
Ŕ periodica polytechnica

Social and Management Sciences
14/1 (2006) 19–28

doi: 10.3311/pp.so.2006-1.03
web: http://www.pp.bme.hu/so

c© Periodica Polytechnica 2006

RESEARCH ARTICLE

Software development as social
activity: distributed cognition or
hermeneutic pratice?
Viktor Binzberger

Received 2007-09-14

Abstract
How shall we render understandable the social-practical pro-

cesses of software development? First, I am going to present
the theory of Distributed Cognition (dCog), because, given its
privileged position within Human-Computer-Interaction (HCI)
literature, this is the most likely candidate for a philosophical
theory of software development.

Next, I am going to demonstrate with a case study that the
processes, which I call hermeneutic activities, lie outside the
domain of this theory. These hermeneutic episodes are charac-
terized exactly by the lack of a commonly shared functional de-
scription level, but the existence of such a level is indispensable
for the theses of dCog to hold. According to my argumentation,
the hidden premise that assumes the existence of such a level is
not only problematic, but is also inconsistent with the other the-
oretical roots of dCog. In order to see this, we have to turn our
attention toward the practices of interpretation that are taking
place in situated hermeneutic activities.

In my analysis, I am going to lean on the other branch of
dCog’s theoretical roots, predominantly on the works of Such-
man, Winograd, Dreyfus, and Norman.

Keywords
software development · distributed cognition · hermeneutics

Acknowledgement
I am thankful for the support of the BME-HAS Bela Julesz

Cognitive Science Research Group, and the Jedlik Ányos Re-
search Grant (NKTH KPI NKFP6-00107/2005).

Viktor Binzberger

Department of Philosophy, BME, H–1521 Budapest, Műegyetem rkp. 3., Hun-
gary
e-mail: bviktor@filozofia.bme.hu

1 Introduction
How shall we render understandable the social-practical pro-

cesses of software development? Beside the non-systematic,
much-debated, yet influential literature of the practitioners’ self-
reflection (e.g. Beck, 1999; Hunt, 1999; McBreen, 2002;
Boehm, 2004), there are only few systematic investigations
that are based on classical philosophical approaches. Given
the widespread acknowledgement of the societal relevance of
information technologies, it seems strange that philosophical
theories do not pay enough attention to the particular social-
practical processes in which contemporary info-communication
technologies come into being.

In the following, I would like to present the theory of dis-
tributed cognition (dCog), because, given its privileged posi-
tion within HCI literature, this is the most likely candidate for
a philosophical theory of the social processes of software de-
velopment. Its most important intellectual ancestor is Simon’s
and Newell’s influential theory of symbol-processing and ratio-
nal decision-making, but it also departs from it in significant
ways, drawing upon theorists like Brooks, Suchman, Winograd,
Dreyfus, Maturana, Lakoff and Norman, who all criticize the
rationalistic, disembodied approaches of cognition and comput-
ing: [4, 11, 29, 31, 35, 39, 43]

I am going to demonstrate with a case study that the pro-
cesses, which I call hermeneutic activities, lie outside the do-
main of dCog. These hermeneutic episodes are characterized
exactly by the lack of a commonly shared functional description
level, but the existence of such a level is indispensable for the
theses of dCog to hold. According to my argumentation, the
hidden premise that assumes the existence of such a level is not
only problematic, but is also inconsistent with the other theoret-
ical roots of dCog. In order to see this, we have to turn our atten-
tion toward the practices of interpretation that are taking place in
situated hermeneutic activities, and we have to handle concepts
like “representation” and “information” with suspicion, because
they tacitly imply the existence of such a shared functional de-
scription level.

In my analysis, I am going to lean on the other branch of
dCog’s theoretical roots, predominantly on the works of Such-

Software development as social activity 192006 14 1

http://www.pp.bme.hu/so


man, Winograd, Dreyfus, and Norman. I’d like to emphasize
and provide support for the following theses:

a) Understanding unfolds itself in skillful action. This means
that understanding, in its most originary sense, does not mean
holding and manipulating symbols in our “mind”, but rather
the capability of orienting ourselves – coping – within a life-
world. (Dreyfus 1998) Using language to orient ourselves
mutually in a shared practical engagement is of special im-
portance, but is still skillful action.1

b) Understanding is situated and embodied, that is, always al-
ready embedded into the material concreteness and contin-
gencies of the situation [35, 39].When in giving account of
understanding, we abstract away the idiosyncrasies of the sit-
uation, we risk losing a central feature of understanding.

c) Understanding presupposes having already taken up a posi-
tion within a holistic horizon of meaning, constituted by a
shared lifeworld and shared traditions of interpretation. In
the process of understanding, this horizon gets reinterpreted
and transformed to encompass new perspectives on new do-
mains.

d) Understanding – even as skillful action – always involves an
ongoing interpretation of the surrounding world. The every-
day routine of abstracting away from the embodied situation
to describe it within a linguistic conceptual framework is just
one extreme example of this. Skillful action without words al-
ready involves perceiving the world as purposeful, as one that
offers affordances, as one that can be translated into a field of
possibilities for action and existence [17].

Through criticizing dCog, I do not intend to prove its untenabil-
ity. As we will see, dCog is compatible with my theses a), b)
and c): my goal is to extend and supplement it with thesis d).

2 Distributed Cognition
The term Distributed Cognition was coined by Edwin

Hutchins [23].The main tenets of this theory are summarized
in [17]:

i) A cognitive process is delimited by the functional relation-
ships among the elements that participate in it, rather than by
the spatial collocation of the elements;

1 In cognitive psychology, Michael Tomasello’s theory of language acquisi-
tion stands very close to my approach. His concept of “shared attention”, and his
emphasis on the importance of coordinated action in learning a language is in
accord with theses a) and b). The most significant difference is that Tomasello
sees continuity between classical cognitivism and his situated model: for ex-
ample, he uses concepts like “plan” and “plan recognition”, whereas theorists
whom I build upon, like Dreyfus and Suchman, argue that there is a significant
discontinuity between situated and classical symbolic theories of cognition, and
the concept of “plan” is a misleading and obsolete metaphor (Tomasello 2005;
Suchman 1987).

ii) Whereas traditional views look for cognitive events in the
manipulation of symbols inside individual actors, distributed
cognition looks for a broader class of cognitive events and
does not expect all such events to be encompassed by the skin
or skull of an individual [19].

and these lead to the following theses:

1 Cognitive processes may be distributed across the members
of a social group.

2 Cognitive processes may involve coordination between inter-
nal and external (material or environmental) structure.

3 Processes may be distributed through time in such a way that
the products of earlier events can transform the nature of later
events [19].

An interesting application of the theory is the case study of
Hutchins & Palen (1997), in which they investigate the inter-
action between the pilots in an emergency condition during a
simulated flight. They engage themselves in a distributed trou-
bleshooting process, systematically searching through the space
of possible causes of the instrumental readout. The authors no-
tice, that in conveying meaning, the pilots rely extensively on
their shared perceptual access to the instrument panel and on
their shared skillful knowledge about possible courses of action.
The spatial distribution of the instruments plays a significant
role in visualizing inferential steps of the troubleshooting pro-
cess. Following the gestures and the explanation of the second
officer, the pilots shift between different levels of representation,
sometimes looking at the instrument as a fuel gauge and then
taking it to be a representation of the fuel tank itself. In the first
case, they look at the fuel panel, and in the second, they “see
through” it. When the secondary officer silently puts his finger
onto the fuel test switch, they correctly infer that he means that
he has already tested the fuel panel hardware – this shifts the
level of representation to the meta-level, involving inferences
about each other’s knowledge and responsibilities. The authors
arrive at the conclusion that articulated speech is just one modal-
ity among others: “space, gesture, and speech are all combined
in the construction of complex multilayered representations in
which no single layer is complete or coherent by itself.”

2.1 The Classical Cognitivist Roots of Distributed Cognition
The approach of the dCog theorists draws upon the classi-

cal cognitivist ideas of Simon and Newell (1976), and they take
them further in certain directions. If cognition is symbol manip-
ulation and its motivation is problem solving, as cognitivists say,
why should cognition be narrowed down either to the confines of
the individual brain, or to the housing of the “intelligent” com-
puter? Symbol-manipulation processes of problem solving are
distributed among people and their artifacts. In Hutchins’ exam-
ple, touching the fuel panel test switch externalizes the cognitive
process of the second officer: by sharing his belief that the prob-
lem does not reside in the fuel panel, he effectively cuts down

Per. Pol. Soc. and Man. Sci.20 Viktor Binzberger



the dead-ends of the search for solutions in the problem space,
thus eliminates redundancies in this parallelized problem solv-
ing effort.

The fingerprint of classical cognitivism can also be discerned
from other aspects of the example. In Hutchins’ description,
the features of space, gesture, and speech are already presented
as symbolic representations, preselected, segmented, and cate-
gorized according to their cognitive role in solving the problem.
Lines of explanation along other social aspects are not taken into
account: knowing that it is a videotaped simulation, it might
well be, that the second officer touches the test switch with the
intent of delegating responsibility, saying, in effect “I have fol-
lowed the standard textbook procedures and now I am awaiting
further orders.” Emotions, social status, power struggles do not
play a role in these descriptions. DCog’s other examples – ship
navigation (Carroll 2003), informal techniques of using the air-
speed indicator, the use of the cursor and the “airstrip” in air traf-
fic control [10, 14, 27] are all characterized by a narrow cogni-
tivist focus on symbolic or symbolically reconstructable interac-
tions. All their examples consider already well-established, rou-
tine practices, with a preexisting ontology of action discernible
from rulebooks and technical literature. Their description is not
a phenomenology of action in a Merleau-Pontian sense, but is
rather a functional description of a meta-individual machinery,
within which humans play a mechanistic role.

Their approach recently became attacked as one that does not
make sufficient distinction between humans and machines. The
debate with their answers is summarized in [40], but it seems to
me, that since dCog theorists share their premises with Simon
and Newell, on which the classical argument for the possibility
of artificial intelligence is built, they must commit themselves to
its conclusions also.

2.2 The New Waves of Cognition: Embodiment, Situated-
ness, Ethnomethodology
On the other hand, dCog theorists draw on many ideas from

Brooks, Clark, Lakoff, Norman, Suchman, Varela and Wino-
grad, who are all very critical toward classical cognitivism. They
embrace the idea of embodiment by emphasizing the importance
of the particular material realization of instruments and admin-
istrative artifacts in our cognitive processes. The airspeed me-
ter with an analog gauge is better than a digital one, because it
can be used for perceptual reasoning about relative speeds, and
cardinal directions are a more convenient way to communicate
speeds than decimal numbers [24]. The paper file can accom-
modate such extra information (handwriting, post-it notes, etc.)
in an ad-hoc fashion that the badly designed computer database
cannot. They also reflect on the organization of space as an
influental heuristic tool for thinking: e.g., the placement and
grouping of computer icons on the virtual space of the screen
can encode important meta-information about the files they rep-
resent. But their concept of embodiment is still a narrowly cog-
nitivist one: they still take the material realization of tools into

account only so far as they exhibit representational capabilities.
They follow Suchman in describing action as situated within

an unarticulated material background, which serves as a shared
resource, upon which all participants of a discourse must draw
in order to understand each other. Reasoning, deixis, and disam-
biguation of words take into account visual, spatial, and cultural
metaphors. Their view also endorses Norman’s argument, ac-
cording to which intelligence is not “in the head”, but rather in
the cultural heritage of the well-designed artifacts, which sur-
round us, and “make us smart”, and in the processes in which
these artifacts come into being.

The tacit dimension of knowledge or knowledge as skillful
action – Winograd’s argument against classical representation-
ist cognitivism – is present in the theory, but it does not play a
central role.

They also use an ethnomethodological approach, which is
quite different from anthropological research on indigenous peo-
ple, since they employ the ontology of their subjects in their de-
scriptions (“actor’s categories”), but this ontology is far from
being naive: it is thoroughly informed by the legacy of 20th-
century administrative science and operation research.

So far there is no disagreement between dCog and my ap-
proach. The above aspects are covered by my theses a), b) and
c).

2.3 My critique against dCog
There is an internal contradiction between the functionalism

dCog theorists are committed to in principle i), and the emphasis
on embodiment and situatedness. If we apply the arguments of
Norman, Suchman, Varela, etc. to the concepts of the analyst,
we find that they also have to be situated and embodied, draw-
ing upon a shared material background, and so on. On the other
hand, the universal functionalism of i) would require an inde-
pendent level of functional description, a level that is applicable
equally to all participants of the distributed cognitive process,
humans and non-humans alike. Such a functional level presup-
poses a more or less detailed ontology of action (how the seam-
less flow of action can be segmented and categorized conceptu-
ally into discrete acts) and an ontology of the problem (what are
the features that are relevant in finding a solution for the prob-
lem, what kind of decision alternatives and computational states
can be identified). To build such a functional description, we ei-
ther have to adopt the concepts of the participants (as Hollan et
al. in fact do), or we have to get involved in the situation. Now,
if the descriptions clash with each other, whose ontology shall
we prefer?

When dCog theorists talk about multimodally transmitted
representations, materially embodied information and so on,
these things “in themselves” are nowhere to be found in the
flow of action. We can only talk about material processes as
instantiating a symbol-transmission when we take the stance of
an interpreter, and conceptualize and arrange the action into a
functional narrative (a “plan”) [39]. Talking about “symbols”

Software development as social activity 212006 14 1



and “functions” presupposes an act of interpretation.
When building a theory of distributed cognition, we have to

keep in mind that symbols and functions are not part of a reality
which is independent from the participants and the analyst, but
rather the participants and the analyst are those, who delineate
them and give them meaning. When the horizon of interpre-
tation is standard between participants and analysts – and this
is the case in the standard dCog examples, which all focus on
well-defined, routine processes – this act of interpretation is gen-
erally not reflected upon. But when this horizon is not standard
– the use of symbols and their meanings differ among partici-
pants –, we cannot assume the existence of a common functional
description level. In order to build out this shared level of de-
scription, within which they can identify symbols and functions,
participants, and analysts have to engage in interpretative activ-
ity. It is exactly this kind of interpretative activity, which falls
outside the domain of dCog, because here there are no fixed set
of symbols and functions yet; for solving the problem, the alter-
native branches of the search tree, the possible categorizations
of actions and computational states are yet to be delineated. Not
symbols or representations are transmitted in these interpreta-
tional discussions, but the perspective itself, which makes pos-
sible the representation of the problem domain and the symbolic
definition of possible actions towards its solution.

In the following, I would like to present the case study, with
which I would like to show that a great part of problem solving
consists exactly of this kind of interpretative activity. Theorists
as Norman, Suchman and Winograd are the ones on whom we
can build upon, if we want to reach a deeper understanding of
this practice.

3 Case study: Understanding the Source Code – The
Role of Abstraction
3.1 Introduction
Software systems and their developers, viewed as a dis-

tributed cognitive system, working together to build a solution
to a problem domain, seem to fulfill principle i) of dCog, since
there is a given common level of functional description that is
shared by developers and computers alike: this is the source
code. The programming language has a standard interpretation
that maps source code onto the physical operations carried out
by the computer unambiguously, and this interpretation is em-
bodied in the compiler/interpreter program. Yet still, the break-
down of understanding between computer programmers is one
of the most feared phenomena among programming language
designers [2]. Do programmers really understand source code
as a functional description of the problem at hand? Do the sym-
bols of the source code mean the same for all participants? What
kind of meta-level understanding do they bring into play when
they reflect on and rework the source code?

I am going to show here that the source code comes into being
in a process of interpretative activity, and it is subject to further
reinterpretation and revision. The current state of the source

code, the “development snapshot” is only understandable within
a practical interpretative tradition that is constantly rebuilding its
own horizon of understanding by improving its conceptual tools
and its instrumental environment, and the kind of understanding
achieved by them is best characterized in the light of the theses
a) – d).

There are at least three core features of software development
practice, which are central to our investigation.

3.1.1 Abstraction
is a loose set of practices, through which the particular soft-

ware solution gets disentangled from the concreteness and con-
tingencies of the use-situation, so that a multiplicity of use-cases
gets thinkable and controllable with a finite set of symbolic rep-
resentations. Abstraction can also be thought of as an “imag-
inary induction” over the space of possible future use-cases,
while looking for lawlike regularities in the projected patterns
of use. Modularization, functional decomposition and meta-
programming are all examples of abstraction, supported by cer-
tain programming languages. The importance of abstraction lies
in that it reduces the holistic tangle of relationships of the sys-
tem and of the problem domain to be thinkable and commu-
nicable among developers, sometimes with the explicit aim of
“eliminating” their holism. Abstraction makes it easier for the
non-initiated developer to situate himself in the background nec-
essary to understand a portion of source code.

3.1.2 Embeddedness within a tradition of interpretation
refers to the phenomenon that preexisting abstractions of the

problem domain – residing in traditional mathematical formu-
lations or natural-language conceptualizations – provide tradi-
tional horizons of understanding, which can be relied upon dur-
ing building a new system. In the case of metaprogramming,
for example, the goal is to build up a translation between a tra-
ditional conceptualization of the problem and the abstractions
provided by the system; between the problem-specific language
and the system-specific computational tools [17].

Embeddedness in a tradition does not necessarily mean con-
servativism. The metaphorical base of a traditional language
can undergo great shifts to accommodate new perspectives. Pe-
ter Galison describes in a wonderful article how the very first
instance of computer use by John von Neumann to simulate the
hydrogen bomb explosion introduced such a shift of traditions
[13]. Given the complexity of the simulation, Neumann could
not have solved his problem with the traditional approach, by
the way of symbolically solving differential equations. Having
access only to the very limited computational capacities of the
ENIAC, Neumann had to find a way to reduce the number of
computational steps necessary to calculate the equations analyt-
ically. He came up with the idea of random sampling, borrowed
from his earlier explorations into game theory, which later de-
veloped into the so-called Monte-Carlo method of simulation.
Furthermore, this idea also had the effect of displacing the tradi-

Per. Pol. Soc. and Man. Sci.22 Viktor Binzberger



tional conceptualization of hydrodynamic problems in terms of
symbolically solvable differential equations with a new concep-
tual tradition, one that laid emphasis on the inherent stochastic
properties of atomic processes, and was easier to translate into
the language of the available computational tools.

3.1.3 Standardization and extending of controlled micro-
worlds
. Every abstraction that reduces the complexity of the sys-

tem achieves this aim by grouping together different use-cases
under the same symbolic articulation. This reduces the total
diversity of possible situations that might appear in the prob-
lem domain by levelling down the differences between them in
certain dimensions and accentuating them in others. This “lev-
elling down” can take the form of an adaptation to the struc-
ture of the problem domain as it is previously given within a
traditional horizon, or it can also play the role of a structuring
force that reorganizes the problem domain by introducing sim-
ilarities and augmenting differences that are traditionally not to
be found there. Instead of conforming to the world, this lat-
ter form of abstraction makes the world conform to the system,
for example, by enforcing standardized ways of interacting with
it or by declaring strictly the possible uses of its communica-
tion interfaces. To elucidate this point, I am going to borrow
Rouse’s concept of “microworld”, which is especially relevant
here, given its rootedness in AI research [37, 38, 43] . Rouse
argues that the success of science does not lie in being able to
model and predict everything, but rather in being able to con-
struct and extend microworlds. Microworlds are reduced mod-
els, laboratory settings with finite number of variables that can
be controlled and can have their relationships thoroughly ex-
plored. In AI research, microworlds are simulated environments
in which AI algorithms can be fully tested. The key to suc-
cess lies in finding a balance between adapting the algorithm
or the scientific product to all contingencies of the real world,
and between transforming the world itself to bring it into align-
ment with the conditions presupposed by the algorithm or the
product. This is rather well demonstrated by Hounshell’s study
(1992) [20], who examines two episodes from the history of Du
Pont, where this “scaling up” did indeed succeed: the story of
the nylon, and the case of the Hanford nuclear plant (the devel-
opment of the first atomic bomb). In the case of the nylon, the
developers faced the task of turning an instable, water-soluble,
hard-to-prepare laboratory sample into a stable, water-resistant,
mass-producible material, and simultaneously, adapt to existing
market demands (women stockings), then leverage this market
position to transform and channel various other markets into Du
Pont customers. In the case of the Hanford plant, they had to
drive up plutonium production from the microgram scale of the
laboratory up to the kilograms needed for the bomb. They had
to extend the microworld of the laboratory into a plant that at
times employed as much as 60’000 people, and simultaneously,
they had to stabilize the vast, heterogeneous network of military

decision-makers, scientists and technologists by finding ways to
align their interests with those of the big project.

To pick out an example of alignment from IT, for a long time
it proved much easier to educate people to write standard charac-
ters on a touch-screen display, to make them align to the system,
instead of devising an algorithm that recognizes or learns var-
ious types of handwriting. Adapting the software to the fuzzy
variability of the world might address more users, but it also
makes it more complex, since it breaks down the commonal-
ities that could be grasped with the same abstraction. On the
other hand, standardizing the possible interactions with the sys-
tem opens up the opportunity of introducing higher abstractions.

From this perspective, following Rouse’s argument, abstrac-
tion can also bee seen as having an important dimension of
power. The central question is; how can a handful of devel-
opers impose their own abstractions, their own dimensions of
similarity and difference on the multiplicity of their users and
their use-cases? How can they extend their microworld into the
lifeworld of their users?

3.2 The Failure of Understanding
The case study is about a market-leader service provider that

offers its services worldwide through the internet2. My intervie-
wee, John has the task of understanding the source code of the
database-management system (DBM) that the senior program-
mer Anthony has written, in order to be able to improve and
modify it. John was appointed to this job because Anthony had
a rolling backlog of maintenance tasks and could not devote any
time to implement new features, and because he started to be-
come a critical risk factor: he alone was able to maintain and
develop the DBM. This had an effect also on the firm’s market
value: a firm, whose critical infrastructure can only be main-
tained by one particular person, is not worth much in the eyes
of potential investors. John’s role is thus twofold: reducing the
performance bottleneck and the risk factor Anthony poses.

After a short while, John started to perceive the task as nearly
unaccomplishable. The DBM consisted of 4 megabytes of C++
source code, without any documentation and very scarce source
code comments. This in itself would not necessarily pose a prob-
lem, since there are plenty of such large and badly documented
systems (the Linux kernel being one of them), that are intensely
developed by a highly decentralized group of developers. But in
this case, the source code resembles a cryptogram. Variable- and
function names are meaningless abbreviations („a”, „p”, „prqi”,
etc.). There are no coding conventions; the source code lines are
extremely long. The source code contains lots of repeating pat-
terns. The code is highly redundant: there are at least fifty im-
plementations of the quicksort algorithm, which all differ only
in some minor details. The source code contains many branch-
ing points3 at which the code forks into alternative, unique so-

2 The names of the interviewees have been changed to protect sensitive in-
formation.

3 It is, in fact, a complex, ad-hoc system of embedded code fragments imple-

Software development as social activity 232006 14 1



lutions for each server4 and service subscriber. All individual
settings are hardwired into the source code; there are no config-
uration files. The abstractions supported by the C++ language
are totally absent. There are no objects, templates and names-
paces, and there are only a very limited number of function calls.
Functions with thousand-line bodies are not rare.

Soon it also turned out, that the situation involves a certain
psychological dimension. Anthony cannot articulate and ex-
plain the working of the system. It is not that Anthony would
not know how it works. The system works quite efficiently and
reliably, it uses many complex solutions (an own file system, for
example). Anthony can carry out the maintenance and develop-
ment tasks alone, and he can also explain the working of any
particular code snippet step-by-step, but he cannot explain the
working of the system in general. He is aware that the system is
incomprehensible to anyone except himself, but he argues that
the complexity arises from the system being painstakingly op-
timized and customized to best suit its customers’ needs: com-
plexity is a tradeoff for appropriateness and efficiency. But this
statement does not fully cohere with reality: the system has
reached its total capacity, the firm cannot sign contracts with
new subscribers. Anthony is exhausted and no other program-
mer can help him.

It is also interesting that the source code is almost fully inde-
pendent; it does not rely on any other source code or function
library. According to Anthony, “you can only trust what you’ve
coded yourself”. Code written by others is incomprehensible,
cannot be thoroughly understood, so it cannot be trusted.

According to John’s description, the code does not abstract
away from the level of the source code: it is actually machine-
level (assembly) code written in C syntax. “Anthony doesn’t
trust code, behind which he can’t see the assembly”, as John no-
tices. Anthony even checks the code produced by the compiler
in the disassembly window. This might improve run-time effi-
ciency, but it has a drastic effect on developer-time efficiency.
The individual, idiosyncratic solutions make it impossible to
gather similar use situations under a shared abstraction. The
improvement on run-time is also questionable. All the fifty
quicksort routines are highly customized, but none of them is
extremely efficient, because they all implement a naive quick-
sort algorithm. Instead of fifty quicksort routines, it would be
better if there were only a single one that were carefully crafted,
well tested, and optimized.

But why is it so impossible to understand this source code?
We have an all-inclusive functional description of the system
in our hands in the form of the source code, which determines
unambiguously the physical operations carried out by the com-
puter. It is also a widespread conception about computer pro-
grams that the source code is “nothing more” than the “short-
hand writing” of assembly code, and the task of the programmer

mented with preprocessor macros (#include, #ifdef)
4 The DBM runs on a few different servers.

is nothing else than to reduce the problem to a symbolic func-
tional description [2]. Overall, John’s task seems to be nothing
else than to do it the other way around: to trace back the vari-
ables and the functions to their declarations and initializations.

Now let us look at our example excerpt, and see what does the
variable hprd1->hsts (functioning here as a branching condi-
tion) mean? If we run a search against the source code, we find
the following initialization:

hprd1=&HashP1[HashRead_HM1=RGcoml[R_DM_hPtr1]];

This means that the value and the meaning of hprd1 in
the context of the program depend on the variables RGcoml,
R_DM_hPtr1 and HashP1. If we start to look for their meaning,
we find that they are interwoven in a holistic web of relation-
ships: they appear and get modified at many places throughout
the source code. Because they are globally declared variables,
the temporal order of these modifications at runtime cannot be
reconstructed based on the formal declarations of the functions,
within which they get modified. In order to trace back the state-
changes of these variables, the temporal order of nearly all in-
stances of their modifications have to be reconstructed. Even
the simple task of enumerating the values they take up during
the course of execution – which is indispensable to find out the
states they represent – involves a lot of reconstruction and/or
online debugging. This difficulty is multiplied by the various
“temporal self-referentialities” that exist in the source: in our
example, the variable hprd1 appears in the branching condi-
tion switch(hprd1->hsts), which influences its subsequent
modification hprd1=&HashP1[HashRead_HM1=0].

We can see that the problem of these holistic interrelations is
that they result in a situation, where in order to understand one
segment of the source code, we have to understand a great deal
of it. Understanding a single symbol presupposes understanding
the whole system, but we only have at hand a description of the
system that consists of such symbols.

The interpretation moves in almost Derridean depths: those
that are signified by the signs are not present; every symbol is
only a deferral, a trace that leads to other symbols. In this infi-
nite drift of semiosis, there is no fixed point to which we could
anchor our interpretation [8]. We might even arrive at a “ground-
ing” definition like this one:

int32*RGcoml; // Channel address (int32*)

but it does not help much, since we do not know what does the
word “channel” mean within the holistic context of the system.
(It seems to have some very situated and idiosyncratic meaning.)
This definition is not grounding, but just another indication, this
time pointing forward, toward the web of subsequent modifica-
tions and operations carried out on the variable.

Our example boils down to the central question: what does it
mean to understand a functional description? It turns out that
understanding a functional description is very different from
possessing a fully explicit symbolic description. A 4-megabyte

Per. Pol. Soc. and Man. Sci.24 Viktor Binzberger



#if defined(MULTI_HASH)
void*HashManager_HM1(void*arg)
{
if(arg){} // gcc warning
int32 onwrk;
Trace(8,"Start HASH comm");
while(ServerStatus!=1){
onwrk=1;
do{
switch(hprd1->hsts){
case 2: // Active data, update
if(hprd1->htbl!=HM_MEMBERID)*hprd1->hptr=hprd1->hval;else{
if(*hprd1->hptr==0)*hprd1->hptr=hprd1->hval;

// Member ID: the first data must be recorded only
}

HashReadCnt_HM1++;HashLoad_HM1[hprd1->hidx]++;hprd1->hsts=0;
if(++HashRead_HM1==HM_PIPESIZ)hprd1=&HashP1[HashRead_HM1=0];else hprd1++;
RGcoml[R_DM_hPtr1]=HashRead_HM1;
break;

case 3: // Deleted data, no update
HashReadCnt_HM1++;HashLoad_HM1[hprd1->hidx]++;hprd1->hsts=0;
if(++HashRead_HM1==HM_PIPESIZ)hprd1=&HashP1[HashRead_HM1=0];else hprd1++;
RGcoml[R_DM_hPtr1]=HashRead_HM1;
break;

default:onwrk=0;break;
}

}while(onwrk);
sleepm(2);

}
Trace(8,"Stop HASH comm");
while(hprd1->hsts==2){hprd1->hsts=0;
if(++HashRead_HM1==HM_PIPESIZ)hprd1=&HashP1[HashRead_HM1=0];else hprd1++;}
RGcoml[R_DM_hPtr1]=HashRead_HM1;
Trace(8,"End HASH comm");
HashManThrJoin_HM1=1;
return(0);

}
#endif

Fig. 1. Example: one of the main functions of the DBM

long source code that lacks abstraction is almost as meaningless
as the original problem was before it was ever programmed. It
might be easier to rewrite this code from scratch than to under-
stand it.

At this point, I would like to recall our thesis a), according to
which understanding unfolds itself in skillful action, and that is
a certain capability of orienting ourselves in a lifeworld. In our
case, John wants to know what happens if he modifies the source
code: what other code regions, what functions will be affected?
Where should he look for the locus of errors, when errors crop
up thereafter? If he is asked to add a new feature, where shall he
start to carry it out and what code regions could he build upon?

A good source code is indeed more than a shorthand writ-
ing of assembly code, insofar as it aids this kind of orientation,
because the symbolic description does not always provide the
reader with unambiguous points of orientation. Moreover, in or-
der to understand a source code line, John does not only have to
know its role in the narrow technical context of the system, but he
has to know also the role it plays in the holistic context of the sys-
tem’s prospected uses, in the future lifeworld of its users. This is
not a function-attribution carried out at an abstract, conceptual
level, but a skill of orientation within the space of the projected
use-situations. In order to understand the variable hprd1->hsts,
we also need to be able to trace it back to users’ requirements,
and user interface features. This is the orientation skill Anthony

can not put into words and can not convey to John. This inef-
fability is most probably connected to the lack of abstractions,
because the linguistic articulation would necessarily involve the
grouping together of various cases of lifeworld situations. The
paradox we face is that in this case, the symbolic functional de-
scription – despite that it is fully explicit – is only an imprint of
an undecipherable private language.

How can anyone orient himself in such a great jumble of
source code? The lack of abstraction forces Anthony to use spe-
cial methods. He customizes his development environment with
sophisticated colouring schemes, and he uses colour pencils on
his innumerable notes and sketches. He arranges the repeating
patterns of the source code in visually prominent patterns. His
horizon of understanding seems to consist of refined skills of ori-
entation within this individualistic similarity space, which John
does not share, and can not even imagine how it could be ap-
proached, because there is no common ground that they could
both rely on, and Anthony’s private skills resist linguistic artic-
ulation. The case is similar to Anthony’s natural-language ex-
planations and “specifications”: these are just as unintelligible
as the source code because they also draw upon a background
of skills and knowledge that is not shared by John. The circles
of interpretational efforts between them all result in frustrating
failures, the convergence toward a shared horizon, appraised by
Gadamer as the “miracle of understanding”, does not start to

Software development as social activity 252006 14 1



evolve. This cannot be taken as a fault of the software, but rather
as an acute crisis of understanding within the socio-technical
lifeworld of Anthony and John.

3.3 Avoiding the Crisis of Understanding through Abstrac-
tion, Embedding in a Tradition, and the Extension of Con-
trolled Microworlds
The central problem in our example seems to be that Anthony

and John approach the source code under different horizons of
understanding: in their skillful interaction with the system, they
take different marks to be significant for their orientation; in
their abstractions, they group together use-situations by differ-
ent dimensions, and so on. How does this relate to the two other
principles mentioned in the introduction: embeddedness in a tra-
dition, and the extension of controlled microworlds?

John’s relation to his own horizon is quite different from that
of Anthony. John is able to embed and recontextualize his ab-
stractions in the language of traditional approaches. He is able to
trace back and reduce his concepts to standard textbook terms,
well-known theories, and everyday examples. When he faces
lack of comprehension from his peer, because he employs unar-
ticulated skills and tacit knowledge, he can point to books, tuto-
rials, and paradigmatic examples, from which these non-public
skills can be learned. He can also refer back to the standard
background of university curricula, so that he can build up a
shared orientation with his peers even in special cases when
there is no preexisting, shared set of concepts among them.
When he labels his variables in his source code, makes his func-
tional divisions, and introduces abstractions in forms of func-
tions and classes, he draws on this public and reconstructable
horizon, and he even gives hints for the reconstruction in his
comments. To sum up: his functional descriptions and symbolic
articulations are carried out within standardized backgrounds;
they are embedded into shared traditions of understanding.
Whoever shares these traditions can easily understand him.

John would expect Anthony to come up with such tradition-
ally embedded explanations, but Anthony was socialized in the
pre-internet age, he built up his abstractions in his individual
way, and he does not have connections to these common tradi-
tions. He is suspicious against all abstractions that are not his
own. His source code is private and isolated.

John’s proposed solution for the DBM would be to use an
intermediate formal language, which would make it possible
to formulate the problem in a traditional language – for ex-
ample, by drawing on functional programming idioms or stan-
dard DBM abstractions –, but in a way that can be later pro-
cessed automatically. His preferred solution would be some-
thing along the lines of template metaprogramming [27], which
harnesses the power of the C++ compiler to define sublan-
guages of C++ that resemble traditional mathematical models
or natural-language descriptions; but at the same time, can be
compiled and run as any other program.

The good source code surpasses the stage of being a “short-

hand writing” of assembly code because its creators and inter-
preters have embedded it in the horizon of various interpretative
traditions.

Anthony’s general strategy, “giving unique solutions for
unique cases”, have a further drastic influence on the possibil-
ity of grasping generalities and building abstractions. The ex-
treme size of the source code can be attributed to the fact that all
unique solutions involve a duplication of the source code, and
then the slight alteration of one copy. In this DBM system, this
goes so far that we cannot even talk about “sorting” in general,
since there are some fifty slightly different “quicksort” routines,
which are all built on different background assumptions and all
induce different patterns of use. As a consequence of this, any
bug fix or any alteration of the source code draws upon a highly
local, system-specific, and situated knowledge; about the partic-
ular system on one side, and about the particular use-cases on
the other. This situatedness makes the software hard to adapt to
a new system architecture or a new user.

If we recall Rouse’s model, the key to the success of the nat-
ural scientist or the technologist lies in whether he can extend
his controlled microworld into the lifeworld of his users. An-
thony’s strategy tries to achieve this by total adaptation to each
user’s unique needs. But just what does “controlled” refer to
in our case? A software firm does not have a laboratory, in
which the experiments can be carried out under a controlled
environment, in order to be reproduced! A software firm, on
the other side, is a socio-technical system that converts vari-
ous resources – e.g. human thinking – into software products
by producing, using, and transforming source code. In order to
be successful on the long run, the firm must stabilize its own
code-producing processes. Anthony’s idiosyncratic solutions to
extend the microworld have a disastrous effect on the stability of
this microworld itself: since he is a bottleneck and a critical risk
factor, the microworld cannot be extended any further, it cannot
be scaled up to serve new users and to offer new features. The
successes of development are not reproducible, they are bound
by the local conditions of the existing users and architectures.
And a software within the global market that is bound by such
internal constraints of growth is predictable to disappear among
its competitors.

Extending the microworld of the software into the lifeworld
of its users; but at the same time not breaking the stability of
the code-producing processes is a result of a delicate balance. It
involves building abstractions, grouping together use-situations
and imposing the effects of such development decisions on the
users when possible, but it also involves offering unique solu-
tions to unique clients wherever it is profitable and does not risk
the long-term internal stability of the firm’s processes. Both ex-
tremes of the spectrum: extreme rigidity and extreme flexibility
in face of possible future use-situations are risky and unstable
strategies.

There are other software development methodologies, for ex-
ample, eXtreme Programming [1] , which try to avoid such

Per. Pol. Soc. and Man. Sci.26 Viktor Binzberger



traps. They emphasize peer review of code (“pair program-
ming”), and a distributed skills and understanding of the source
among programmers in the organization (“community owner-
ship of code”). In such a methodology, Anthony would have
been forced from the beginning to share his horizon of under-
standing and his language with his colleagues, and this might
have influenced him toward using higher abstractions and em-
bedding his concepts into the language of some shared tradition.

The relation between the three core concepts is now visible:
the value of abstraction and embeddedness in an interpretative
tradition are both to be measured in light of the goal of extend-
ing the microworld. Abstractions have to be carried out along
dimensions that allow for maximizing the covering of the use-
situations, while keeping the source code understandable. Tradi-
tions have to be followed as far as they do not constrain the per-
spective of understanding to a conservative tunnel vision. Mak-
ing good decisions in these matters can only result from a skill-
ful process of interpretation within the context of the lifeworld
of the users and the developers.

3.4 Conclusion drawn from the case study
What is the relation between this case study and the five the-

ses mentioned in the introduction? We have analysed the kind of
knowledge that is necessary to understand the source code, and
we have found that (a) it is better grasped as an implicit skill of
orientation, as an ability to find ourselves around in the source
code, than an explicit remembrance of the symbols. We have
seen that (b) understanding a symbol is situated as far as it in-
volves envisaging the particular system context and the lifeworld
situation in which it gets used. This situatedness poses problems
for the stability of the code-producing processes, which can be
overcome by employing certain strategies, e.g. by standardiz-
ing and reducing the multiplicity of the use-situations through
abstraction, or by leaning on and adapting a previously given
tradition of understanding (c). Our case study also shed light on
the interpretative processes – characteristic of software develop-
ment – aimed at understanding the source code and the lifeworld
use-situations as well (d).

4 General conclusions
In this essay, I argued for a revised understanding of soft-

ware development as social activity. I have drawn upon the
insights of Distributed Cognition and its theoretical roots, but
I have tried to shift the emphasis from the classical cognitivist
themes to the topics of situatedness, embodiment, skillful action,
interpretation, and tradition, which are characteristic of the post-
classical cognitivism of Brooks, Suchman, Winograd, Dreyfus,
Maturana, Lakoff and Norman. I articulated my theses in the in-
troduction in four points, and demonstrated them in a case study.
I argued that the case study exemplifies a situation that is typi-
cal enough, so that the insights gained can be generalized to the
whole field of information technologies.

References
1 Beck K, Extreme programming explained: Embrace change, Addison-

Wesley Professional, 1999.
2 Binzberger V, A szoftverhiba jelensége hermeneutikai megközelítésből,

Világosság 2006, no. 3, 27-34.
3 Boehm B, Turner R, Balancing Agility and Discipline, Addison-Wesley,

2004.
4 Brooks R A, Intelligence without representation, Artificial Intelligence 47

(1991), 139–159.
5 Capurro R, Informatics and Hermeneutics (Floyd, Züllighoven, Budde,

Keil-Slawik, eds.), Springer-Verlag, New York, 1992.
6 Clark A, Being There, MIT Press, 1997.
7 Demarco T, Lister T, Peopleware, 2nd ed., Dorset House Publishing, New

York, 1999.
8 Derrida J, Of Grammatology, John Hopkins University Press, Baltimore,

1997.
9 Dittrich Y, Christiane F, Ralf K, Social Thinking - Software Practice, MIT

Press, Cambridge, 2002.
10 Dourish P, Where The Action Is: The Foundations of Embodied Interaction,

MIT Press, 2001.
11 Dreyfus HL, Why we do not have to worry about speaking the language of

the computer, Information Technology & People 11 (1998), no. 4, 281-289.
12 Gadamer HG, Truth and Method, translated by Weinsheimer J, Marshall D

G, Crossroad, New York, 1989.
13 Galison P, Computer Simulations, The Disunity of Science, 1996, pp. 118-

157.
14 Halverson C, Distributed cognition as a theoretical framework for HCI: Do

Not throw the baby out with the bathwater – the importance of the cursor in

air traffic control.
15 Heelan PA, Yes! There Is a Hermeneutics of Natural Science: A Rejoinder

to Markus, Science in Context 3 (1989), no. 2, 477-488.
16 Heelan PA, Schulkin J, Hermeneutical Philosophy and Pragmatism: A Phi-

losophy of Science, Philosophy of Technology: An Anthology (Scharff RC,
Dusek V, eds.), Blackwell Publishing, 2003.

17 Heidegger M, Being and Time, translated by Joan Stambaugh, State Univer-
sity of New York Press, 1996.

18 , Das Ende der Philosophie und die Aufgabe des Denkens, 2002. Vor-
trag GA14. Vittorio Klostermann.

19 Hollan J, Edwin H, David K, Distributed Cognition: Toward a New Foun-

dation for Human-Computer Interaction Research, ACM Transactions on
Computer-Human Interaction 7 (2000), no. 2, 174–196.

20 Hounshell D, Du Pont and Large-Scale R&D, Big Science: The Growth
of Large-Scale Research, Hevly B, Stanford, CA: Stanford University Press,
1992.

21 Hunt A, Thomas D, The Pragmatic Programmer: From Journeyman to

Master, Addison-Wesley, 1999.
22 Hutchins E, Palen L, Constructing Meaning from Space, Gesture and

Speech, Discourse, Tools, and Reasoning: Essays on Situated Cognition,
Burge B, Springer-Verlag, Heidelberg Germany, 1997, pp. 23-40.

23 Hutchins E, Cognition in the Wild, MIT Press, Cambridge MA, 1994.
24 , How the cockpit remembers its speed, Cognitive Science 19 (1995),

265-288.
25 Ihde D, A Phenomenology of Technics, Philosophy of Technology (Scharff R

C, Dusek V, eds.), Blackwell Publishing, Oxford, 2003.
26 John MC (ed.), HCI Models, Theories, and Frameworks: Toward a Multi-

disciplinary Science, Morgan Kaufmann, 2003.
27 Karlsson B, Beyond the C++ Standard Library: An Introduction to Boost,

Addison Wesley Professional, 2005.
28 Kisiel TJ, Heidegger és az új tudománykép, Hermeneutika és a ter-

mészettudományok (Margitay T, Schwendtner T, eds.), Áron kiadó, Bu-
dapest, 2001.

Software development as social activity 272006 14 1



29 Lakoff G, Johnson M, Metaphors we live by, University of Chicago Press,
Chicago, 1980.

30 Márkus G, Why is There No Hermeneutics of Natural Science? Some Pre-

liminary Theses, Science in Context 1 (1987), 5-51.
31 Maturana H, Varela F, Autopoesis and Cognition. A Realization of the Liv-

ing, Reidel Publishing Company, Dordrecht, 1980.
32 Mcbreen P, Software Craftmanship - The New Imperative, Addison – Wes-

ley, 2002.
33 Mitcham C, Introduction. The Blackwell Guide to the Philosophy of Com-

puting and Information (Floridi L, ed.), Blackwell Publishing, Oxford, 2004.
34 Newell A, Simon H, Computer Science as Empirical Inquiry: Symbols and

Search, Communications of the ACM 19 (1976), no. 3.
35 Norman DA, The Design of Everyday Things, The MIT Press, 1998.
36 Ramberg B, Gjesdal K, Hermeneutics. Entry in the Stanford Encyclo-

pedia of Philosophy, 2005, available at http://plato.stanford.edu/
entries/hermeneutics/.

37 Rouse J, Knowledge and Power: Toward a Political Philosophy of Science,
Cornell University Press, 1987.

38 , Engaging Science: How to Understand Its Practices Philosophi-

cally, Cornell University Press, 1996.
39 Suchman L, Plans and Situated Actions: The Problem of Human-Machine

Communication, Cambridge Univ. Press, Cambridge, England, 1987.
40 Susi T, The Puzzle Of Social Activity The Significance Of Tools In Cognition

And Cooperation, 2006.
41 Tomasello M, Carpenter M, Call J, Behne T, Moll H, Understanding and

sharing intentions: The origins of cultural cognition, Behavioral And Brain
Sciences 28 (2005), 675–735.

42 Torres-Gregory W, Heidegger On Traditional Language And Technological

Language, 1998.
43 Winograd T, Flores F, Understanding Computers and Cognition, Nor-

wood, NJ: Ablex Corporation, 1987.

Per. Pol. Soc. and Man. Sci.28 Viktor Binzberger

 http://plato.stanford.edu/entries/hermeneutics/
 http://plato.stanford.edu/entries/hermeneutics/

	Introduction
	Distributed Cognition
	The Classical Cognitivist Roots of Distributed Cognition
	The New Waves of Cognition: Embodiment, Situatedness, Ethnomethodology 
	My critique against dCog

	Case study: Understanding the Source Code -- The Role of Abstraction
	Introduction
	Abstraction
	 Embeddedness within a tradition of interpretation
	Standardization and extending of controlled microworlds

	The Failure of Understanding
	Avoiding the Crisis of Understanding through Abstraction, Embedding in a Tradition, and the Extension of Controlled Microworlds
	Conclusion drawn from the case study

	General conclusions

