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Abstract
This paper introduces the theoretical background of a few

possible applications of the so-called sigmoid-type functions in
manufacturing and service management.

An extended concept of reliability, derived from fuzzy theory,
is discussed here to illustrate how reliability based management
decisions can be made consistent, when handling of weakly de-
fined concepts is needed.

I demonstrate how performance growth can be modelled us-
ing an aggregate approach with support of sigmoid-type func-
tions.

Suitably chosen parameters of sigmoid-type functions allow
these to be used as failure probability distribution and survival
functions. If operation time of an item has a given sigmoid-type
failure probability distribution function, then its hazard function
is proportional to the failure probability distribution function.
Furthermore, this hazard function can be a model of the third
part of the bathtub failure rate curve.
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1 Introduction
A sigmoid function is a mathematical function that produces

a curve having an "S" shape, and is defined by the

σλ,x0(x) =
1

1 + e−λ(x−x0)
(1)

formula. The sigmoid function is also called sigmoidal curve
[1] or logistic function. The interpretation of sigmoid-type func-
tions – I use here – is that any function that can be transformed
into σλ,x0(x) through substitutions and linear transformations
is considered as a sigmoid-type one. There are several well-
known applications of sigmoid-type functions. A few examples
are: threshold function in neural networks [2], approximation
of Gaussian probability distribution, logistic regression [3], or
membership function in fuzzy theory [4].

My objective is to conclude hypotheses on how this function
family is applicable in certain areas of reliability based manufac-
turing and service management, along with brief interpretations
and demonstrations of these possible applications. Besides the
(1) generic form, different other forms of the sigmoid function
such as P(x), µ(m R), Fλ,t0(t) and Rλ,t0(t) with different pa-
rameters will be used here. These different forms are different
appearances of the same function, and the notations always fit to
the notations that are commonly used in the fields of particular
applications.

2 Modelling performance growth
The manufacturing as well as the service processes can be

characterized by various indicators and metrics, which are usu-
ally functions of several process variables, parameters and con-
stants. The overall performance of a process depends on its in-
puts, and it is common that finally, there is one aggregated in-
dicator or metric used to characterize the overall performance.
These kind of aggregate indicators are commonly associated
with some financial metrics, and so whenever a new process
is being introduced its financial performance can be monitored
through the chosen aggregate performance indicator. Certainly,
the ultimate goal is to find the highest performance resulting in-
put set as quickly as possible. However, in reality, the manufac-
turing and service processes are too complex, with a large num-
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ber of input factors, and commonly, with unknown dependen-
cies and interactions among them. That is, searching for depen-
dencies between the input set and the aggregate performance is
cumbersome and works with difficulties in most of the practical
cases. Instead of trying to handle many inputs and outputs, the
approach shown here is using one independent variable that is
proportional to and so represents all those efforts that contribute
to the aggregate performance growth. For example, we may con-
sider the time spent on process development and improvement
as an aggregate input variable, and so we can look at the aggre-
gate performance growth as function of the so-interpreted time
variable.

2.1 The nature of performance growth
Let x be such an independent input variable that is propor-

tional with the performance development and improvement ef-
forts. Furthermore, let P(x) note the aggregate performance
as function of x , Pi the initial value and Pt the target value of
P(x). With other words, we look at the growth of aggregate per-
formance as function of x , providing that P(x) increases from
Pi to Pt , and Pt represents the level of operational performance
corresponding to the targeted financial results.

Numerous practical observations confirm that the same 1x
effort increase results different 1P(x) performance increases,
depending on the actual level of performance, at which the ef-
forts were made. It may be assumed that when 1P(x) is at a
low level and is close to Pi the speed of growth is low, namely,
the early efforts do not yield much of improvement. As the per-
formance increases, the speed of its growth increases as well. It
may be explained so that as the improvement and development
efforts result higher and higher level of process specific knowl-
edge and skills, the impact of the same sized every new effort
results greater performance increase. This tendency, however,
is only valid until a certain level of performance. Although the
performance increases as the efforts increase, but after a certain
time, the growth slows down as the new efforts result low-rate
increase in process specific knowledge and skills. Finally, the
performance gets close to an upper limit. If the Pt target value
of 1P(x) is set to this upper limit, then it can be said that growth
speed of 1P(x) decreases when P(x) is near Pt .

Fig. 1 illustrates the growth speed of performance in its dif-
ferent ranges, and shows how a small 1x effort increase results
low-rate performance increase when P(x) is near Pi or Pt , as
well as shows greater slope of P(x) when it is more distant both
from Pi and Pt . This illustration assumes that the chosen 1x is
small enough to assume linear relationship between x and P(x)

in the 1x intervals.
Thus, my assumption is that the nature of performance growth

is so that its speed is proportional to the P(x)−Pi and Pt −P(x)

differences. Formally,

1P(x) = λ∗
[
P(x) − Pi

][
Pt − P(x)

]
1x

1P(x)

1x
= λ∗

[
P(x) − Pi

][
Pt − P(x)

]
(2)
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Fig. 1. Growth speed of performance in its different ranges

where λ∗ > 0 is a process specific proportionality coefficient.
Turning into infinitesimal quantities results the following differ-
ential equation.

dP(x)

dx
= λ∗

[
P(x) − Pi

][
Pt − P(x)

]
(3)

Eq. 3 is known as logistic equation and is also used as a model
of population growth [5]. Population models using the logis-
tic growth can be found in Murray’s book [9] and the book by
Clark [10] introduces its applications in economics. Solving this
equation results the

P(x) =
Pt eλ(x−a)

+ Pi

1 + eλ(x−a)
(4)

function, where λ = −λ∗(Pi − Pt ) = λ∗(Pt − Pi ) is a positive
number. If a = x0, Pi = 0, and Pt = 1, then

P(x) =
eλ(x−x0)

1 + eλ(x−x0)
=

1
1 + e−λ(x−x0)

. (5)

It means that function (4) is a sigmoid-type function.

2.2 Attributes of the performance growth function
The P(x) function derived above has four parameters: λ, a,

Pi , and Pt . Interpretation of these parameters and the basic ana-
lytical properties of P(x) are introduced in this subsection.

Derivative
Derivative of P(x) is

dP(x)

dx
=

λeλ(x−a)(Pt − Pi )

(1 + eλ(x−a))2 (6)

Monotonicity and limits
As Pt − Pi and λ are positive, the derivative is positive as

well, and so P(x) is an increasing function.

lim
x→−∞

P(x) = Pi (7)
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and
lim

x→∞
P(x) = Pt (8)

that is P(x) is an increasing function from Pi to Pt .

Symmetry and inflection point
It can been seen that P(x) has its only one inflection point in

the (a, Pi +Pt
2 ) point, wherein it changes its shape from convex

to concave. This point is also the symmetry center of the P(x)

curve.

Role of parameter λ

The (6) derivative in a is

P
′

(a) =
λ

4
(Pt − Pi ). (9)

It means that role of λ relates to the speed of change, since slope
of the curve in a is proportional to λ.

Monotonicity and limits
As Pt − Pi and λ are positive, the derivative is positive as well, and so P (x) is
an increasing function.

lim
x→−∞

P (x) = Pi (7)

and
lim

x→∞
P (x) = Pt (8)

that is P (x) is an increasing function from Pi to Pt.

Symmetry and in�ection point
It can been seen that P (x) has its only one in�ection point in the (a, Pi+Pt

2 )
point, wherein it changes its shape from convex to concave. This point is also
the symmetry center of the P (x) curve.

Role of parameter λ

The (6) derivative in a is

P
′
(a) =

λ

4
(Pt − Pi). (9)

It means that role of λ relates to the speed of change, since slope of the curve
in a is proportional to λ.

Figure 2: Role of λ
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Fig. 2. Role of λ

Impact of parameter a
As it is shown in Fig. 2, the P(x) curve has its only one in-

flection point in a. Graphically, it means that parameter a de-
termines the point where the "S" curve takes its place along the
abscissa axis. The (a, Pi +Pt

2 ) point is the one, around which the
performance growth is the fastest. Fig. . 4 shows the effect of
parameter a, when all the other parameters are kept unchanged.

Impact of parameter a

As it is shown in Figure 2, the P (x) curve has its only one in�ection point in
a. Graphically, it means that parameter a determines the point where the "S"
curve takes its place along the abscissa axis. The (a, Pi+Pt

2 ) point is the one,
around which the performance growth is the fastest. Figure 4 shows the e�ect
of parameter a, when all the other parameters are kept unchanged.

Figure 3: Parameter a determines the place of curve along the x-axis

The function curve
Considering that Pi and Pt stand for the initial, and target performance levels
respectively, the function curve with indication of meaning of its parameters is
in Figure 4.

Figure 4: A generic performance growth function with its four parameters

6

Fig. 3. Parameter a determines the place of curve along the x-axis

The function curve
Considering that Pi and Pt stand for the initial, and target per-

formance levels respectively, the function curve with indication
of meaning of its parameters is in Fig. 4.

Impact of parameter a

As it is shown in Figure 2, the P (x) curve has its only one in�ection point in
a. Graphically, it means that parameter a determines the point where the "S"
curve takes its place along the abscissa axis. The (a, Pi+Pt

2 ) point is the one,
around which the performance growth is the fastest. Figure 4 shows the e�ect
of parameter a, when all the other parameters are kept unchanged.

Figure 3: Parameter a determines the place of curve along the x-axis

The function curve
Considering that Pi and Pt stand for the initial, and target performance levels
respectively, the function curve with indication of meaning of its parameters is
in Figure 4.

Figure 4: A generic performance growth function with its four parameters

6

Fig. 4. A generic performance growth function with its four parameters

2.3 Sigmoid-type functions as possible models of perfor-
mance growth
Hypothesis 1
Let x represent the time effectively spent on the introduction

of a new manufacturing or service process, and let P(x) be an
aggregated performance metric used to characterize the good-
ness of this process. My assertion is that P(x) is a sigmoid-type
function shown in (4), with the λ, a, Pi , and Pt parameters,
moreover each process introduction has its unique set of these
parameters.

Providing that this assertion is valid, the model would be ap-
plicable predicting the performance growth, if λ, a, Pi , and Pt

are determined once. On the grounds of these, I hypothesize the
following:

Hypothesis 2
The sigmoid-type functions that have the form (4) and the

λ, a, Pi , and Pt parameters, can be used as control tools in
new product or service introductions so that the time dependent
growth of an aggregated process performance characteristic
is measured against the corresponding time dependent values
of a suitably parameterized sigmoid-type function. Suitable
setting of the parameters means that the uniquely determined,
best fitting resulting parameters are chosen as described in
Hypothesis 1.

Validity of these assertions and a much deeper investigation
on what factors, conditions and circumstances drive the parame-
ters are subjects of further research. Assuming validity of these
two hypotheses allows us to proceed like in the next example.
Imagine that a new service process has been introduced, and the
time dependent values of a chosen aggregated performance met-
ric have been collected during the introduction. It means that a
set of (performance value, time) type ordered pairs is available,
and based on these, the λ, a, Pi , and Pt values of the best fit-
ting sigmoid-type function are determined. Thus, we have a
model that describes the performance growth observable dur-
ing the introduction of this particular process. Later on, when
the same process has to be introduced under the same condi-
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tions and circumstances again, then it may be assumed that its
performance growth will follow the same behavior curve as per-
formance growth of the firstly introduced process did. Thus, the
determined performance growth function can be used for target
setting, and the real growth of performance can be compared to
the predicted values. It may be worrying and may sound imprac-
tical that existence of "same conditions and circumstances" was
assumed in this example. The concept of sameness used here
does not mean a literal identity since use of that would be really
far from the practice. Application of a fuzzy concept of same-
ness can resolve this problem, and I would like to study this area
more in details. Fuzzy concepts are briefly discussed in the next
section.

3 Extension of concept of reliability
When the company processes are interpreted so that besides

the manufacturing and service processes, the support functions
needed to a proper internal operation are taken into considera-
tion as well, then characterizing reliability of a process may re-
quire handling of weakly defined concepts. For example, when
may we consider a human resource selection process reliable?
In this case, the "reliable process" notion is a weakly defined
one, and that is why it is difficult to handle. Even if some mea-
surable metrics can be assigned to this process, drawing a sharp
borderline between the reliable and unreliable domains may be
unsuitable. In such cases the simple, metrics based categoriza-
tion into different domains may jeopardize the real consistency
of decision-making. On the other hand, treating the "reliable"
and "unreliable" domains as fuzzy concepts, and having a suit-
able membership function that, in fuzzy manner, can decide
which domain a particular process belongs to, would result a
more practical decision-making. Bellman and Zadeh in [5] say:
"By decision-making in a fuzzy environment is meant a deci-
sion process in which the goals and/or the constraints, but not
necessarily the system under control, are fuzzy in nature. This
means that the goals and/or the constraints constitute classes of
alternatives whose boundaries are not sharply defined."

For example, let m R be a reliability metric of a process, and
our task is to decide if this process is reliable enough or not.

3.1 The traditional approach
Following the traditional way, we would define a sharp mT

limit for m R and base the decision on comparing the particular
m∗

R value of m R to the mT limit. Formally, we would use the
following D(m R) decision function:

D(m R) =

{
0 if m R < mT

1 if m R ≥ mT
(10)

where the 0 and 1 logical values correspond to the unreliability
and reliability respectively.

3.2 A possible fuzzy approach
If there are uncertainties influencing the values of m R , and

that is why the reliable and unreliable domains are not sharply
disjoint, then the examined process may be considered as a reli-
able one even if m R is less than mT , but is close to mT , and on
the contrary, the process may be considered as an unreliable one
even if m R is greater than mT , but is close to mT . The decision
making can be supported by the

µ(m R) =
1

1 + e−λ(m R−m0)
(11)

membership function, where λ and m0 have the same roles as λ

and a have in sub-section 2.2. It is important to see that these
two parameters are process specific ones, and in this manner,
are unique properties of the process examined. In this case, the
decision-making process works so that for the particular m∗

R re-
liability level the µ(m∗

R) truth value is calculated. This truth
value reflects how much valid the "process is reliable" statement
is. Afterwards, the so-calculated µ(m∗

R) truth value is compared
to the pre-defined TL truth limit that represents the threshold,
which the decision-making is based on. We may accept that the
process is reliable, if

µ(m∗

R) ≥ TL = µ(mL) (12)

The difference between the traditional and fuzzy approaches is
that while the traditional decision is based on two values of the
traditional logic, the fuzzy approach compares two truth values.
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Figure 5: Reliability based decision making in traditional and fuzzy manner

The example in Figure 7 demonstrates how these two approaches work. In
this example, the particular m∗

R value of the chosen reliability metric is less than
the mT limit, and so the process in unreliable in traditional manner. On the
other hand, as the di�erence between m∗

R and mT is small, it may be assumed
that this di�erence is just caused by the uncertainty of the mR metric, and
therefore, it is an option to accept that the process is reliable. If the TL truth
limit is set as in Figure 7, then µ(m∗

R) ≥ TL = µ(mL), and the reliability of the
process can be accepted in fuzzy manner.

Certainly, the output of this fuzzy-logic based decision making depends on
the µ(mR) function, and the TL limit, and so it is key how these are de�ned
and set up in a concrete, practical case. Further investigations and development
of models for particular applications are subjects of my future research activi-
ties. Here I give just a brief explanation on how the λ and m0 parameters of
µ(mR), and the TL limit impact the decision. I study the impact of parameters
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The example in Fig. 5 demonstrates how these two ap-
proaches work. In this example, the particular m∗

R value of the
chosen reliability metric is less than the mT limit, and so the
process in unreliable in traditional manner. On the other hand,
as the difference between m∗

R and mT is small, it may be as-
sumed that this difference is just caused by the uncertainty of
the m R metric, and therefore, it is an option to accept that the
process is reliable. If the TL truth limit is set as in Fig. 5, then
µ(m∗

R) ≥ TL = µ(mL), and the reliability of the process can be
accepted in fuzzy manner.

Certainly, the output of this fuzzy-logic based decision mak-
ing depends on the µ(m R) function, and the TL limit, and so it
is key how these are defined and set up in a concrete, practical
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case. Further investigations and development of models for par-
ticular applications are subjects of my future research activities.
Here I give just a brief explanation on how the λ and m0 param-
eters of µ(m R), and the TL limit impact the decision. I study the
impact of parameters separately, so that I examine the effect of
changing only one factor at the same time.

Changing m0 results the µ(m R) curve shifting along the m R

axis. If m0 decreases, while λ and TL are fixed, the curve is
getting shifted to left, and µ(m R) gives greater values for the
same m R inputs. It means that a lower value of the m R reliability
metric gets higher truth value than its original truth value was,
and so the "trust" in process reliability strengthens. With other
words, we would accept that the process is reliable, even if its
reliability metric has decreased. Similarly, as mo increases, the
decision making mechanism becomes more strict, and values of
m R that - based on their truth value - originally belonged to the
reliable domain, fall into the unreliable domain.

As λ determines the slope of the µ(m R) curve in the (m0,
1
2 )

point, changing λ impacts the sharpness of border between the
unreliable and reliable domains. If m0 = m R and λ tends to
infinity, then µ(m R) = D(m R).

TL represents our expectation in terms of truth value that we
require the process to meet in order to consider it being reliable.
TL can also be considered as the indulgence level of decision
maker.

Hypothesis 3
Reliability based decision-making situations, which are

uncertain due to the lack of sharply defined reliability domains,
can be handled through sigmoid-type functions. In such a case,
a sigmoid-type function with expediently chosen parameters
can be used as a truth function, whose independent argument
is a reliability metric of the examined process, and output is
a truth value between 0 and 1. This truth value measures the
validity of the statement that the examined process is reliable.

4 Sigmoid-type functions as survival functions
The

σλ,x0(x) =
1

1 + e−λ(x−x0)
(13)

sigmoid-type function meets the criteria of a probability distri-
bution function as

• lim
x→−∞

σλ,x0(x) = 0

• lim
x→∞

σλ,x0(x) = 1

• σλ,x0(x) is monotonously increasing

• σλ,x0(x) is continuous from left side.

Function (13) is known as logistics distribution function. Based
on this

Fλ,t0(t) =
1

1 + e−λ(t−t0)
(14)

is a possible failure probability function1, and the

Rλ,t0(t) = 1 − Fλ,t0(t) = 1 −
1

1 + e−λ(t−t0)
=

e−λ(t−t0)

1 + e−λ(t−t0)

(15)
is the corresponding survival function. If the τ lifetime of an
element2 has the Fλ,t0(t) probability distribution, then the prob-
ability that τ ≥ t is Rλ,t0(t):

P(τ ≥ t) = Rλ,t0(t) =
e−λ(t−t0)

1 + e−λ(t−t0)
(16)

The Rλ,t0(t) function is a sigmoid-type function as multiplying
the numerator and denominator of (16) by eλ(t−t0) results

Rλ,t0(t) =
e−λ(t−t0)

1 + e−λ(t−t0)
=

1
1 + eλ(t−t0)

= F−λ,t0(t) (17)

that is equal to (14), if λ is negative. It means that changing the
sign of λ in the Fλ,t0(t) failure probability distribution function
yields the corresponding Rλ,t0(t) survival function.

4.1 Properties of Rλ,t0(t)
Considering properties of the Fλ,t0(t) failure probability func-

tion, the Rλ,t0(t) survival function has the following attributes:

• Rλ,t0(t) is monotonously decreasing from 1 to 0

• Rλ,t0(t) is changing its shape from concave to convex in t0

• Rλ,t0(t) has angular coefficient of −
λ

4
in the (t0,

1
2
) point.

The t0 parameter represents a kind of a threshold for the τ life-
time as the P(τ ≥ t) likelihood is changing from 1 to 0 in neigh-
bourhood of t0, and the speed of this change is determined by λ.

If t � t0 then P(τ ≥ t) ≈ 1, that is the probability that the τ

lifetime is greater than t is approximately 1. Similarly, if t � t0
then P(τ ≥ t) ≈ 0, or with other words, the element will very
likely fail, if it operates considerably longer than t0. In neigh-
bourhood of t0, the λ parameter drives the speed of transition
from 1 to 0. If λ is infinitely large, the transition is infinitely
short, that is in this case the Rλ,t0(t) survival function belongs
to an element that operates without any failure till t0, and imme-
diately fails as its operation time reaches t0.

4.1.1 Expected lifetime
One important attribute of the lifetime of an element is its

expected value. If the τ lifetime of an element has the F(t) =

P(τ < t) failure probability distribution and the F
′

(t) = f (t)
density function, then expected lifetime3 of the element is

E(τ ) =

∞∫
0

t f (t)dt (18)

1Certainly, when this function is used as a failure probability distribution
function, then its domain of variability is positive.

2From this point onwards, wherever "element" is referred to, the same state-
ment is valid for a system as well.

3Expected lifetime is also called the mean time to failure, expected time to
failure, or average life.
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Derivation of the expected value and other properties of logis-
tics distribution can be found in the book by Johnson, Kotz and
Balakrishnan [11]. The expected value with my notation is

E(τ ) =
1
λ

ln(1 + eλt0). (19)

4.1.2 The hazard function
Generally,

R(t) − R(t + 1t)
R(t)

(20)

is the conditional probability that an item with R(t) survival
function fails in the [t, t + 1t] time interval given that it has
not failed till time t . If 1t is infinitely small, then (20) equals to
λ(t)1t , where

λ(t) =
−R

′

(t)
R(t)

=
F

′

(t)
R(t)

=
F

′

(t)
1 − F(t)

(21)

[7] is the so-called hazard function4.
If R(x) = Rλ,t0(t), then

−R
′

(t)
R(t)

=
−R

′

λ,t0(t)

Rλ,t0(t)
=

F
′

λ,t0(t)

Rλ,t0(t)
=

F
′

λ,t0(t)

1 − Fλ,t0(t)
(22)

Derivation of Fλ,t0(t) results[
1 −

1
1 + e−λ(t−t0)

]
1

1 + e−λ(t−t0)
(23)

that is
F

′

λ,t0(t) = λ
[
1 − Fλ,t0(t)

]
Fλ,t0(t) (24)

and so the hazard function is

λ(t) =
F

′

λ,t0(t)

1 − Fλ,t0(t)
= λ

[
1 − Fλ,t0(t)

]
Fλ,t0(t)

1 − Fλ,t0(t)
= λFλ,t0(t)

(25)
Looking at λ(t), it can be seen that it is proportional to

Fλ,t0(t), and since Fλ,t0(t) converges to 1 as t tends to infin-
ity, λ(t) converges to λ. This conclusion enables using this λ(t)
in the third part of the bathtub failure rate curve [8]. My assump-
tion is that the sigmoid-type function introduced in (15) can be
used as an approximating function of the survival function of
certain components. Statistical verification of this conjecture is
a subject of my further research plans.

5 Summary
The following three possible applications of sigmoid-type

functions in reliability based management were introduced here.

• There are well known applications of the logistic equation for
growth modelling in different areas such as biology, chemistry
or economics. In this paper, application of the logistic equa-
tion and sigmoid functions

(
P(x)

)
as growth models for ag-

gregate performance of manufacturing and service processes
were introduced.
4The hazard function is often called conditional failure rate function, failure

rate function, or hazard rate.

• When reliability or unreliability of a process cannot be un-
ambiguously judged, sigmoid functions as membership func-
tions

(
µ(m R)

)
can support drawing appropriate conclusions

on the process reliability. The introduced approach represents
an extended concept of reliability.

• Sigmoid functions are possible failure probability distribution(
Fλ,t0(t)

)
and survival functions

(
Rλ,t0(t)

)
. In this article, I

have shown that the hazard function is proportional to the fail-
ure probability distribution function if the failure probability
distribution function is a sigmoid one. This result suggests
possible applications of sigmoid functions for modelling the
third part of the bathtub failure rate curve.
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