ξ L* is the optimal value ξ L, and ξmax is the consis-
tency index.

The output-based consistency ratio CRI is proposed 
to compliment the output-based CRO and it is defined as 
(Liang et al., 2020):

CR CRI I
j=max ,

j
 (6)
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where:

CR
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a a a
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�

�

�

�
�

�
�

1

0 1

.  (7)

The thresholds for both output-based and input-based 
consistency ratios are established in the work of Liang et 
al. (2020) using Monte-Carlo method.

3.4 Ranking the alternatives using Fuzzy TOPSIS
TOPSIS is a widely used method for solving ranking 
problems in real-life situations and it was first evolved by 
Hwang and Yoon (1981). Despite the concept's popularity 
and simplicity, this method often complains about uncer-
tainty and imprecise results associated with the mapping 
of the decision maker's perception of crisp values. In the 
traditional formulation of TOPSIS, personal judgments 
play an important role and represented with crisp values. 
However, in various practical circumstances, the human 
preference model is uncertain and crisp values might be 
difficult to be accredited to the comparison judgments 
by decision-makers because of lacking appropriate infor-
mation (Chan and Kumar, 2007). The reason is that deci-
sion-makers usually feel more confident to give interval 
judgments rather than to use an exact value to express 
their judgments. Therefore, as some criteria are difficult to 
measure by crisp values, they are usually ignored during 
the evaluation. Another reason is these mathematical mod-
els that are based on crisp value, so they cannot deal with 
decision-makers' ambiguities, uncertainties, and vague-
ness which cannot be handled by crisp values. The use of 
fuzzy set theory introduced by Zadeh (1965) allows the 
decision-makers to incorporate incomplete information, 
unobtainable information, unquantifiable information, 
and partially ignorant facts into the decision model (Kulak 
et al., 2005). As a result, Fuzzy TOPSIS and its exten-
sions have been developed to solve ranking and justifica-
tion problems within a fuzzy environment (Büyüközkan 
et al., 2008; Chen, 2000; Chen and Tsao, 2008; Kahraman 
et al., 2007; Önüt and Soner, 2008; Wang and Elhag, 2006; 
Yang and Hung, 2007; Yong, 2006). 

This study uses a triangular fuzzy number for Fuzzy 
TOPSIS because it is intuitively easy to use and calculate. 
In addition, in studies using triangular fuzzy numbers by 
Chang and Yeh (2002), Chang et al. (2007), Kahraman et 
al. (2004), and Zimmerman (1996) proved the efficiency 

of the model using triangular fuzzy numbers for solving 
problems where the information available is imprecise 
and subjective. In practice, the triangular form is applied 
most often to represent fuzzy numbers (Ding and Liang, 
2005; Kahraman et al., 2004; Karsak and Tolga, 2001; Xu 
and Chen, 2007). In the following explanation, some basic 
important definitions of fuzzy sets are given (Chen et al., 
2006; Chen, 1996; Cheng and Lin, 2002; Hwang and Yoon, 
1981; Xu and Chen, 2007; Zimmerman, 1996). Fuzzy 
TOPSIS methodology steps can be outlined as follow:

•  Step 1: Construct a comparison matrix (kij ) of alter-
natives with different criteria using linguistic vari-
ables discussed in Table 1. The linguistic rating 
mentioned in Table 1 and used in this methodol-
ogy upholds the property that normalised triangular 
fuzzy numbers lie in the range [0,1] thus eliminating 
the need for normalisation (Dağdeviren, et al., 2009).

•  Step 2: Calculate the weighted normalised fuzzy 
decision matrix. The weighted normalised value vij 
is calculated by Eq. (8) given below:

V � �� �� �
vij m n

,  (8)

where:

i m j n� �� � � �� �1 2 3 1 2 3, , , , , , , , , ,  (9)

v k wij ij j� � .  (10)

•  Step 3: Identify FPIS and FNIS where FPIS and 
FNIS represent the fuzzy positive ideal and the 
fuzzy negative ideal solution, respectively:

A
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ˇ

ˇ ˇ

ˇ ˇ

Table 1 Linguistic scale for alternatives selection

Linguistic variables Corresponding Fuzzy Numbers

Very Low (VL) (0, 0, 0.2)

Low (L) (0, 0.2, 0.4)

Medium (M) (0.2, 0.4, 0.6)

High (H) (0.4, 0.6, 0.8)

Very High (VH) (0.6, 0.8, 1)

Excellent (E) (0.8, 1, 1)
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where J is associated with benefit criteria and J' is 
associated with cost criteria.

•  Step 4: Calculate the distance of each alternative 
from FPIS and FNIS using Eqs. (14) and (15) dis-
cussed below:

d d v v i m ji
j

n

ij j
�

�

�� �� � � � � ��
1

1 1, , , ; , , ,n  (13)

d d v v i m ji
j

n

ij j
�

�

�� �� � � � � ��
1

1 1, , , ; , , ,n  (14)

where d v vij j�� ��  and d v vij j�� ��  were calculated 
by the vertex method for distance between 2 fuzzy 
triangular number vij(a1, a1, a1) and v a b cj

� � �2 2 2
, ,  or 

v a b cj
� � �2 2 2

, ,  according to Eqs. (16) and (17).

d v v a a b b c cij j�� � � �� � � �� � � �� �� ��
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� 1
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1 2

2

1 2

2

1 2

2

1
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(15)

d v v a a b b c cij j�� � � �� � � �� � � �� �� ��
��

�
��

� 1

3
1 2

2

1 2

2

1 2

2

1
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(16)

•  Step 5: Calculate closeness coefficient (CCi ) of each 
alternative by using Eq. (18):

CC d
d d

i m CCi
i

i i
i�

�
� � �� �

�

� � , , , , , .1 0 1  (17)

•  Step 6: Rank preference order. Choose an alterna-
tive with maximum CCi or rank alternatives accord-
ing to CCi in descending order.

4 Case study
The proposed BWM-Fuzzy TOPSIS model is to be applied 
to a real problem in the VPAF. This study aims to assess 
possible alternative training aircraft solutions and to help the 
decision-makers accordingly in terms of user requirements. 
The high technology weapons make significant improve-
ments in the defence capabilities of the nations. Therefore, 
selecting the most proper weapon in general and training air-
craft in specific is of great importance for the VPAF. But it is 
hard to choose the most suitable one among the alternatives. 

To determine the main features that the candidate train-
ing aircraft should have, an expert team was formed from 
one senior manager of the Air Weapon Department of Air 
Defense and Air Force High Command Headquarters, 
three lecturers in the Aviation Weapons Department 

of the Air Defense and Air Force Academy, one senior 
flight instructors of Air Force Officer's College, and one 
air weapon system manager of an Air Force Regiment. 
All the experts were chosen because of their vast experi-
ence (each with more than 15 years) in the field of operat-
ing, using, and studying many kinds of aircraft or in the 
field of supplier selection and innovations. The criteria to 
be used in the study were identified by the expert team 
based on their experience, the demand of VPAF, and the 
literature review. The application performed is based on 
the steps provided in the previous section and explained 
step by step together with the results.

There are four main criteria and 19 sub-criteria to be used 
for training aircraft selection are established by the expert 
team through answering the questionnaire. These four 
main criteria are as follows: General Characteristic (GC), 
Performance (PF), Price (PR), and Other criteria (OC). 
These 18 sub-criteria are as follows: Maximum takeoff 
weight (GC1), Power plant (GC2), Crew (GC3), Maximum 
speed (PF1), Cruising speed (PF2), Stalling speed (PF3), 
Range (PF4), Service ceiling (PF5), Climbing rate (PF6), 
Wing loading (PF7), Thrust/weight (PF8), Maximum G 
limits (PF9), Acquisition Cost (PZ1), Operating cost (PZ2), 
Training cost (PZ3), Armament (OC1), Strategic partner-
ship (OC2), Reliability (OC3), Avionics (OC4). Criteria 
and their definitions of importance are given in Table 2. 
In those criteria, some new important criteria such as 
business strategies across countries (OC2) and economic 
aspects (PZ1, PZ2, PZ3) were first adopted.

Following the determination of the criteria, alternative air-
craft were investigated, and the decision-making team deter-
mined three suitable training aircraft for the needs are KAI 
T-50 Golden Eagle, Yakolev Yak-130, and Aero L-159 Alca.

4.1 Calculation of criteria weights using BWM
After finalisation of selection criteria by the experts, the next 
step is to determine the best and the worst criteria among the 
main criteria, then determine the preference of the best crite-
ria over all other criteria and preference rating of all the cri-
teria over the worst criteria on a scale of 1–9. To acquire data, 
the questionnaires were designed and dispatched via email 
to the expert team. The challenge was finding a method to 
combine all the questionnaire responses into a single equiv-
alent response. For each comparison between the best crite-
rion to the other criteria and the other criteria to the worst 
criterion, e.g., between the best main criterion (PZ) and 
general characteristic (GC), the number of responses was 
recorded and plotted as shown in Fig. 2.

ˇ

ˇ

ˇ ˇ

ˇ

ˇ

ˇ
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In this case, the weighted arithmetic mean was calcu-
lated to define a scale value for that comparison. Because 
the weighted arithmetic mean is based on all the obser-
vations, and determined for every kind of data, it is least 
affected by fluctuations of sampling. Only responses are 
greater than 1 were considered in the computation of 
the mean. The mean was chosen as a measure of central 

tendency to eliminate the error due to an incomplete per-
ception of the method by the respondent. The expression 
to evaluate the mean is stated as follow:

Weighted Arithmetic Mean

Scale Value×Response Frequency

Sum o

�

�� �
ff Acceptible Response Frequency

�

�
�

�

�
�

 (18)

Table 2 Aircraft evaluation criteria and its definition

Main criteria Sub criteria Definition

General Characteristic (GC)

Maximum take-off 
weight (GC1)

The maximum weight that the aircraft is allowed to take off without causing any damage to 
the structure, due to structural limit or other limits.

Power plant (GC2) To generate the propulsive force directly by increasing the momentum of the airflow through 
the engine(s).

Crew (GC3) Personnel who operate an aircraft while in flight.

Performance (PF)

Maximum speed 
(PF1) The aircraft is damaged if the maximum operating speed is exceeded.

Cruising speed (PF2) Cruise speed is the precise airspeed that represents the optimal balance between speed & 
range at which aircraft travels most efficiently.

Stalling speed (PF3) The minimum speed at which the wings maintain lift so the plane can fly to maintain level 
flight.

Range (PF4) The maximum distance an aircraft can fly between take-off and landing after a single 
refuelling.

Service ceiling (PF5) The highest operating altitude at which the aircraft can bear the atmosphere and operate 
efficiently.

Climbing rate (PF6)
The climb is the increase in aircraft height up to the cruising altitude, and descent means 
the fall in height from end of cruising until landing. The maximum rate climb allows the 

aircraft to reach its operating height in the minimum time.

Wing loading (PF7) The wing loading is the total weight of an aircraft divided by the area of its wing.

Thrust/weight (PF8) Thrust to weight ratio is directly proportional to the acceleration of the aircraft. An aircraft 
with high acceleration is an aircraft with a high thrust to weight ratio.

Maximum G limits 
(PF9)

G (gravity) forces are the acceleration forces that pull on pilots changing the plane of 
motion. Pilots encounter these forces while engaged in high-speed dogfighting. G forces can 

be either positive or negative, and both types may be dangerous to a pilot. A pilot's weight 
increases correspondingly as he or she pulls more Gs. The maximum G limit is the largest 

positive G force that a pilot can endure.
If a pilot is flying straight and pushing the nose of the plane down, then the negative force of 
gravity reduces his weight. A pilot who pushes too many negative Gs sees the world through 

bloodshot eyes. The minimum G limit means the strongest negative force of gravity that a 
pilot can tolerate.

Price (PZ)

Acquisition Cost 
(PZ1)

The final price of an aircraft including legal costs, transport, and discounts (= money taken 
off the price), but not including taxes.

Operating cost (PZ2) All costs occur when flights are in actual operation, including fuel consumption and 
maintenance costs, etc. 

Training cost (PZ3) The cost of all training activities including technical training cost for ground crews and 
flight training cost for pilots.

Other criteria (OC)

Armament (OC1) Weapons with can be used.

Strategic partnership 
(OC2)

An arrangement between two companies, organisations or countries to help each other or 
work together, to make it easier for each of them to achieve desired objectives they want to 

achieve.

Reliability (OC3) The extent to which the fuselage, engine, propeller, or all components will perform the 
required function under specified conditions without failure over a specified period.

Avionics (OC4) Avionic systems are the electronic systems used on aircraft including communications, 
navigation, the display and management of multiple systems, etc.
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For the histogram of comparison between the best main 
criterion and general characteristic, shown in Fig. 2, the 
sample calculation is as follow:

Weighted Arithmetic Mean �
�� � � �� �

�
�
�
�

�
�
� �

2 3 3 4

2 3
4,  (19)

(to the nearest unit).
This procedure was adopted and applied to all pairwise 

comparison as the result of the subsequent the best to oth-
ers rating and others to the worst ratings obtained are rep-
resented in Table 3.
As with the pairwise comparison of main criteria, all the 
sub-criteria are subjected to similar pairwise comparison 
on a scale of 1 to 9 after identifying their respective best 
and worst criteria. The pairwise comparison of general 
characteristics sub-criteria is presented in Table 4. 

Similarly, the pairwise comparison of the other sub-cri-
teria is presented in Table 5, Table 6, and Table 7.

After pairwise comparison of all the main criteria 
and sub-criteria by decision-makers, the next step is to 
obtain weights of main criteria and subsequently sub-cri-
teria. Using Eq. (4) discussed in step 5. By solving this 
model in Microsoft excel solver, optimised weights 
W W Wn1 2

* * *
, , ,�� �  and ξL* of main criteria are obtained. 

Also, the output-based (CRO ) and input-based (CRI ) con-
sistency measurements are calculated. Table 8 shows 
weights of the main criteria based on responses received 
from respondents in the questionnaire. Both the out-
put-based (CRO ) and input-based (CRI ) consistency mea-
surements are less than the thresholds suggested by in the 
work of Liang et al. (2020), and this shows higher consis-
tency among pairwise comparisons.

Like the weights of the main criteria, the weights of 
sub-criteria are also obtained by formulating the criteria as 
a linear programming Eq. (4) and solving the equation; the 
weights obtained are shown in Table 9. By solving Eq. (4) 

Fig. 2 Comparison between price and general characteristic

Table 3 Main criteria comparison

Best to Others GC PF PZ OC

PZ 4 2 1 7

Others to the 
worst OC

GC 2

PF 3

PZ 7

OC 1

Table 4 Pairwise comparison for General characteristics sub 
criteria

Best to others GC1 GC2 GC3

GC2 6 1 2

Others to the Worst GC1

GC1 1

GC2 6

GC3 3
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for pairwise comparison of all criteria and subsequent 
sub-criteria, weights of each criterion and sub-criteria are 
obtained, these weights are used to rank sub-criteria and 
indicate the importance of each criterion and sub-criteria. 
Results show Price (PZ) as the most important criterion 
followed by Performance (PF). Similarly, among sub-cri-
teria, Operating cost has the highest weight followed by 
Acquisition cost. The next step is to rank the alternative 
with respect to these criteria by using Fuzzy TOPSIS. 

4.2 Ranking the alternatives using Fuzzy TOPSIS
After obtaining weights of all the criteria, the next step is 
to select the best alternative (training aircraft) with respect 
to these criteria. Fuzzy TOPSIS as discussed in Phase 3 has 
been used for obtaining the ranks of alternatives. Decision 
makers were asked to evaluate all the candidates with respect 
to criteria using linguistic variables discussed in Table 2. 
The resultant matrix showing corresponding fuzzy values 
of linguistic variables for comparison is shown in Table 10.

Table 5 Pairwise comparison for performance

Best to others PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9

PF1 1 9 3 4 5 6 8 7 2

Others to the 
worst PF2

PF1 9

PF2 1

PF3 3

PF4 2

PF5 2

PF6 2

PF7 2

PF8 2

PF9 5

Table 6 Pairwise comparison for price

Best to Others PZ1 PZ2 PZ3

PZ2 3 1 5

Others to the Worst PZ3

PZ1 3

PZ2 5

PZ3 1

Table 7 Pairwise comparison for other criteria

Best to others OC1 OC2 OC3 OC4

OC3 6 5 1 3

Others to the 
worst OC1

OC1 1

OC2 2

OC3 6

OC4 2

Table 8 Optimal weights for main criteria

Main criteria Weights ξL* CRO (threshold) CRI (threshold)

General Characteristic 
(GC) 0.137

0.02 0.005 < 0.365 0.023 < 0.268Performance (PF) 0.255

Price (PZ) 0.529

Other criteria (OC) 0.078
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To obtain the weighted, normalised fuzzy relation 
matrix using Eq. (7), the weighted matrix is presented 
in Table 11. The fuzzy positive-ideal solution FPIS and 
fuzzy negative-ideal solution FNIS are determined using 
Eqs. (8) and (9). FPIS (A+) and FNIS (A−) in this case can 

be defined as perfect value, v vj j
� �� � � � � �1 1 1 0 0 0, , , , , ,  as 

suggested by Chen (2000). 
The next step is to obtain the closeness coefficient 

value CCi and the final ranking of alternatives using 
Eqs. (10) and (11). Once the distances of cluster policy 

Table 9 Weights of main and sub criteria

Main criteria Weights main 
criteria

Sub 
criteria

Weights sub 
criteria

Global 
weights Ranking

General 
Characteristic (GC) 0.137

GC1 0.1 0.014 14

GC2 0.6 0.082 4

GC3 0.3 0.041 8

Performance (PF) 0.255

PF1 0.34 0.087 3

PF2 0.035 0.009 18

PF3 0.121 0.031 9

PF4 0.091 0.023 10

PF5 0.073 0.019 11

PF6 0.061 0.016 12

PF7 0.045 0.011 16

PF8 0.052 0.013 15

PF9 0.182 0.046 6

Price (PZ) 0.529

PZ1 0.244 0.129 2

PZ2 0.644 0.341 1

PZ3 0.111 0.059 5

Other criteria (OC) 0.078

OC1 0.088 0.007 19

OC2 0.125 0.01 17

OC3 0.577 0.045 7

OC4 0.209 0.016 12

Table 10 Fuzzy comparison matrix for supplier alternatives

T-50 Yak-130 L-159B Criteria weights

GC1 (0.6, 0.8, 1) (0.4, 0.6, 0.8) (0.2, 0.4, 0.6) 0.014

GC2 (0.6, 0.8, 1) (0.6, 0.8, 1) (0.2, 0.4, 0.6) 0.082

GC3 (0.6, 0.8, 1) (0.6, 0.8, 1) (0.6, 0.8, 1) 0.041

PF1 (0.8, 1, 1) (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) 0.087

PF2 (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) 0.009

PF3 (0.4, 0.6, 0.8) (0.8, 1, 1) (0.4, 0.6, 0.8) 0.031

PF4 (0.4, 0.6, 0.8) (0.8, 1, 1) (0.4, 0.6, 0.8) 0.023

PF5 (0.8, 1, 1) (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) 0.019

PF6 (0.8, 1, 1) (0.2, 0.4, 0.6) (0.2, 0.4, 0.6) 0.016

PF7 (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) 0.011

PF8 (0.6, 0.8, 1) (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) 0.013

PF9 (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) (0.6, 0.8, 1) 0.046

PZ1 (0.2, 0.4, 0.6) (0.4, 0.6, 0.8) (0.6, 0.8, 1) 0.129

PZ2 (0.2, 0.4, 0.6) (0.6, 0.8, 1) (0.6, 0.8, 1) 0.341

PZ3 (0.4, 0.6, 0.8) (0.6, 0.8, 1) (0.6, 0.8, 1) 0.059

OC1 (0.6, 0.8, 1) (0.4, 0.6, 0.8) (0.2, 0.4, 0.6) 0.007

OC2 (0, 0.2, 0.4) (0.6, 0.8, 1) (0.6, 0.8, 1) 0.01

OC3 (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) (0.4, 0.6, 0.8) 0.045

OC4 (0.8, 1, 1) (0.6, 0.8, 1) (0.4, 0.6, 0.8) 0.016
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from FPIS and FNIS are determined, the closeness coef-
ficient can be obtained with Eq. (14). The index CC1 of the 
first alternative is calculated as:

CC d
d d1

1

1 1

0 605

0 605 18 423
0 032�

�
�

�
�

�

� �

.

. .
. .  (20)

The CCi values and ranking of alternatives are shown in 
Table 12 and Table 13. 

From the alternative evaluation results in Table 13, Yak-
130 as an optimal training aircraft. This assessment is based 
on the technical characteristics and economic constraints. 
Meanwhile, although the T-50 Golden Eagle was better eval-
uated technically, surprisingly, it ranked third due to eco-
nomic factors. This table presents a clear view of one that is 
the most suitable option for the purposes of this study.

5 Discussion and sensitivity analysis
Defence purchases require vast amounts of money and 
time investment, so it is a process of strategic impor-
tance for any country. The procurement or development 
of aircraft entails huge defence budget expenditures, so 
the selection of an appropriate aircraft must be carefully 
evaluated. In the context of the economic and geopoliti-
cal challenges related to defence procurement, the oppo-
sition between the requirements and constraints need to 
be dealt with to ensure that a perfect trade-off is made 

when approaching the optimal selection. The training air-
craft selection for the VPAF was considered in this study. 
By further considering financial aspects, strategic rela-
tionship, and technical characteristics as criteria, various 
aspects of a training aircraft purchase were evaluated.

The result showed that by using a hybrid BWM and 
Fuzzy TOPSIS approach for training aircraft selection, the 
Yak-130 turns out to be the best suitable solution, closely 
followed by the L-159B. Even though the T-50 Golden 
Eagle outweighs the technologically superior Yak-130 
and L-159B, the Yak-130 and the L-159B outweighs T-50 
Golden Eagle in terms of both acquisition and operational 
cost. Based on the evaluation of decision-makers. The eval-
uation result is in Table 10. Therefore, the Yak-130 could be 
considered a more suitable training aircraft in preference 
to the T-50 since it represents an optimal trade-off between 
the technological requirements and budget limitations.

In order to validate the robustness of the proposed 
framework, sensitivity analysis was conducted and the 
result compared to AHP, another widely used MCDM 
method, to indicate the effect of varying the priority 
weights on the evaluation process and ranking of the solu-
tion for training aircraft selection. Twenty-three experi-
ments were performed, as shown in Table 14. This was 
done by replacing the high weight for decision attributes 
while keeping the other weights constant.

Table 11 Weighted fuzzy evaluation matrix for alternatives

T-50 Yak-130 L-159B

GC1 (0.0084, 0.0112, 0.014) (0.0056, 0.0084, 0.0112) (0.0028, 0.0056, 0.0084)

(1, 1, 1) (0, 0, 0)

GC2 (0.0492, 0.0656, 0.082) (0.0492, 0.0656, 0.082) (0.0164, 0.0328, 0.0492)

GC3 (0.0246, 0.0328, 0.041) (0.0246, 0.0328, 0.041) (0.0246, 0.0328, 0.041)

PF1 (0.0696, 0.087, 0.087) (0.0348, 0.0522, 0.0696) (0.0348, 0.0522, 0.0696)

PF2 (0.0036, 0.0054, 0.0072) (0.0036, 0.0054, 0.0072) (0.0036, 0.0054, 0.0072)

PF3 (0.0124, 0.0186, 0.0248) (0.0248, 0.031, 0.031) (0.0124, 0.0186, 0.0248)

PF4 (0.0092, 0.0138, 0.0184) (0.0184, 0.023, 0.023) (0.0092, 0.0138, 0.0184)

PF5 (0.0152, 0.019, 0.019) (0.0076, 0.0114, 0.0152) (0.0076, 0.0114, 0.0152)

PF6 (0.0128, 0.016, 0.016) (0.0032, 0.0064, 0.0096) (0.0032, 0.0064, 0.0096)

PF7 (0.0044, 0.0066, 0.0088) (0.0044, 0.0066, 0.0088) (0.0044, 0.0066, 0.0088)

PF8 (0.0078, 0.0104, 0.013) (0.0052, 0.0078, 0.0104) (0.0052, 0.0078, 0.0104)

PF9 (0.0184, 0.0276, 0.0368) (0.0184, 0.0276, 0.0368) (0.0276, 0.0368, 0.046)

PZ1 (0.0258, 0.0516, 0.0774) (0.0516, 0.0774, 0.1032) (0.0774, 0.1032, 0.129)

PZ2 (0.0682, 0.1364, 0.2046) (0.2046, 0.2728, 0.341) (0.2046, 0.2728, 0.341)

PZ3 (0.0236, 0.0354, 0.0472) (0.0354, 0.0472, 0.059) (0.0354, 0.0472, 0.059)

OC1 (0.0042, 0.0056, 0.007) (0.0028, 0.0042, 0.0056) (0.0014, 0.0028, 0.0042)

OC2 (0, 0.002, 0.004) (0.006, 0.008, 0.01) (0.006, 0.008, 0.01)

OC3 (0.018, 0.027, 0.036) (0.018, 0.027, 0.036) (0.018, 0.027, 0.036)

OC4 (0.0128, 0.016, 0,016) (0.0096, 0.0128, 0.016) (0.0064, 0.0096, 0.0128)

di
+ di

−
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First, sensitivity analysis was conducted for the pro-
posed hybrid method. On the first run, the weight of the 
main criterion General Characteristic (GC) = 0.4 and 
weights of all others 3 main criteria = 0.2 while maintain-
ing the weights of sub-criteria. Then CCi scores are calcu-
lated by using Fuzzy TOPSIS method. Again on the sec-
ond run, the weight of the main criterion Performance (PF) 
= 0.4 and weights of all others 3 main criteria = 0.2. The 
weights of sub-criteria are maintained and CCi values are 
calculated to get final rank. A similar process is followed 
until the 4th run. As with the sub-criteria, on the 5th run, the 
weight of sub-criterion maximum take-off weight (GC1) 
= 0.4 while GC2 = GC3 = 0.3. On the 8th run PF1 = 0.2 
and the other sub-criteria of Performance criteria = 0.1. 
On the 17th run, PZ1 = 0.5 while PZ2 = PZ3 = 0.25. On 

the 20th run, OC1 = 0.4, OC2 = OC2 = OC4 = 0.2. The 
resultant change in the ranking of criteria and sub-criteria 
is observed and finally, the alternatives are ranked using 
Fuzzy TOPSIS. The results of the sensitivity analysis are 
shown in Table 14 and Fig. 3. 

Based on the result, the Yak-130 still maintains the first 
rank while the ranking of T-50 and L-159B are slightly 
changed when the main criteria weight is changed. It indi-
cates that the proposed framework is relatively sensitive to 
the main criteria weights but robustness with any change 
of sub-criteria weight.

Second, AHP was adopted to solve the problem in the 
case study and the same sensitivity analysis was con-
ducted. Table 15 presents the ranking of alternatives by 
sensitivity analysis when the priority vector values are 
changed, and Fig. 4 presents the result.

Fig. 5 demonstrates the changes among the rankings of 
three alternative aircraft using BWM-Fuzzy TOPSIS and 
AHP. This is clearly seen that for rank 1, while the rank-
ing of Yak-130 remains unchanged during the implemen-
tation of the proposed method, AHP witnesses 21.74% of 
adjustment. For rank 2, the ranking of L-159B changed 
by BWM-Fuzzy TOPSIS and AHP is 17.04% and 34.78%, 

Table 12 Distance of the rating of each alternative from FPIS and FNIS

T-50 Yak-130 L-159B

Distance from A+ A− A+ A− A+ A−

GC1 0.989 0.011 0.992 0.009 0.994 0.006

GC2 0.935 0.067 0.094 0.067 0.967 0.035

GC3 0.967 0.034 0.967 0.034 0.967 0.034

PF1 0.919 0.082 0.948 0.054 0.948 0.054

PF2 0.995 0.006 0.995 0.006 0.995 0.006

PF3 0.981 0.019 0.971 0.029 0.981 0.019

PF4 0.986 0.014 0.979 0.022 0.986 0.014

PF5 0.982 0.018 0.988 0.012 0.988 0.012

PF6 0.985 0.015 0.994 0.007 0.994 0.007

PF7 0.993 0.007 0.993 0.007 0.993 0.007

PF8 0.99 0.011 0.992 0.008 0.992 0.008

PF9 0.972 0.029 0.972 0.029 0.963 0.038

PZ1 0.949 0.056 0.935 0.08 0.897 0.105

PZ2 0.865 0.147 0.729 0.278 0.729 0.278

PZ3 0.965 0.037 0.953 0.048 0.953 0.048

OC1 0.994 0.006 0.996 0.004 0.997 0.003

OC2 0.998 0.003 0.992 0.008 0.992 0.008

OC3 0.973 0.028 0.973 0.028 0.973 0.028

OC4 0.985 0.015 0.987 0.013 0.099 0.01

Total 18.423 17.45 17.408

Total 0.605 0.743 0.72

Table 13 Ranking of alternative according to closeness co-efficient

    Total     Total CCi Rank

T-50
18.423

0.032 3
0.605

Yak-130
17.45

0.041 1
0.743

L-159B
17.408

0.04 2
0.72

di
+ di

−
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Table 14 Ranking of alternative by sensitivity 
analysis when weight of criteria is changed

T-50 Yak-130 L-159B

Original 3 1 2

Run 1 2 1 3

Run 2 2 1 3

Run 3 3 1 2

Run 4 2 1 3

Run 5 3 1 2

Run 6 3 1 2

Run 7 3 1 2

Run 8 3 1 2

Run 9 3 1 2

Run 10 3 1 2

Run 11 3 1 2

Run 12 3 1 2

Run 13 3 1 2

Run 14 3 1 2

Run 15 3 1 2

Run 16 3 1 2

Run 17 3 1 1

Run 18 3 1 2

Run 19 3 1 2

Run 20 3 1 2

Run 21 3 1 2

Run 22 3 1 2

Run 23 3 1 2

Fig. 3 Result of sensitivity analysis (BWM-Fuzzy TOPSIS)
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Table 15 Ranking of alternative by sensitivity 
analysis when priority vector values is changed

T-50 Yak-130 L-159B

Original 3 1 2

Run 1 2 1 3

Run 2 2 1 3

Run 3 3 1 2

Run 4 2 1 3

Run 5 3 2 1

Run 6 3 2 1

Run 7 3 2 1

Run 8 3 1 2

Run 9 3 2 1

Run 10 3 1 2

Run 11 3 1 2

Run 12 3 1 2

Run 13 3 1 2

Run 14 3 1 2

Run 15 3 1 2

Run 16 3 1 2

Run 17 3 2 1

Run 18 3 1 2

Run 19 3 1 2

Run 20 3 1 2

Run 21 3 1 2

Run 22 3 1 2

Run 23 3 1 2

Fig. 4 Result of sensitivity analysis (AHP)



Ma
Period. Polytech. Soc. Man. Sci., 30(2), pp. 141–157, 2022|155

relatively. However, rank 3 shows 13.04% of the varia-
tion for both methods. It can be concluded that the result 
obtained by the AHP was sensitive to changes in prior-
ity vector values while the proposed hybrid method gives 
much more reliable results than the AHP method.

6 Conclusions
In this study, a hybrid BWM-Fuzzy TOPSIS method was 
applied to determine the best training aircraft among a set 
of alternatives. BWM has advantages over other techniques 
like AHP, ANP, VIKOR, and DEMATEL because while 
it requires a lesser number of pairwise comparisons and 
experts, the result obtained is more consistent. Further, for 
ranking alternatives, Fuzzy TOPSIS is an approach to effec-
tively dealing with the inherent imprecision, vagueness, 
and ambiguity of the human decision-making process with 
uncertain data. Four main criteria and nineteen sub-criteria 
are used to evaluate the different alternatives. Additionally, 
important data from an expert team including one senior 
manager of the Air Weapon Department of Air Defence 
and Air Force High Command Headquarters, three lectur-
ers in the Aviation Weapons Department of the Air Defence 
and Air Force Academy, one senior flight instructors of Air 
Force Officer’s College, and one air weapon system manager 
of an Air Force Regiment was obtained via questionnaires. 
This information was modelled using triangular fuzzy sets. 

With this data, after using the BWM methodology to obtain 
the weight of the criteria, a formulation of TOPSIS method 
for fuzzy numbers was applied to get the final ranking of 
training aircraft with respect to criteria. Sensitivity analysis 
was conducted, and the result was compared to AHP to val-
idate the robustness of the proposed method. It was shown 
that the proposed method gives much more reliable results 
than AHP method. As a result of the process, the Yak-130 
turns out to be the best suitable solution, closely followed 
by L-159B. Even though the T-50 Golden Eagle outweighs 
the technologically superior Yak-130 and L-159B, the Yak-
130 and L-159B outweighs T-50 Golden Eagle in terms of 
both acquisition and operational cost. Therefore, Yak-130 
could be considered a more suitable training aircraft over 
T-50, since it represents an optimal trade-off between the 
technological requirements and budget limitations. Based 
on the evaluation of decision-makers. The evaluation result 
is in Table 10.

The main contribution of this study is that it presents 
a hybrid MCDM model for training aircraft selection in 
VPAF under fuzzy environment condition. This is the first 
attempt in using BWM and Fuzzy TOPSIS for aircraft 
selection in the context of VPAF. Moreover, some new 
important factors, such as business strategies across coun-
tries, economic aspects (acquisition, operation costs, and 
training cost) are also adopted in this study. This research 

Fig. 5 Comparing the results of BWM-Fuzzy TOPSIS and AHP
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provides a new flexible and practical approach for deci-
sion-makers and a useful guideline for aircraft selection in 
other developing countries as well as for supplier selection 
in other fields.

For further studies, this research can also be extended 
by using the combination of different MCDM tech-
niques such as Multi-Attribute Utility Theory (MAUT), 
Preference Ranking Organization Method for Enrichment 

of Evaluations (PROMETHEE), and Elimination and 
Choice Expressing Reality (ELECTRE) or incorporating 
additional selection criteria like risk factors.
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