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Abstract
Scenario tree generation methods are powerful decision-

making tools when decisions have to be made under uncertainty.
Instead of giving a point estimation of multivariate random vari-
ables scenario tree generation methods provide likely scenar-
ios of future with associated probabilities. The scenarios can
cover only the next time step or even more steps ahead in time.
This paper summarizes the most common scenario tree gener-
ation methods applied in financial prediction to give an overall
overview of the field. Application examples are provided to il-
lustrate real-life implementations.
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1 Introduction to scenario tree generation
In models of decision making under uncertainty we face the

problem of representing the uncertainties in a form which is suit-
able for quantitative models. If the uncertainties are expressed
in terms of multivariate continuous distributions, or a discrete
distribution with far too many outcomes, we normally face two
possibilities: either creating a decision model with internal sam-
pling, or try to find a simple discrete approximation of the given
distribution that serves as input to the model [13]. There is a rich
literature about modelling and estimation of continuous-state fi-
nancial processes, but little attention has been paid to approxi-
mate such a process by a discrete-state scenario process and how
to measure the pertaining approximation error [2]. This is why
scenario tree generation methods gained importance in previous
years. These tools have the power to support decision making
under uncertainty. During scenario tree generation we do not
forecast the future state of a random variable but try do generate
a finite set of realistic possible scenarios [1]. The prediction of
multivariate financial and economic time series can be modelled
by multistage stochastic programs. These models use a finite set
of scenarios and corresponding probabilities to model the mul-
tivariate random data process. A scenario tree represents the
abstract structure of scenarios. A simple example is illustrated
in the scenario tree of Figs. 1, 2.

 
Fig. 1. Example of simple scenario tree

Each complete path from the root node n1 to one of the leaves
n6, . . . n10 represents a scenario, here the tree consists of five
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Fig. 2. Example of realistic scenario tree

scenarios. Each scenario corresponds to a particular outcome
of the random quantity at hand. Scenarios are realizations (tra-
jectories) of a certain multidimensional stochastic process. The
scenarios and their associated probabilities form a discrete ap-
proximation of the probability distribution of the data process.
Approximations of stochastic processes in form of scenario trees
are useful for the formulation of multiperiod dynamic decision
models as multistage stochastic programs. A multistage stochas-
tic programming model will determine an optimal decision for
each node of the scenario tree, given the information available
at that point [3].

Stochastic programming requires a coherent representation of
uncertainty. This is expressed in terms of a multivariate contin-
uous distribution. Hence, a decision model is generated with
internal sampling or a discrete approximation of the underlying
continuous distribution. A method to obtain the discrete out-
comes for the random variables is referred to as scenario tree
generation. In multistage models, at each time period, new sce-
narios branch from old, creating a scenario tree. The random
variables are the uncertain return values of each asset on an in-
vestment. The discretization of the random values and the prob-
ability space leads to a framework in which a random variable
takes finitely many values. Thus, the factors driving the risky
events are approximated by a discrete set of scenarios, or se-
quence of events. Given the event history up to a particular time,
the uncertainty in the next period is characterized by finitely
many possible outcomes for the next observation. This branch-
ing process is represented using a scenario tree. The root node in
the scenario tree represents the ‘today’ and is immediately ob-
servable from deterministic data. The nodes further down repre-
sent the events of the world which are conditional at later stages.
The arcs linking the nodes represent various realizations of the
uncertain variables. An ideal situation is that a generated set of
scenarios represents the whole universe of possible outcomes of
the random variable. Therefore, scenarios should include both
optimistic and pessimistic projections [14].

A detailed model framework is described in paper [8] to com-
municate and create scenario generation systems. To structure
the process, they suggest five key questions to be answered.

Then a framework is introduced to describe, discuss and im-
plement scenario tree generation simply and consistently. The
proposed framework consists of four main components and sev-
eral secondary components, allowing the process to be commu-
nicated effectively to disparate audiences. For more details see
paper [8].

2 Known methods of scenario tree generation
2.1 Bootstrapping historical data
The simplest approach for generating scenarios is to use only

the available data without any mathematical modelling. It boot-
straps a set of historical records. Each scenario is a sample of
assets returns which is obtained by sampling returns that were
observed in the past. Dates from the available historical records
are selected randomly and for each date in the sample we read
the returns of all asset classes or risk factors during the month
prior to that date. These are scenarios of monthly returns. If
we want to generate scenarios of returns for along horizon – say
1 year – we sample 12 monthly returns from different points
in time. The compounded return of the sampled series is the
1-year return. With this approach the correlations among asset
classes are preserved. [15] Bootstrapping is a proper method
for estimating the sampling distribution of an estimator by re-
sampling with replacement from the original sample. There are
more complicated bootstraps for sampling without replacement,
two-sample problems, regression, time series, hierarchical sam-
pling, mediation analyses, and other statistical problems. Boot-
strapping is becoming the most popular method of testing me-
diation because it does not require the normality assumption to
be met, and because it can be effectively utilized with smaller
sample sizes (N < 20). Usage of this method is suggested when
sample size is small and we would not like to make any normal-
ity assumptions.

3 Vasicek model
A very simple way to simulate the time evolution of finan-

cial time series (e.g.: interest rates) relies on the Vasicek model
whose main characteristic is the presence of a mean-reverting
term and a constant volatility term. From a mathematical view-
point it is a stationary Gaussian Markovian model. The Brow-
nian motion with unit variance and the other variables of the
Vasicek formula are constant model parameters which are es-
timated by looking at historical market data. There are many
methods to estimate the value of these model parameters, like
Method of Moments and the Maximum Likelihood method are
widely used to this purpose [1]. The generation of scenarios is
based on the change of the parameters of the model. The Va-
sicek model is a type of one factor model (short rate model) as it
describes interest rate movements as driven by only one source
of market risk. The model can be used in the valuation of inter-
est rate derivatives. The model specifies that the instantaneous
interest rate follows the stochastic differential equation:
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drt = a(b − rt )dt + σdWt

where Wt is a Wiener process modelling the random market
risk factor. The standard deviation parameter σ determines the
volatility of the interest rate. Vasicek’s model was the first one
to capture mean reversion, an essential characteristic of the in-
terest rate that sets it apart from other financial prices. Thus, as
opposed to stock prices for instance, interest rates can not rise
indefinitely. This is because at very high levels they would ham-
per economic activity, prompting a decrease in interest rates.
Similarly, interest rates can not decrease indefinitely. As a re-
sult, interest rates move in a limited range, showing a tendency
to revert to a long run value. The drift factor a(b−rt ) represents
the expected instantaneous change in the interest rate at time t.
The parameter b represents the long run equilibrium value to-
wards which the interest rate reverts. Indeed, in the absence of
shocks (dWt = 0), the interest remains constant when rt = b.
The parameter a, governing the speed of adjustment, needs to
be positive to insure stability around the long term value. For
example, when rt is below b, the drift term a(b − rt ) becomes
positive for positive a, generating a tendency for the interest rate
to move upwards (toward equilibrium). The main disadvantage
is that, under Vasicek’s model, it is theoretically possible for the
interest rate to become negative, an undesirable feature [21,22].

Fig. 3. Combinations of skewness and kurtosis accessible by a repeated cu-
bic transformation of the standard normal distribution. The numbers show the
number of cubic transformations needed to obtain distributions from the corre-
sponding areas. The lowest region contains infeasible combinations of skewness
and kurtosis [24].

3.1 Random sampling
In random sampling we sample from the error distribution

of the vector autoregressive model. Given the estimated coef-
ficients and the estimated covariance matrix of the vector au-
toregressive model, we can draw one random vector of yearly
returns for bonds, real estate, stocks, deposits, wage growth,
etc. If we would like to construct an event tree with ten nodes
after one year (if we assume that the duration of each stage is

one year), we can simply repeat this procedure ten times, sam-
pling independent vectors of returns for each node. The nodes
at stage two in the event tree can also be sampled randomly,
however the conditional distribution from stage one to stage two
depends on the outcomes at the first stage. For example, wage
growth follows an autoregressive process, so the expected wage
growth from year one to year two depends on the realized wage
growth rate in the previous period. An entire event tree for the
stochastic program can be created by applying random sampling
recursively, from stage to stage, while adjusting the conditional
expectations of wage growth and deposits in each node based on
previous outcomes [15].

The random sampling procedure for constructing a sparse
multi-period event tree apparently leads to unstable investment
strategies. An obvious way to deal with this problem is to in-
crease the number of nodes in the randomly sampled event tree,
in order to reduce the approximation error relative to the vector
autoregressive model. However, the stochastic program might
become computationally intractable if we increase the number
of nodes at each stage, due to the exponential growth rate of
the tree. Alternatively, the switching of asset weights might
be bounded by adding constraints to the model or enforcing ro-
bustness through the choice of an objective function. Although
we might get a more stable solution in this case, the underly-
ing problem remains the same: the optimal decisions are based
on an erroneous representation of the return distributions in the
event tree [15].

3.2 Adjusted random sampling
An adjusted random sampling technique for constructing

event trees can resolve some of the problems of the simple
random sampling method. First, assuming an even number of
nodes, we apply antithetic sampling in order to fit every odd
moment of the underlying distribution. For example, if there are
ten succeeding nodes at each stage then we sample five vectors
of error terms from the vector autoregressive model. The error
terms for the five remaining nodes are identical but with opposite
signs. As a result we match every odd moment of the underly-
ing error distributions (note that the errors have a mean of zero).
Second, we rescale the sampled values in order to fit the vari-
ance. This can be achieved by multiplying the set of sampled
returns for each particular asset class by an amount proportional
to their distance from the mean. In this way the sampled errors
are shifted away from their mean value, thus changing the vari-
ance until the target value is achieved. The adjusted values for
the error terms are substituted in the estimated equations of the
vector autoregressive model to generate a set of nodes for the
event tree. Using adjusted random sampling to match the mean
and the variance, we substantially reduce useless trading. The
additional computational effort for adjusting the random sam-
ples is negligible. [15]
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3.3 Conditional sampling
This is one of the most common methods for generating sce-

narios. At every node of a scenario tree, we sample several
values from a stochastic process. This is done either by sam-
pling directly from the distribution of the stochastic process, or
by evolving the process according to an explicit formula. Tra-
ditional sampling methods can sample only from a univariate
random variable. When we want to sample a random vector,
we need to sample every marginal (the univariate component)
separately, and combine them afterwards. Usually, the samples
are combined all-against-all, resulting in a vector of indepen-
dent random variables. The obvious problem is that the size of
the tree grows exponentially with the dimension of the random
vector: if we sample s scenarios for k marginals, we end-up with
sk scenarios. Another problem is how to get correlated random
vectors. A common approach is to find the principal compo-
nents (which are independent by definition) and sample those,
instead of the original random variables. This approach has the
additional advantage of reducing the dimension, and therefore
reducing the number of scenarios. There are several ways to
improve a sampling algorithm. Instead of a pure sampling, we
may, for example, use integration quadratures or low discrep-
ancy sequences, if appropriate. For symmetric distributions, an
antithetic sampling can be used. Another way to improve a sam-
pling method is to re-scale the obtained tree, to guarantee the
correct mean and variance. For references to examples see [7].

3.4 Sampling from specified marginals and correlations
As mentioned in the previous section, the traditional sampling

methods have problems generating multivariate vectors, espe-
cially if they are correlated. However, there are sampling-based
methods that solve this problem, using various transformations.
In those methods, the user specifies the marginal distributions
and the correlation matrix. In general, there is no restriction on
the marginal distributions; they may even be from different fam-
ilies. For references to examples see [7].

3.5 Moment matching
The methods from the previous section may be used only if

we know the distribution functions of the marginals. If we do not
know them, we may describe the marginals by their moments
(mean, variance, skewness, kurtosis etc.) instead. In addition,
we specify the correlation matrix and possibly – if the method
allows us – other statistical properties (percentiles, higher co-
moments, etc). Then we construct a discrete distribution satis-
fying those properties. In Fig. 3 a map is showing the number of
cubic transformations needed to achieve different combinations
of skewness and kurtosis starting from standard normal distribu-
tion during moment matching.

Moment matching is a method to map a general distribution
into a combination of exponential distributions. A popular ap-
proach in mapping a general probability distribution, G, into a
phase type (PH) distribution, P, is to choose P such that some

moments of P and G agree. Matching the first moment of any
nonnegative distribution is possible by a single exponential dis-
tribution. Matching the first moment is certainly important, but
unfortunately it is often not sufficient, as ignoring the higher mo-
ments can result in misleading conclusions. Thus, it is desirable
to match more moments of the input distribution G by P. Match-
ing more moments may be possible if we are allowed to use
many exponential distributions (phases). However, the use of
many phases in the PH distribution increases the complexity of
the Markov chain, and makes its analysis hard. Matching many
moments using a small number of phases may be possible if we
are allowed to use unbounded computational resources or if we
limit the class of input distributions. However, these limitations
are not desirable. Achieving all the four desirable properties is
the challenge in designing a moment matching algorithm [23]:

• It is desirable that more moments of the input distribution, G,
and the matching PH distribution, P, agree.

• It is desirable that P have a small number of phases.

• It is desirable that the algorithm be defined for a broad class
of input distributions.

• It is desirable that the algorithm have short running time.

For references to examples see [7].

3.6 Path-based methods
These methods start by generating complete paths, i.e. the

scenarios, by evolving a stochastic process. The result of this
step is not a scenario tree, but a set of paths, also called a “fan” or
trajectories. To transform a fan to a scenario tree, the scenarios
have to be clustered (bound) together, in all-but-the-last period.
This process is called clustering or bucketing. For references to
examples see [7].

3.7 Optimal Discretization
Optimal discretization is a method that tries to find an ap-

proximation of a stochastic process (i.e. scenario tree) that
minimizes an error in the objective function of the optimiza-
tion model. Unlike the methods from the previous sections, the
whole multi-period scenario tree is constructed at once. On the
other hand, it works only for univariate processes. For refer-
ences to examples see [7].

3.8 Simulation and randomized clustering based scenario
tree generation approach
Paper [14] describes a procedure based on simulation and ran-

domized clustering to generate the event tree which is the input
to the financial optimization problems. The basic data structure
is the scenario tree node, which contains a cluster of scenar-
ios (vectors in Rn), one of which is designated as the centroid.
The final tree consists of the centroids of each node, and their
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branching probabilities. They introduce a randomized cluster-
ing algorithm which can be repeated until an acceptable cluster-
ing is found. The main steps of our algorithm can be outlined as
follows:

• Step 1 (Initialization): Create a root node, with N scenarios.
Initialize all the scenarios (including the centroid) with the
desired starting point (‘today’s’ prices). Form a job queue
consisting of the root node.

• Step 2 (Simulation): Remove a node from the job queue. Sim-
ulate one time period of growth (from ‘today’ to ‘tomorrow’)
in each scenario.

• Step 3 (Randomized seeds): Randomly choose a number of
distinct scenarios around which to cluster the rest: one per
desired branch in the scenario tree.

• Step 4 (Clustering): Group each scenario with the seed point
to which it is the closest. If the resulting clustering is unac-
ceptable, return to step 3.

• Step 5 (Centroid selection): For each cluster, find the scenario
which is the closest to its center, and designate it as the cen-
troid.

• Step 6 (Queuing): Create a child scenario tree node for each
cluster (with probability proportional to the number of sce-
narios in the cluster), and install its scenarios and centroid. If
the child nodes are not leaves, append to the job queue. If the
queue is non-empty, return to step 2. Otherwise, terminate the
algorithm.

For more details see [14].

3.8.1 Optimization based scenario tree generation ap-
proach
In an optimization approach to generate a scenario tree, the

decision maker specifies the market expectations by the statis-
tical properties that are relevant for the problem to be solved.
The event tree is constructed so that these statistical properties
are preserved. This is done by letting stochastic returns and
probabilities in the scenario tree be decision variables in a non-
linear optimization problem where the objective is to minimize
the square distance between the statistical properties specified
by the decision maker and the statistical properties of the con-
structed tree. The decision variables of the optimization prob-
lem are the prices (or returns) of a set of assets and probabilities
of the event tree. Two alternative ways of applying the opti-
mization approach are investigated in paper [14] to construct
the event tree. If this scenario tree is constructed by considering
the branching at each node separately, then we call it sequential
optimization. In this case, a small non-linear optimization prob-
lem is constructed and solved at each node of the scenario tree.
An alternative approach is to consider all nodes of the event tree
and generate the whole tree in one large non-linear optimization
problem, which we call overall optimization. For more details
see [14].

3.9 Probabilistic neural networks
In a well-known paper from 1990, new neural network archi-

tecture was proposed called probabilistic neural network. By
replacing the sigmoid activation function, often used in neu-
ral networks with exponential functions, a probabilistic neural
network (PNN) is formed that can compute nonlinear decision
boundaries. The PNN asymptotically approaches the Bayes op-
timal decision surface [10]. A probabilistic neural network can
model the joint distribution of many discrete or continuous ran-
dom variables [9]. PNNs are the synergistic mixture of Bayesian
classifiers and Parzen window classifiers. The Bayes theory
takes into account the relative likelihood of events and uses a pri-
ori information to improve prediction. Parzen estimators were
developed to construct the probability density functions required
by the Bayes theory. This approach provides an optimum pattern
classifier in terms of minimizing the expected risk of wrongly
classifying an object [17].

Probabilistic neural networks feature a feed-forward archi-
tecture and supervised training algorithm similar to back-
propagation. But instead of adjusting the input layer weights
using the generalized delta rule, each training input pattern is
used as the connection weights to a new hidden unit. In effect,
each input pattern is incorporated into the PNN architecture.
This technique is extremely fast, since only one pass through
the network is required to set the input connection weights. Ad-
ditional passes might be used to adjust the output weights to
fine-tune the network outputs. The network contains an input
layer, which has as many elements as there are separable param-
eters needed to describe the objects to be classified. It has a pat-
tern layer, which organizes the training set such that each input
vector is represented by an individual processing element. Nor-
mally, there are equal amounts of processing elements for each
output class. Otherwise, one or more classes may be skewed
incorrectly and the network will generate poor results. And fi-
nally, the network contains an output layer, called the summa-
tion layer, which has as many processing elements as there are
classes to be recognized [17].

Various clustering schemes have been proposed to cut down
on the number of hidden units when input patterns are close
in input space and can be represented by a single hidden unit.
Given enough input data, the probabilistic neural network will
converge to a Bayesian (optimum) classifier. Probabilistic neu-
ral networks allow true incremental learning where new train-
ing data can be added at any time without requiring retraining
the entire network. PNNs are suitable to generate scenario trees
since the output of the PNN is the assigned probability to each
output class. These output classes with the corresponding prob-
ability values represent a single stage scenario tree where the
classes are the branches of the scenario tree.

3.10 Internal sampling methods
Instead of using a pre-generated scenario tree, some methods

for solving stochastic programming problems sample the sce-
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narios during the solution procedure. The most important meth-
ods of this type are: stochastic decomposition, importance sam-
pling within Benders’ (L-shaped) decomposition, and stochastic
quasigradient methods. For references to these methods see pa-
per [7]. In addition, there are methods that proceed iteratively:
they solve the problem with the current scenario tree, add or re-
move some scenarios and solve the problem again. Hence, at
least in principle, the scenarios are added exactly where needed.
The methods differ in the way they decide where to add/remove
the scenarios. It is possible to use dual variables from the cur-
rent solution, or to measures the “importance of scenarios” by
EVPI (expected value of perfect information). [7]

3.11 Scenario reduction
Given a convex stochastic programming problem with a dis-

crete initial probability distribution, the problem of optimal sce-
nario reduction is stated as follows: Determine a scenario sub-
set of prescribed cardinality and a probability measure based on
this set that is closest to the initial distribution in terms of a nat-
ural (or canonical) probability metric. Arguments from stabil-
ity analysis indicate that Fortet-Mourier type probability metrics
may serve as such canonical metrics. Efficient algorithms are
developed and described in paper [16] that determine optimal
reduced measures approximately. Numerical experience is re-
ported for reductions of electrical load scenario trees for power
management under uncertainty. For instance, it turns out that af-
ter a 50% reduction of the scenario tree the optimal reduced tree
still has about 90% of relative accuracy. For more details see
[16]. Fig. 4 shows a simple illustration of scenario reduction.

The known scenario reduction algorithms determine a sce-
nario subset (of prescribed cardinality or accuracy) and assign
new probabilities to the preserved scenarios such that the cor-
responding reduced probability measure (the probability distri-
bution of the approximation process) is the closest to the orig-
inal measure (the probability distribution of the original empir-
ical process) in terms of a certain probability distance between
the original and the approximation probability distribution. The
probability distance trades off scenario probabilities and dis-
tances of scenario values. As a frequently used distance, Kan-
torovich distance can be used for this purpose. This distance is
the optimal value of a linear transportation problem. The inter-
pretation of an optimal redistribution rule is that the new prob-
ability of a preserved scenario is equal to the sum of its former
probability and of all probabilities of deleted scenarios that are
closest to it with respect to the distance of the original and the
approximation probability distribution. [3]

Paper [7] describes a method for decreasing the size of a given
tree. This method tries to find a scenario subset of prescribed
cardinality, and a probability measure based on this set, that is
closest to the initial distribution in terms of some probability
metrics [7].

A common approach in conditional sampling (see 2.5.) is to
find the principal components (which are independent by defini-

tion) and sample those, instead of the original random variables.
This approach has the additional advantage of reducing the di-
mension, and therefore reducing the number of scenarios [7].

3.12 Arbitrage constraints in financial scenario tree gener-
ation
Some financial applications, such as option pricing, require

scenario trees which are free from arbitrage. [14] The absence
of arbitrage opportunities is an important property for event trees
of financial predictions (e.g. asset returns) that are used as input
for stochastic programming models.

An arbitrage opportunity is a self-financing trading strategy
that generates a strictly positive cash flow between 0 and T in at
least one state and does not require an outflow of funds at any
date. It is clear that investors would engage in such a trading
strategy as much as possible if we assume that investors always
prefer more to less. Therefore, such a trading opportunity cannot
exist if market is in equilibrium. Formally, it is said that there are
no arbitrage opportunities in the market if and only if there exists
a unique risk-neutral (Martingale) probability measure [14].

If there is an arbitrage opportunity in the event tree, then the
optimal solution of the stochastic programming model will ex-
ploit it. An arbitrage strategy creates profits without taking risk,
and hence it will increase the objective value of nearly any finan-
cial planning model. So the presence of arbitrage opportunities
in a portfolio optimization model can lead to substantial biases
in the optimal solution that are due to profit opportunities which
exist in the model. Even though the profit opportunities are of-
ten unlikely to materialize in reality, it is prudent for long term
financial planning applications to generate scenarios that do not
allow for arbitrage.

A potential problem for stochastic programming models in
financial optimization is arbitrage opportunities in the event
tree that are due to approximation errors. Arbitrage opportu-
nities might arise because the underlying return distributions are
sometimes approximated poorly with a small number of nodes
in the event tree. If the application only involves broad asset
classes such as a stock index, a bond index and real estate in-
dex, then arbitrage opportunities are unlikely to occur unless the
errors in the event tree are very big. However, applications that
involve options, multiple bonds or other interest rate derivative
securities can be quite vulnerable to these problems. For exam-
ple, the prices of European call and put options with equal strike
price should satisfy put- call parity in each node of the event
tree. If this relationship is violated because of a small approx-
imation error, then the event tree contains an arbitrage oppor-
tunity and hence a source of spurious profits for the stochastic
programming model. To deal with the arbitrage free problem, an
aggregation method can be a solution. It starts with a very fine-
grained event tree of asset prices without arbitrage opportunities
and then reduces it to a smaller tree, while preserving the prop-
erty of no-arbitrage. Recursively, a combination of nodes at a
particular time period can be replaced by one aggregated node,
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Fig. 4. Simple illustration of scenario reduction

while preserving the no-arbitrage property. If a node has only
one particular successor remaining at the next time, then the in-
termediate period can be eliminated. This method can reduce the
recombining lattice to a much smaller event tree with less trad-
ing dates, while meeting the arbitrage free condition. Another
method for reducing a fine-grained lattice of security prices to
a sparse event tree without arbitrage solves an option hedging
problem with two sources of uncertainty: the stock price and
stochastic volatility. First a three-dimensional fine-grained grid
of time versus stock price and volatility is constructed to calcu-
late option prices. Second, the points on the grid are partitioned
into groups at a small number of trading dates, corresponding to
the decision stages in the stochastic programming model. Each
group of points on the grid is represented by a single aggregated
node in the event tree of the stochastic programming model. If
the prices in each aggregated node are calculated as a condi-
tional expectation under the risk neutral measure of the prices
in the corresponding partition on the grid, then the aggregated
event tree will not contain arbitrage opportunities. Although
the absence of arbitrage opportunities is important for finan-
cial stochastic programs with derivative securities, one should
keep in mind that it is only a minimal requirement for the event
tree. The fact that the stochastic program can not generate risk-
less profits from arbitrage opportunities does not imply that the
event tree is also a good approximation of the underlying return
process. We still have to take care that the conditional return
distributions of the assets are represented properly in each node
of the event tree. In order to avoid computational problems that
arise if the tree becomes too big, one could reduce the number
of stages of the stochastic program. In this way more nodes
are available to describe the return distributions accurately. It
is also important to include more nodes for the earlier stages,
while larger errors in the later stages will have a small effect on
the first-stage decisions which are the decisions implemented
today by the decision makers. [15]

3.13 Considering empirical rules of time series
There is a long tradition of studies that try to explain the links

between prices, interest rates, monetary policy, output and infla-
tion. A class of linear-quadratic jump-diffusion processes was
developed to describe the arbitrage-free time-series model of
yields in continuous time that incorporates a country’s central
bank policy. A general framework for these models has been

recently developed, where certain factors are introduced to that
influence the marginal productivity of capital, and thus the in-
terest rates in the economy. For references see [1]. During sce-
nario tree generation these kind of empirical rules can be useful
to consider and integrate into the process.

4 Application examples
4.1 Optimal public depth management
The management of public depth is of paramount importance

for any country. The Public Depth Management Division of the
Italian Ministry of Economy decided to use scenario generation
method to determine the composition of the portfolio issued ev-
ery month that minimizes a predefined objective function that
can be described as an optimal combination between cost and
risk of the public depth service. The Italian Treasury Depart-
ment issues about ten different types of securities including one
with floating rate. Securities differ in the expiration date and in
the rules for the payment of interests. Short term securities do
not have coupons. Medium and long term securities pay cash
dividends every six month, by means of coupons. The problem
was to find a strategy for the selection of public depth securities
that minimizes the expenditure for interest payments and satis-
fies, at the same time, the constraints of depth management. The
time frame was 3-5 years in which the scenarios were generated.
[1]

4.2 Power management
Paper [3] describes a case study applying scenario tree gener-

ation and scenario reduction for power management. Here, the
stochastic process can be influenced by electricity load, stream
flows to hydro units, fuel and electricity prices, etc. The sce-
nario tree generator provided scenarios for a hydro-thermal gen-
eration system of a German institute. The optimization model
determined the trading activities and the production decisions of
the generation system such that the expected revenue was max-
imized. [3]

4.3 Pension fund asset liability management
Paper [5] describes a multistage stochastic programming

model for a large Dutch pension fund to manage asset liability.
Both randomly sampled event trees and event trees fitting the
mean and the covariance of the return distribution were used for
generating the coefficients of the stochastic program. The plan-
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ning horizon of most pension funds stretches out for decades,
as a result of the long term commitment to pay benefits to the
retirees. However, funds should also reckon with short term sol-
vency requirements. The trade-off between long term gains and
short term losses should be made carefully, while anticipating
future adjustments of the policy. This setting therefore seems to
be suited for a stochastic programming approach with dynamic
portfolio strategies. To fund the pension scheme, a plan spon-
sor pays a contribution to the fund each year. The pension fund
had to decide how to invest these contributions in order to meet
short term solvency requirements and to fulfill its long term obli-
gations. Therefore the goal of asset liability management for
the mentioned Dutch pension fund was to find a good invest-
ment policy and contribution policy. They used rolling hori-
zon simulations to measure the performance of the stochastic
programming model and the scenario generation methods they
tried. They showed that the optimal solution of the stochastic
program based on a randomly sampled tree promised spurious
profits. They showed advanced methods based on adjusted ran-
dom sampling that resulted in better results. [5]

4.4 Global capital market scenario generation system
Paper [6] describes a global capital market system based on

scenario generation developed by Towers Perrin, one of the
world’s largest actuarial consulting companies. They imple-
mented the scenario generation system based on a cascading
set of stochastic differential equations. The system applies to
financial systems for pension plans and insurance companies
throughout the world. A case study is provided in the paper
to illustrate the process. [6]

4.5 Predicting small business loan default with credit scor-
ing
Paper [11] describes a method to predict small business loan

default based on probabilistic neural network which generates
scenario tree to support the decision making process. The
methodology is used to construct and validate a model employ-
ing data from a pool of terminated small business loans. A to-
tal of 138 variables representing loan characteristics were ini-
tially examined and subsequently reduced to a set of five in-
put variables that are effective predictors of loan default. These
variables, which were composed mainly of traditional financial
ratios, were then used to build a probabilistic neural network
model that created a scenario tree with corresponding probabil-
ities. The final probabilistic neural network correctly predicted
the ultimate disposition of 92% of the loans in the out-of-sample
testing. [11]

4.6 Predicting micro-loan defaults
Paper [12] describes a probabilistic neural based method to

generate scenarios in the field of micro-loan defaults prediction.
They show that probabilistic neural networks are effective in
predicting loan defaults when the data is insufficient for use of

more traditional methods. PNN was found to be more effective
then traditional statistical procedures including logit and dis-
criminant analysis. From the initial 24 variables of micro loan
applications, only seven were needed to predict 83% of default-
ing and 88% of non-defaulting loans. In contrast, a logit model
accuracy predicted only 47% of the default loans and 85% of the
non-default loans. A discriminant model predicted 56% of the
default loans and 85% of the non-defaulting loans. [12]

4.7 Multiple period scenario tree generation for optimal al-
location of funds amongst main groups of asset classes
Paper [13] describes a method to generate multiple period

scenario trees for optimal allocation of funds. They assumed
that the decision maker is to split the funds amongst cash, bonds,
domestic stocks and international stocks. They showed how to
generate single period scenario tree and multiperiod scenario
tree as well. They identified the critical success factors to use
the model and drew attention to derived, implicit, over and un-
der specifications and how to avoid these pitfalls. [13]

4.7.1 Risk management under the regulations of Basel II
Basel II is one of the biggest financial shake-ups in recent

times, which will eventually lead to new rules and regulations
for banking globally. Banks will need to have their processes
and systems in place by the start of 2007, which is when the
Basel Committee on Banking Supervision plans to implement
the Accord. [18] To meet the requirements of Basel II, banks
have to implement new countermeasures to reduce credit and
operational risk. The pressure intensifies because banks have to
ready by 2007. Scenario tree generation methods can help to
meet the requirements of Basel II by quantifying and predict-
ing the risk exposure of banks in forms of likely scenarios with
corresponding probabilities.

Under the capital requirements of Basel II, it is important to
develop an exact method to price loans, predict the probability of
default and the loss given default, and monitor the risk exposure
of the future. Paper [19] describes the loan pricing implications
of Basel II.

The asymptotic single risk factor approach is a framework for
determining regulatory capital charges for credit risk, and it has
become an integral part of the second Basel Accord. Within this
approach, a key parameter is the average asset correlation. Paper
[20] examines the empirical relationship between firm probabil-
ity of default and firm asset size measured by the book value of
assets, using data from year-end 2000, credit portfolios consist-
ing of US, Japanese, and European firms. The empirical results
suggest that average asset correlation is a decreasing function of
probability of default and an increasing function of asset size.
The results suggest that these factors may need to be accounted
for in the final calculation of regulatory capital requirements for
credit risk. [20]. Scenario tree generation can be of help to not
just provide point estimation but likely scenarios with assigned
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probabilities such that the regulations of Basel II can be satis-
fied.
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