
PERIODICA POLYTECHNICA SER. SOC. MAN. SCI. VOL. 12, NO. 2, PP. 211–222 (2004)

MULTITRAIT-MULTIMETHOD MODELS FOR PROFITABILITY
INDICATORS

Ottó HAJDU

Budapest University of Technology and Economics
H–1521 Budapest, Hungary

Received: July 15, 2004

Abstract

A ‘multitrait-multimethod’ (MTMM) model is used when each of a set of traits is measured by
each of a set of methods. The multitrait-multimethod model is an example of a highly specialized
measurement part of a structural model. In such a model, variables are generated under a systematic
design in which certain methods of measurement are fully crossed with the trait variables intended to
be measured. That is, each trait is measured by each of several methods. When this design is applied,
factors can be hypothesized to separate the various sources of variance, especially, into trait and
method factors. Interest is usually on the trait factors, while the method factors provide an important
basis for correlations among variables. Based on the goodness-of-fit of the estimated MTMM model
this paper aims at testing both convergent and discriminant validity of several microeconomic financial
indicators whether they are reliable measures of different traits of economic profitability measured
by different baseline methods.

Keywords: confirmatory factor analysis, goodness-of-fit, balance-sheet indicators.

1. The MTMM Model

Both reliability and validity can be investigated by using the MTMM approach: dif-
ferent traits (the latent variables) are measured in different ways, that is, by different
methods. According to CAMPBELL and FISKE [6]: ‘Reliability is the agreement
between two efforts to measure the same trait through maximally similar methods.
Validity is represented in the agreement between two methods to measure the same
trait through maximally different methods.’ A two-trait two-method (correlation or
covariance) matrix is illustrated in Table 1.

The off-diagonal elements in such a matrix can be classified into three groups:

1. within-method, cross-trait (WMCT) correlations,
2. within trait, cross-method (WTCM) correlations,
3. cross-trait, cross-method (CTCM) correlations.

Statistically significant and sufficiently large within-trait cross-method
(WTCM) correlations are evidence of convergent validity, the agreement of differ-
ent methods of measuring the same trait. Low correlations elsewhere give evidence
of discriminant validity, that the assumed different traits really are distinct. An
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Table 1. Multitrait-multimethod matrix for two traits and two methods

Method M1 M2

Trait T1 T2 T1 T2

M1 T1 1
T2 WMCT 1

M2 T1 WTCM CTCM 1

T2 CTCM WTCM WMCT 1

additional requirement for discriminant validity is that the pattern of inter-trait cor-
relations should be the same whether the indicators are from the same or different
methods.

An obvious approach to analyze MTMM data is to perform a confirmatory
factor analysis (CFA). Although several CFA models can be applied to the MTMM
matrix the most widely used and recommended models origin from the so-called
complete model.

In the CFA specification of the complete model each measured indicator is
considered to be a function of trait factors, method factors and unique factors.
According to the complete model if we have three traits namely T1, T2, T3 and
three methods M1, M2, M3 then there are nine indicators I1-I9 with their unique
factors denoted by U1-U9. The complete model states that the three indicators of
each trait load on a single trait factor yielding three trait factors for this design.
In addition, each indicator that uses the same method loads on a single method
factor yielding three method factors. If the indicator of a trait is not affected by the
method used in its measurement, then the indicator will load only on the common
factor for that trait and not on the common factor for the method. If, however,
there is an effect of the method of measurement, then each indicator will load on
both the common factor for the trait and the factor for the particular method of
measurement being used. This model permits to measure the degree of trait effects
and method effects as well as various correlations between the trait and method
factors and correlations between some unique factors. These parameters can be
used to assess convergent and discriminant validity. Because of the large number
of parameters and identification problems some appropriate restrictions imposed
on the parameters are necessary yielding special cases of the complete model.

2. Indicators of the Financial Profitability

Based on balance-sheet microeconomic indicators characterizing industrial branches
of the Hungarian corporations with double-entry book keeping our hypothesis is
that three types of profitability measured by three methods can be described using
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an MTMM model. Industries are distinguished by a four-digit code of the corpora-
tions defined by the Hungarian Standard Industrial Classification of All Economic
Activities introduced in 1998. Restricting analysis to the industries for which data
are available, finally, 479 industries have been considered in the analysis as obser-
vation units. Hence, the microeconomic indicators relate to an industry as a whole
and calculated based on the aggregated balance-sheet formed for the industry of
interest. The data set corresponds to the economic year of 2002.

In our analysis, the traits are the following types of profitability:

• OP: Operating profitability,

• NP: Net (after-tax) profitability,

• BP: Balance-sheet (book value) profitability.

On the other hand, the methods applied to each of the traits are as follows:

• S: Net sales revenues,

• A: Assets (total),

• E: Owners’ equity.

In order to remove the effect of the various sizes of the several industries
profitability is measured by some comparable ratios formed as: profit level/baseline
method. Based on this customary approach we expect the following indicators to
reflect the movements in profitability:

• OP_S = Operating profit/Net sales revenues

• NP_S = After-tax profit/Net sales revenues

• BP_S = Balance-sheet profit/Net sales revenues

• OP_A = Operating profit/Assets, total

• NP_A = After-tax profit/Assets, total

• BP_A = Balance-sheet profit/Assets, total

• OP_E = Operating profit/Owners’ equity

• NP_E = After-tax profit/Owners’ equity

• BP_E = Balance-sheet profit/Owners’ equity

The correlation matrix of the indicators is shown in Table 2.
An example for the WMCT correlation is the value of 0.689 in the BP_S

row and NP_S column, the correlation between BP and NP both assessed by S.
An example for the WTCM correlation is the value of 0.641 in the OP_A row and
OP_S column, the correlation between OP assessed by A and OP assessed by S.

We use two approaches in order to impose restrictions on the complete MTMM
model:
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Table 2. Correlation matrix of the financial indicators

Indicator OP_S NP_S BP_S OP_A NP_A BP_A OP_E NP_E

OP_S 1
NP_S 0.406 1
BP_S 0.371 0.689 1

OP_A 0.641 0.218 0.281 1
NP_A 0.601 0.405 0.351 0.897 1
BP_A 0.538 0.243 0.371 0.828 0.894 1

OP_E �0�050 �0�043 �0�121 0.128 0.066 �0�017 1
NP_E �0�100 0.016 �0�101 0.051 0.072 �0�017 0.971 1
BP_E �0�155 �0�054 �0�116 �0�028 �0�022 �0�033 0.952 0.981

Included Method Factors – Uncorrelated Uniqueness

This model is defined by the path-diagram shown in Fig. 1.1 According to the model
correlated trait and correlated method factors are also postulated but no correlations
are allowed across trait and method factors and the unique „U” factors are also
assumed to be uncorrelated. In addition, the variances of the unique factors are
estimated under the model. The model contains 33 free parameters. Assuming the
model fits the data, convergent validation is assessed by significant loadings on the
trait factors, discriminant validity by low correlations between the trait factors and
method effects by significant loadings on the method factors.

Excluded Method Factors – Correlated Uniqueness

Under this model no method factors are created. Instead, the standardized unique
factors are allowed to be correlated across indicators using the same method. Now,
method effects are assessed by highly correlated unique factors. This type of model
is defined by the path diagram in Fig. 2. This simpler model contains only 30 free
parameters.

1Coefficients of directed effects are represented by arrows while the indirected wires stand for
variances, covariances and correlations. The figure shows that extending the number of traits and
methods the number of parameters to be estimated increases substantially.



MULTITRAIT-MULTIMETHOD MODELS 215

OP_S

NP_S

BP_S

OP_A

NP_A

BP_A

OP_E

NP_E

BP_E

OP

NP

BP E

A

S

U1

U2

U3

U4

U5

U6

U7

U8

U9

Fig. 1. Path diagram with 3 correlated trait factors and 3 correlated method factors

3. Parameter Estimation and the Goodness-of-fit

According to the confirmatory factor model let us consider the null hypothesis
that the reproduced covariance matrix ���� expressed by the � � ��1� �2� � � � � �q�
freely estimated parameters holds for the population covariance matrix � against
the alternative that it does not hold:

H0 � � � ����� H1 � � �� �����

In other words, the H1 hypothesis states that a significant improvement is expected
in the discrepancy between H0 and H1 due to a simple switch from ���� to �.

Based on a sample of size N , parameter estimates are obtained by the iter-
atively weighted least squares method (IWLS) which minimizes the discrepancy
between the saturated model – defined as the sample covariance matrix of the in-
dicators – and the estimated reproduced covariance matrix �� � �� ���.2 The fitting

2In general, the so-called saturated model means the most complex model that contains as many
free parameters to be estimated as many sample statistics are intended to be predicted. In our case
the sample correlation matrix has 9 � 10�2 � 45 distinct elements including the entries on the main
diagonal as well.
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Fig. 2. Path diagram with 3 correlated trait factors and correlated unique factors

function then to be minimized is

F �
1

2
tr

��
�S � ��� ���1

�2
�
� min

where tr��� denotes the trace operator and the sample covariance matrix S�p�p� of the
p indicators is the sample counterpart of �. In addition, ���1 is used iteratively as
a positive-definite weight matrix. As it is well-known, for large samples the IWLS
method simultaneously leads to the maximum likelihood (ML) estimator which
maximizes the likelihood of the sample by the minimization of the minus log of the
likelihood function:

F � log � ��� 	 tr
�
S ���1

�
� log �S� � p � min �

Hereafter, F stands for both the IWLS and the ML fitting functions. Finally, the
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goodness-of-fit chi-square statistic is

�2 � �N � 1�F�

Namely, �2 is the distance of the currently estimated model from the saturated one.
The degree of freedom of this chi-square is p�p	1��2�q.3 Notice that the value of
the chi-square statistic depends on the sample size N whereas its degree of freedom
is independent on N . In general, comparing a nested (simpler) and a more complex
model the degree of freedom to be applied is the difference on the numbers of their
free parameters.

Model estimates based on the sample correlation matrix (rather than the co-
variance matrix) are shown in Table 3 for the models with and without method
factors. Since these models contain 33 and 30 parameters to be estimated the re-
spective degrees of freedom are d f � 45 � 33 � 12 and d f � 45 � 30 � 15
because the sample correlation matrix has 45 distinct elements. The free parame-
ters are termed by the following scheme: (.) contains latent variable, [.] includes
measured indicator, the numbered �# � arrow represents directed coefficients and
the numbered �#� wire represents undirected variance or correlation.

Considering the model including method factors, based on the values of the
t-statistic (parameter/standard error) we can conclude that the measurements are
statistically determined by both the trait factors and the method factors with the
only exception of the indicator OP_S loaded on the method of S. The indicators are
somewhat less determined by the methods S and A, while, the loadings on method
E are extremely large. The factor correlations and variances are all significant at
a 5% level with the exceptions of the variance of U6 and the correlation between
methods E and A. Notice that the variances of the unique factors U4, U5 and U8
do not differ from zero.

Based on the significant loadings of the trait factors convergent validity of
the profitability indicators holds. Besides, because of the high inter-trait factor
correlations discriminant validation is rejected. Finally, according to the significant
method factor loadings method effects also influence the indicators.

Considering now the more parsimonious model defined without method fac-
tors, only the correlation between the unique terms U1 and U2 is not significant
using a 5% level. In addition to the conclusions made above the high unique factor
correlations also suggest accepting the evidence of method effects.

Two further aspects arise at this stage. First, the question is how good the
model fits the data. The answer is always based on the chi-square distance of
the current model from the saturated model. Several goodness-of-fit measures are
available to evaluate the goodness-of-fit. One way is to test statistically whether the
estimated value of the �2 statistic is small enough.4 Other fit indices are heuristic
and descriptive without any probabilistic assumption.

3For the Satorra-Bentler correction to the goodness-of-fit statistic in the case of non-normality see
SATORRA–BENTLER [16].

4The small value of the goodness-of-fit chi-square statistic is preferred because it indicates that
the current model is close to the model with perfect predictions.
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Table 3. IWLS (ML) model estimates of �

Included Method Factors – Uncorrelated Uniqueness Excluded Method Factors – Correlated Uniqueness

Term Parameter t-value Tail prob. Term Parameter t-value Tail prob.

(OP)�1� [OP_S] 0.686 28.465 0 (OP)�1�[OP_S] 0.730 23.466 0
(OP)�2� [OP_A] 0.897 38.493 0 (OP)�2�[OP_A] 0.831 31.171 0
(OP)�3� [OP_E] 0.343 19.656 0 (OP)�3�[OP_E] 0.331 18.142 0
(NP)�4� [NP_S] 0.732 19.084 0 (NP)�4�[NP_S] 0.567 16.547 0
(NP)�5� [NP_A] 0.916 40.766 0 (NP)�5�[NP_A] 0.842 31.846 0
(NP)�6� [NP_E] 0.330 19.696 0 (NP)�6�[NP_E] 0.301 18.021 0
(BP)�7� [BP_S] 0.635 19.768 0 (BP)�7�[BP_S] 0.541 12.959 0
(BP)�8� [BP_A] 0.868 28.994 0 (BP)�8�[BP_A] 0.771 21.708 0
(BP)�9� [BP_E] 0.277 18.227 0 (BP)�9�[BP_E] 0.244 15.168 0

(S)�10� [OP_S] 0.005 0.109 0.913 (U1)�10�[OP_S] 0.683 20.556 0
(S)�11� [NP_S] 0.681 16.528 0 (U2)�11�[NP_S] 0.824 34.895 0
(S)�12� [BP_S] 0.408 8.561 0 (U3)�12�[BP_S] 0.841 31.308 0
(A)�13� [OP_A] 0.442 9.347 0 (U4)�13�[OP_A] 0.556 13.977 0
(A)�14� [NP_A] 0.402 7.862 0 (U5)�14�[NP_A] 0.540 13.122 0
(A)�15� [BP_A] 0.496 9.457 0 (U6)�15�[BP_A] 0.636 14.780 0
(E)�16� [OP_E] 0.928 135.742 0 (U7)�16�[OP_E] 0.944 147.840 0
(E)�17� [NP_E] 0.944 161.202 0 (U8)�17�[NP_E] 0.954 180.500 0
(E)�18� [BP_E] 0.958 213.462 0 (U9)�18�[BP_E] 0.970 239.684 0

(U1)� 19�(U1) 0.529 16.002 0 (NP)� 19�(BP) 0.838 44.649 0
(U2)� 20�(U2) 0.000 (OP)� 20�(BP) 0.720 22.892 0
(U3)� 21�(U3) 0.021 11.050 0 (OP)� 21�(NP) 0.843 49.395 0

(U4)� 22�(U4) 0.000 (U2)� 22�(U1) 0.253 4.690 0
(U5)� 23�(U5) 0.000 (U3)� 23�(U1) 0.116 1.851 0.064
(U6)� 24�(U6) 0.000 0.370 0.711 (U3)� 24�(U2) 0.673 23.907 0
(U7)� 25�(U7) 0.430 14.511 0 (U5)� 25�(U4) 1.000
(U8)� 26�(U8) 0.000 (U6)� 26�(U4) 0.993 81.476 0
(U9)� 27�(U9) 0.005 7.629 0 (U6)� 27�(U5) 1.000

(NP)�28�(OP) 0.869 67.146 0 (U8)� 28�(U7) 0.989 938.565 0
(BP)� 29�(OP) 0.758 33.074 0 (U9)� 29�(U7) 0.986 697.943 0
(BP)� 30�(NP) 0.867 63.083 0 (U9)� 30�(U8) 0.997 3645.225 0

(A)� 31�(S) �1�000
(E)�32�(S) �0�118 �2�036 0.042
(E)� 33�(A) �0�136 �1�585 0�113

Some of the fit indices compensate also for the model parsimony (i.e. prefer
models with fewer parameters) while others prefer models simply closer to the
sample data points. The widely used heuristic indices are listed in Table 6 in the
Appendix. Their meanings obviously follow from their definitions. (For a detailed
discussion of these indices see for instance HAJDU [9] or MULAIK et al. [12].

On the other hand, the question is whether the model contains relevant infor-
mation from the sample. In this context the model is accepted to be relevant if it is
far enough from the null model in a chi-square distance sense. The null model is the
simplest model defined with the unique factors only. In our case, the distance of the
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model with method factors from the null model is 6642.6 with degree of freedom
33 � 9 � 24 and the distance of the model without method factors from the null
model is 6569.7 with degree of freedom 30 � 9 � 21. This indicates that both of
them are relevant.

Returning to the problem of the goodness-of-fit – in the case of the model
defined with method factors – the chi-square statistic equals 142.959 with degree of
freedom 12 producing zero tail-probability level. The discrepancy fitting function
equals 0.299. Similarly, in the case of the model defined without method factors the
chi-square statistic equals 215.947 with degree of freedom 15 yielding also a zero
tail-probability level. The discrepancy fitting function here equals 0.452. Hence,
based on the small tail-probability values the chi-square statistics suggest that both
models seem to exhibit a poor fit.

Nevertheless, this badness-of-fit may be resulted from the relatively large
sample size. As mentioned earlier, given a specified model the value of the chi-
square statistic increasingly depends on the N sample size, whereas its degree of
freedom is independent on N (it depends only on the number of indicators i.e. the
size of the sample correlation matrix). Obviously, choosing a sample size large
enough any models can be rejected in the favour of the saturated model. For this
reason in our case the model goodness-of-fit must be evaluated in a descriptive way
as well. The computed values of some heuristic indices are summarized in Table 4
and other ones for which confidence intervals can be produced are given in Table 5.5

The indices indicated by an asterisk show a better fit with smaller values close to
0 whereas the other ones indicate a better fit with larger values close to 1. Some
indices reflect not only the improvement in the fitting function but also the number
of the estimated parameters spent to achieve a good model fit.

Table 4. Heuristic goodness-of-fit indices

Index Method Factors Included Method Factors Excluded

Jöreskog-Sörbom GFI 0.939 0.910
Jöreskog-Sörbom AGFI 0.773 0.729

Akaike Information Criterion 0.437 0.577
Schwarz’s Bayesian Criterion 0.725 0.839

Browne-Cudeck Cross Validation Index 0.440 0.580
Null Model Chi-Square (df) 6785.5 (36) 6785.5 (36)

Bentler-Bonett Normed Fit Index 0.979 0.968
Bentler-Bonett Non-Normed Fit Index 0.942 0.929

Bentler Comparative Fit Index 0.981 0.970
James-Mulaik-Brett Parsimonious Fit Index 0.326 0.403

Bollen’s Rho 0.937 0.924
Bollen’s Delta 0.981 0.970

5Confidence intervals are computed at a 90% percentage confidence level.
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Table 5. Confidence intervals at 90% level

Index Lower Point Upper Lower Point Upper

Method Factors Included Method Factors Excluded

Population Noncentrality Index 0.193 0.265 0.352 0.324 0.415 0.522
Steiger-Lind RMSE Index 0.127 0.149 0.171 0.147 0.166 0.186

McDonald Noncentrality Index 0.839 0.876 0.908 0.770 0.813 0.851
Population Gamma Index 0.927 0.944 0.959 0.896 0.916 0.933

Adjusted Population Gamma Index 0.728 0.792 0.846 0.688 0.747 0.799

The goodness-of-fit summary indicates that despite the chi-square test results
both models exhibit an excellent goodness-of-fit. This is apparent especially from
the Bentler-type and the Bollen-type normed indices of Table 4 because these mea-
sures would indicate a perfect fit with a value of 1. The 90% confidence upper
bound of the population gamma index also measures an outstanding fit. Almost
all indices even the parsimonious ones prefer the more complex model against the
simpler one but the differences are negligible. The only exception is the James et
al. Parsimonious Fit Index which prefers the simpler model with a greater degree
of freedom and suffers only a small loss in the fitting function.

4. Conclusions

There are several aspects to interpret and several methods to measure the level
of financial profitability of an economic activity. The paper investigates standard
ratio-type microeconomic profitability indicators based on appropriate balance-
sheet items. The numerator of an indicator gives the trait of profitability whereas
the denominator gives the method how to evaluate its level. The paper uses the
so-called ‘multitrait-multimethod’ (MTMM) model to test whether the financial
ratios considered are valid indicators of the phenomenon. Convergent validity and
discriminant validity are discussed based on two model types. Because of the
large sample size, the model goodness-of-fit is evaluated on the basis of heuristic
measures rather than a chi-square statistic. As a result, based on the significant
trait factor loadings convergent validity of the profitability indicators holds, while,
because of the high inter-trait factor correlations discriminant validation is rejected.
Finally, according to the significant method factor loadings method effects are also
found to govern the indicators.
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Appendix

Table 6. Heuristic goodness-of-fit indices

Index name Index formula

Population Noncentrality Index� NCI�
�2 � d f

N � 1

Steiger-Lind Root Mean Square Error� RMSE�

�
1

d f
max�NCI� 0�

McDonald Noncentrality Index MDNI� exp��0�5max�NCI� 0��

Population Gamma Index �1 �
p

2NCI � p

Adjusted Population Gamma Index �2 � 1 �
p�p � 1�

2d f
�1 � �1�

Jöreskog–Sörbom GFI GFI� 1 � 2F
tr ��S ���1�2�

Adjusted Jöreskog–Sörbom AGFI� 1 �
p�p � 1�

2d f
�1 � GFI�

Akaike Information Criterion� AC� F �
2q

N � 1

Schwarz’s Bayesian Criterion� SC� F �
q ln�N�

N � 1

Browne-Cudeck Cross Validation Index� C� F �
2q

N � p � 2

Bentler–Bonett Normed Fit Index NFIt�b � 1 �
�2

t

�2
b

Bentler–Bonett, Tucker–Lewis Non-
Normed Fit Index

NNFIt�b � 1 �
d fb
d ft

�2
t � d ft

�2
b � d fb

Bentler Comparative Fit Index BCFIt�b � 1 �
�2

t � d ft

�2
b � d fb

James–Mulaik–Brett Parsimonious Fit Index PI�
d ft
d fb

NFIt

Bollen’s Rho �t�b � 1 �
d fb
d ft

�2
t

�2
b

Bollen’s Delta �t�b �
�2

b � �2
t

�2
b � d ft

Note: Sample size equals N , p denotes the number of indicators and q stands for the number of free
parameters.
Subscription t indicates the target (more complex) model and b stands for the simpler baseline (now
the null) model.
F � �2��N � 1� is the converged value of the ‘fitting function’.
�The indices indicated by an asterisk select the preferred model at their minimized values.
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