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Abstract

In this research, U.S. manufacturing activities' life cycle-based carbon and energy footprint impacts have been quantified, taking 

international trade linkages with the rest of the world into account. The U.S economy has been integrated into a multi-region input-

output (MRIO) life cycle assessment framework where total of 40 major economies, including the USA, China, Russia, and others, plus 

the rest of the world (ROW) were modelled to assess global energy and carbon footprint impacts. Each country's economy is assumed 

to compromise 35 major industries based on the WIOD database classification. A total of 1435 (41 × 35 = 1435) industries has therefore 

been taken to represent the global structure of the world economy.  The novelty of the approach is that the MRIO model has been 

developed in a stochastic fashion, plus global trade-linked uncertainties have also been taken into consideration. Top carbon emitting 

and energy consumer industries and countries have been analysed using data analytics and statistical modelling methods. The results 

show that the USA is the largest contributor to the total carbon footprint (CFP) and the total energy footprint (EFP) with 81.73% and 

84%, respectively.  Moreover, the agriculture/hunting forestry/fishing sector and the electricity/gas/water supply sectors dominate 

the overall U.S. carbon footprint, contributing 22% and 21.28%, respectively. The coke/refined petroleum/nuclear fuel sector has the 

largest share of the total energy footprint, with 47.9% of the total impacts.
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1 Introduction
The concept of tracing the impact of a change in the 
regional or national economy on the entire interdependent 
industry matrix, known today as supply chains, has long 
been the focus of academic interest, especially in the field 
of economics. In the 1930s, Professor Wassily Leontief 
developed a function which is considered today to be the 
foundation for input-output analysis. The essential objec-
tive of input-output analysis is to identify the interdepen-
dence of sectors in a particular economy. Many types of 
economic analysis continue to regard Leontief's input-out-
put analysis as a key concept (Miller and Blair, 2009). In 
this context, an input-output model is made up of system 
linear equations that individually explain how a product is 
distributed across the economy (Miller and Blair, 2009).

1.1 Sustainability and life cycle assessment
Sustainability has been a critical topic of interest world-
wide ever since it was defined and its importance signi-
fied in the 1987 Brundtland Commission's Our Common 
Future report. Since then, governments, various politi-
cal, profit, and non-profit organisations have placed sig-
nificant emphasis on developing analytical frameworks to 
support the decision-making processes from an environ-
mental sustainability perspective. Life cycle assessment 
is a very basic, widely accepted, and analytical sustain-
ability assessment method that is used to quantify pri-
marily the environmental effects of a product considering 
the entire life cycle (Amadei et al., 2021). Nowadays, the 
concept of life cycle sustainability includes the social and 
economic dimensions as well as the environmental per-
spective (Purvis et al., 2019). The raw material extraction, 
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manufacturing/production, distribution/routing, usage, 
and end of life stages are all included in the term Entire Life 
Cycle Assessment (LCA) (Egilmez et al., 2013; Herczeg 
and Baranyi, 2005; Koltai and Lozano, 1996). Recently the 
links between blockchain technology, the circular econ-
omy, sustainability, and corporate social responsibility 
have become a new research path (Upadhyay et al., 2021). 
The overall purpose of conducting an LCA study is dis-
cussed in numerous studies, ranging from earlier gen-
eral studies (Hendrickson et al., 1998) to more recent spe-
cific multi-region input-output approaches (Cabernard et 
al., 2019), with a view to assisting with the following goals:

• minimising the magnitude of pollution, especially 
the greenhouse gases,

• preserving resources which are non-renewable, 
including energy, water, biodiversity,

• maintaining environmental system, minimising cli-
mate change impacts,

• improving and employing clean technology, mini-
mising health impacts

• ensuring that the environmental system is main-
tained, especially when it is critical to preserve bal-
ance in the supply chain,

• increasing recycling and reuse by developing alter-
native renewable materials.

1.2 Manufacturing in the United States
In the US, serious environmental impacts and resources 
depletions have resulted in as carbon, energy, and land foot-
print are highly attributed to manufacturing sectors (Egilmez 
et al., 2015b). The goods and raw materials used every day 
are produced by various industries in the U.S. economic 
supply chains. Two types of emissions are produced, direct 
emissions manufactured at the facility and indirect emis-
sions which occur off-site. The atmosphere receives differ-
ent amounts of heat-trapping gases from the world's major 
countries. China, the United States, Russia, India, and Japan 
are viewed as the largest contributors of total carbon diox-
ide emissions from the energy consumption (Million Metric 
Tons) with 10773, 5144, 1848, 2315, and 1103, respec-
tively (U.S. Energy Information Administration, 2019). The 
Environmental Protection Agency (EPA) has indicated that 
manufacturing sectors contribute 21% of GHG emissions 
and energy depletion in the US. Manufacturing sectors were 
considered the third largest contributor to U.S. GHG emis-
sions after the electricity and transportation sectors. The 
U.S. Manfacturing contribution of GHG emission is 24 % 
(U.S. Environmental Protection Agency (EPA, 2020). While 

GHG emissions released from industry sectors since 1990 
have fallen by approximately 12%, GHG emissions from 
other sectors had increased in 2011. According to the US 
Energy Information Administration (EIA), industrial sectors 
in the US consumed 88% non-renewable energy (11% coal, 
32% natural gas, 9% nuclear electric power and 36% petro-
leum) and just 19% renewable energy (such as hydroelectric 
power, geothermal, solar, wind, and biomass) (U.S. Energy 
Information Administration, 2021). Moreover, the U.S. 
industrial sectors exhaust 355,000 million gallons of water 
per day. 45% of total water consumption are exhausted by 
irrigation and livestock.  Thermo-electric power, irrigation, 
and public supply are the largest consumption sectors which 
exhaust 90% of the national total. Other industries, such as 
industrial, aquaculture, mining, household, and livestock, 
consume 10% of the total water withdrawal. 17% of global 
greenhouse gasses emissions are released from deforestation, 
peat soil, and land clearing for agriculture. Industrial sec-
tors that use land such as forest and crop lands have essential 
impacts on carbon sequestration (Egilmez et al., 2015a).

1.3 Sustainability and manufacturing
Sustainable manufacturing is the economic process 
whereby products are created while environmental effects 
are eliminated or reduced. Sustainable manufacturing also 
boosts employee, community, and product safety.  To grow 
and be competitive globally, companies have to improve 
their strategy and operations, with sustainability viewed as 
a crucial objective. Consequently, companies pursue sus-
tainability for a variety of reasons. For example, they may: 

• increase operational efficiency by reducing costs and 
waste; 

• become more competitive and gain new customers;
• build public trust, establish a good reputation and 

protect and strengthen their brand;
• build long-term business viability and success,
• react to constraints and opportunities. 

Several industrial and government projects have 
depended on sustainable manufacturing in their deci-
sion-making process due to rising environmental con-
cern (Egilmez et al., 2013) or the requirements of energy 
management (Fűr and Csete, 2010). The U.S. Department 
of Commerce defines sustainable manufacturing as "man-
ufactured products that are initiated using processes which 
preserve energy and natural resources, minimise pollution, 
and are economically appropriate and safe for employees, 
communities, and consumers" (Egilmez et al., 2013:p.93). 
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The life cycle effects have to be measured consistently in 
order to achieve sustainable manufacturing aims which are 
natural resources and energy conserving, and eliminate 
waste and pollution (Egilmez et al., 2013). 

We live in a world in which products are mostly avail-
able for sale anywhere, especially with the help of online 
sales and marketing. The supply chains have become 
more complex and longer for a product unless local prod-
ucts are specifically wanted. The impacts of the supply 
chain can be more than 50% of the total impacts in both 
economic and environmental terms. Therefore, it is cru-
cial for a sustainability assessment study to consider both 
direct and indirect impacts.

2 Literature review
Zhao et al. (2016) analysed the environmental effects of 
battery-electric trucks and compared them to the impacts 
of diesel-electric hybrid, diesel, and compressed natural 
gas trucks. It was concluded that electric trucks do not 
have less of an environmental impact than other truck 
types. In addition, electric trucks were found at that time 
to have energy consumption and greenhouse emissions 
that were greater than those of other truck types. 

Another study used a MRIO to investigate the embod-
ied energy and the energy-intensive industry policy in 
China's foreign trade (Cui et al., 2015). The results showed 
that embodied exported energy in China increased 
almost three times between 2001 and 2007. In addition, 
it was revealed that the energy-intensive industry policy 
decreased the consumption of energy. 

Meanwhile, 27 American and Canadian major cities 
were evaluated in terms of their environmental sustain-
ability performance (Egilmez et al., 2015a). On a scale 
between zero and one, the highest ranking was achieved 
by New York with 0.703 while the lowest score of 0.394 
was obtained in Cleveland. It is important to note that pub-
lic transport and CO2 emissions had the most influence on 
cities' sustainability performance scores. 

A quasi-MRIO model was used to study CO2 emissions 
attributable to UK household energy use (Druckman and 
Jackson, 2009). The study has shown that the CO2 emis-
sions of households in 2004 were 15% greater than in 
1990. Besides, different segments of the UK population 
have diverse carbon footprints. The most affluent segment 
emits 64% more CO2 than the lowest segment. 

In 2004, over one-quarter of  UK households' CO2 

emissions were due to recreation and relaxation pur-
poses. To address the uncertainty in the outcomes of 

input-output-based LCA methods, fuzzy data envelopment 
analysis was proposed (Druckman and Jackson, 2009). 
This approach could be used to evaluate life cycle models of 
sustainability benchmarking such as food manufacturing. 

In Kucukvar et al. (2014), the Triple Bottom Line (TBL) 
of the United States' final demand categories were ana-
lysed. According to the analysis results, household con-
sumption has the biggest TBL effect, and consumption 
reduction would be accomplished by an efficient, green 
resource-based economy.

It has been shown that the fragmentation of interna-
tional manufacturing produces worldwide carbon emis-
sions during the analysis of the pollution haven hypothe-
sis (Zhang et al., 2017). In addition, every country exhibits 
different environmental effects due to trade. 

Another study aimed to analyse and study the environ-
mentally sustainable supply chains for 15 years using a 
MRIO modelling framework (Acquaye et al., 2017). It was 
observed that both China and India were the biggest water 
consumer and sulphur oxide emissions originators in the 
electricity sector in 2004.

To evaluate inter-city economic consumption, pollut-
ant emission, and concentration among 13 cities in the 
Beijing–Tianjin–Hebei (BTH) urban agglomeration, this 
study combines an inter-city multi-regional input-output 
(MRIO) model with an air quality dispersion model con-
sisting of a weather research and forecasting (WRF) model 
and the CALPUFF model (WRF/CALPUFF) (Wang et al., 
2020). As an example, NOx is used. Due to the combined 
impacts of economic connection and atmospheric transfer, 
the results of this article highlight that consumption outside 
of a city might have a higher impact on the city's air quality.

The US multi-region input-output (US-MRIO) is used in 
this article to estimate regional and sectoral spillover impacts 
from the integration of wind energy farms in ten US states 
(Faturay et al., 2020). The overall economic gain was esti-
mated to be $26 billion, with $3 billion allocated to areas 
where no new wind energy capacity was developed. Using 
the US-MRIO model and the energy intensity of industrial 
sectors, the overall change in economic throughput resulting 
from the addition of wind farms was calculated to be around 
6952 trillion Btu. Among other manufacturing sectors, the 
primary metal production and machinery manufacturing sec-
tors stood out with significant increases in energy consump-
tion of 3074 trillion Btu and 1537 trillion Btu, respectively.

The purpose of this research is to assess the substitu-
tion effects of four bioeconomic innovations in terms of 
the European Commission's policy objectives (Asada et 
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al., 2020). Point estimates and uncertainty intervals were 
calculated using a multi-regional input-output (MRIO) 
method. The sustainability characteristics of a future 
bioeconomy will be heavily influenced by decisions on 
future biomass use paths. To promote the development of 
an effective bioeconomy capable of delivering "sustain-
able growth", just encouraging increased biomass usage 
as a policy strategy is insufficient.

In Shepard (2020) a new hybrid input-output database 
of energy flows within and among the world's 136 major 
economies was created and used to compare and contrast 
indirect energy security indicators with direct energy 
security metrics. From the data, it can be observed that 
indirect energy trade links between primary energy-pro-
ducing countries and countries with whom they have 
no direct trade relations account for 23% of the world's 
embodied energy network. Moreover, indirect energy 
imports are 90 percent more significant than direct energy 
imports, and countries have many more trade partners in 
indirect energy than they do indirect energy.

3 Methodology
3.1 Structure of the assessment
In this paper, a four-step methodology is followed. In the 
first step, the Input-Output data of the 40 main economies 
in the world (Russia, Japan, India, USA, and others) and 
the Rest of the World were collected.  The second step 
was the building of a deterministic MRIO model for those 
data for each country which consists of 35 main industries.  
Then, as the third step a stochastic MRIO model was built.  
In the fourth step a Monte-Carlo Simulation method was 
utilised to create thirty replications for the total output for 
each country and industry.

The focus of analysis includes the onsite and supply 
chain carbon and energy footprint impacts of U.S. indus-
trial economic transactions. Indirect impacts consist of the 
supply chain industries in the U.S. economy that supports 
the U.S. manufacturing and the supply chain industries in 
the other countries that exports to U.S. market.

3.2 Data collection
Most of our data has been collected from World Input-
Output Database (WIOD). The World Input-Output 
Database (WIOD) is one of the up-to-date multi-region 
input-output databases. The dataset consists of a time 
series of symmetric input-output (I-O) table between the 
duration of 2000 and 2009, which covers world economy 
with 40 major countries (based on gross domestic pro-
duction) and the Rest of World (RoW). The WIOD table 

provides detailed information about commodity produc-
tions in dollars by industry and commodity consumptions 
per industry. A fixed product sales structure has been 
assumed. Therefore, each sector has its own sale structure, 
which accounts for a product output that is sold to inter-
mediate and final users (Kucukvar et al., 2015).

3.3 Mathematical background of deterministic MRIO
In this MRIO model, the Aij

rs

t
� �  matrix is the direct 

requirement matrix, and each row of the Aij
rs

t
� �  matrix 

represents the inputs from other sectors (local and foreign 
inputs) to create a unit of output. The i refers to the input 
from country r into industry j in countrys. However, in our 
MRIO model i and j are the same and equal to 35 which is 
the total number of industries in a certain country. Also, 
41 is the total number of countries, including the Rest-of-
the-World (RoW), and it is represented by r and s, which 
are equal. The total output vector for the given economic 
output can be estimated using the MRIO framework's 
basic linearity assumption, which is:

x I A ft
r

ij
rs

t i
r
t� � � �� � � ��1
,  (1)

where fi
r
t� �  is a vector consisting of a dollar production 

from the manufacturing sector i in region r and zero every-
where else. Moreover, I is the identity matrix in which all 
entries are zero except for the diagonal entries which are 
equal to 1, and xt

r  represents the total output vector based on 
a final-output change in country r. The term I Aij

rs

t
� � �� ��1

 
is also known as the Leontief's Inverse. After estimating the 
total output vector, total carbon footprints can be determined 
by multiplying each sector's output by its carbon impact per 
dollar of output (Kucukvar et al., 2015):

C B I A ft t ij
rs

t i
r
t� � � �� � � ��1
,  (2)

where Ct is the vector of total environmental impact (e.g. 
GHG emissions) and the environmental impact multiplier is 
represented by B, which is a matrix of diagonal elements (e.g. 
Global Warming Potential (GWP) per $M economic output). 
The Global Warming Potential (GWP) is determined by 
multiplying each sector's total GHG emissions by conver-
sion factors provided from the U.S. Environmental Protect 
Agency (US EPA) (Kucukvar et al., 2015).

3.4 Mathematical background of deterministic MRIO
In the stochastic MRIO model, both the total require- 

ment matrix I - Aij
rs

t

-1 '

� �� �� �  and the final demand fi
r
t

'� �  
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variables are assumed to be a random variable, with mean 
and standard deviation. Mean values are assumed to be 
equal to the data points, obtained from WIOD database. 
Moreover, standard deviation values are then derived 
from the means based on multiplying the mean value 
with a factor, k, which was assumed to be 10%. In fact, 
a 10% variation is initially assumed (Lenzen et al., 2010). 

Considering total requirement matrix I - Aij
rs

t

-1 '

� �� �� �  and 

final demand (in this study economic output of each man-
ufacturing industry is considered as final demand) fi

r
t

'� �  
are notated as follows, where xt

r'  is derived as the stochas-
tic total economic output (direct + global supply chains). 

x I - A ft
r'

ij
rs

t

-1 '

i
r
t

'
� � �� �� � � �  (3)

The total carbon footprint and the total energy foot-
print of all sectors in 41 countries can be easily obtained 
after the calculating of the stochastic total economic out-
put xt

r'� �.  In the deterministic MRIO model, the total CFP 
and EFP were calculated by multiplying the total eco-
nomic output with (a matrix with diagonal elements repre-
senting the Global Warming Potential (GWP) per million 
dollar economic activity) (Kucukvar et al., 2015). In the 
stochastic case, since both variables are random, Monte 
Carlo simulation is used to find out the mean and standard 
deviation of resulting total mean GWP and standard devi-
ation of GWP impacts. 

C B I - A ft
'

t ij
rs

t

-1 '

i
r
t

'
� � �� �� � � �  (4)

3.5 Monte Carlo simulation
Monte Carlo Simulation is a process that uses repeated 
random sampling and statistical analysis to calculate out-
comes (Raychaudhuri, 2008). This method of simulation is 
linked with random experiments about specific outcomes 
which are not known (Raychaudhuri, 2008). In our case, 
the Monte Carlo experiments were used to calculate of the 
total impact of CFP and EFP of the USA manufacturing 
sectors confidence intervals. Thirty replications of the sto-
chastic MRIO model, for each year from 2000 to 2009 for 
both EFP and CFP, were created by using the Monte Carlo 
Simulation Method. Moreover, we obtained 600 exper-
iments after running all twenty years, 10 years for CFP 
and 10 years of EFP, altogether 30 times (Hogg and Tanis, 
1997). Then, we calculated the mean and the standard devi-
ation of the 30 samples for each year for both EFP and CFP. 
The steps of the Monte Carlo simulation are the following:

1. Calculation the Total Impact of EFP and CFP for 
each year from 2000 to 2009.

2. Creating thirty replications also for each year.
3. Thirty replications for each year from 2000 to 2009 

for the EFP and CFP.
4. Calculating the expected value and the standard 

deviation from 30 samples.

4 Results
4.1 Carbon footprint impacts
4.1.1 Total mean impacts (onsite + supply chain)
In terms of the total impact (onsite + supply chain) of 
countries, Fig. 1 shows that the U.S.A is the greatest con-
tributor of the carbon footprint with 81.73% share of the 
total impact. The remaining countries' carbon footprint 
ranged from 6.64% to 0.02%. Moreover, the top ten coun-
tries account for 97.57% of the total carbon footprint.

In terms of sectors, agriculture, hunting forestry and 
fishing is the dominant sector, contributing 22% of the 
total impact of the carbon footprint. In addition, electric-
ity, gas, and water supply sectors contributed greatly to the 
carbon footprint: 21.28%, as shown in Fig. 2. The top ten 
industries account for 92.12% of the total carbon footprint. 
The remaining industries shared a carbon footprint rang-
ing from 16.35% to 0.12%.

4.1.2 Analysis by Industry without U.S. manufacturing
Among the industries examined for their contribution to 
the CFP, the electricity, gas and water supply sectors make 
the biggest contribution, 23.943% of the total impact. The 
mining and quarrying sector also makes a high contribu-
tion to the carbon footprint of 18.160%, as shown in Fig. 3. 
The top ten industries account for 90.308% of the total 
carbon footprint. The remaining industries' carbon foot-
print ranged from 13.261% to 0.057%.

Fig. 1 The total carbon footprint impacts of all countries 
including the U.S.A.
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4.1.3 Confidence intervals of carbon footprint impacts
Fig. 4 explains the total impact of the CFP for the top ten 
sectors with 95% confidence intervals. Agriculture/ hunt-
ing/ forestry and fishing had the highest value of the total 
impact with large confidence intervals. Among the inves-
tigated countries, the U.S.A. has the highest value of the 
total impact of CFP with large values of the confidence 
intervals (see Fig. 5).

4.2 Energy footprint impacts
4.2.1 Total impacts (onsite + supply chain)
In terms of the total mean share of the energy footprint 
(EFP) of countries in the Fig. 6 the U.S.A is the largest 
contributor of the EFP with 84% share of the total impact.  
The remaining countries' carbon footprint ranges from 
0.57% to 0.012%. The top ten countries account for 97.5% 
of the total energy footprint.

In the energy sector, coke/refined petroleum/nuclear 
fuel proves to be the dominant industry with 47.9% share 
of the total impact of the energy footprint. Also, the elec-
tricity/gas/water supply sector contributes greatly to the 
energy footprint with 14.9%, as shown in Fig. 7. The top 

Fig. 2 The total impacts of the top ten industries

Fig. 3 The supply chain impacts of the carbon footprint of 
the industries

Fig. 4 The total effect of CFP by industry and 95% 
confidence intervals

Fig. 5 The total impact of CFP by country and 95% 
confidence intervals

Fig. 6 The energy footprint of all countries including the 
U.S.A.

Fig. 7 The total impacts of the ten industries
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ten industries account for 93.7% of the total energy foot-
print. The remaining industries shares an energy footprint 
ranging from 12.03% to 0.094%.

4.2.2 Analysis by industry
The energy footprint of the coke/ refined petroleum/ 
nuclear fuel sector dominates with 30.56% share on the 
total impact of the carbon footprint. Electricity/gas/water 
supply sector contributes to a high share of the energy 
footprint with 20.06%, as shown in Fig. 8. The top ten 
industries account for 92.5% of the total energy footprint. 
The remaining industries' share of the energy footprint 
ranges from 15.08% to 0.0641%.

4.2.3 Confidence intervals of energy footprint impacts
Fig. 9 shows that coke, refined petroleum, and nuclear 
fuel has the highest value of the total impact of EFP with 
largest values of the confidence intervals. Fig. 10 shows 
another indicator that the U.S.A. had the highest value of 
the total impact of EFP with largest confidence intervals.

5 Conclusion
The U.S.A. had the most contribution of the total of both 
carbon footprint (CFP) and energy footprint (EFP). The 

Rest of the World (RoW) is considered the second largest 
contributor of the total of CFP and EFP after the USA. 
China and Canada also have high values of the total share 
of CFP and EFP.

Among the thirty-five industries, agriculture/hunt-
ing forestry/ fishing sector is the biggest contributor of 
the total carbon footprint. Moreover, both electricity/gas/
water supply sector and mining/quarrying industry con-
tribute heavily to the CFP. This also underlines the impor-
tance of switching to clean energy across the world and 
creating a more environmentally friendly pattern of con-
sumption behaviour across the U.S., which may also high-
light the ultimate responsibility of U.S.A. to take part in 
worldwide environmental related conventions.

Coke/refined petroleum/ nuclear fuel sector dominate 
the total impacts, while the electricity/ gas/water sup-
ply sector and chemical/chemical products sector were 
found to be the second and the third large contributor, 
respectively.

For future research, similar assessment can be per-
formed for the entire U.S. economy, in addition to man-
ufacturing industries. Besides ecological impacts, end-
point impact could be also modelled along with the newly 
developed stochastic MRIO framework. In terms of other 
environmental impact categories factors, water withdraw-
als (WW), hazardous waste generation (HWG), and toxic 
releases (TR) could also be the focus of further research 
(see Cabernard et al., 2019). Moreover, social impacts 
including child labour, income inequality, poverty, safety, 
work-related injuries, etc. could be also be focused on in 
future studies.

In addition, a more complete sustainability assess-
ment methodology that takes not only the environmental 
and economic aspects of sustainability into account, but 
also the social aspect (Bulle et al., 2019), could be a useful 

Fig. 8 The supply chain energy FP impacts

Fig. 9 The total impact of EFP by industry and 95% 
confidence intervals

Fig. 10 The total impact of EFP by country and 95% 
confidence intervals
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future endeavour. The eco-efficiency analysis can be uti-
lised in combination with the integration of social impacts 
into a newly developed economic-input output (EIO-) LCA 
approach (Hendrickson et al., 1998; Matthews and Small, 
2000). Finally, because EIO-LCA does not consider envi-
ronmental interventions of manufactured products linked 
to use and end-of-life phases, which might have significant 

impacts, the environmental impacts of each manufac-
turing sector are studied from cradle to grave (Song et 
al., 2018). Notwithstanding that a cradle-to-grave envi-
ronmental LCA is an essential method for quantifying 
sustainability impacts, the existing EIO-LCA tool might 
nonetheless be improved by taking utilisation and end-of-
life phases into account.
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