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Abstract

We apply cooperative game theory concepts to analyze a

Holt-Modigliani-Muth-Simon (HMMS) supply chain. The bull-

whip effect in a two-stage supply chain (supplier-manufacturer)

in the framework of the HMMS-model with quadratic cost func-

tions is considered. It is assumed that both firms minimize their

relevant costs, and two cases are examined: the supplier and the

manufacturer minimize their relevant costs in a decentralized

and in a centralized (cooperative) way. The question of how to

share the savings of the decreased bullwhip effect in the central-

ized (cooperative) model is answered by the weighted Shapley

value, by a transferable utility cooperative game theory tool,

where the weights are for the exogenously given “bargaining

powers” of the participants of the supply chain.
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1 Introduction

In the supply chain literature so far mostly non-cooperative

game theory concepts were applied, see e.g. Kogan and

Tapiero [10] and Sethi at al. [14], for an exception see Dobos

and Pintér [4]. In this paper we analyze supply chains by co-

operative game theory tools. Our main question is that how

the manufacturer and the supplier should share the savings they

achieve by harmonizing their production plans. We apply the

following cooperative game theory concepts: the core (Gillies

[8]) and the weighted Shapley value (Shapley [16]) to answer

the above question. The core concept expresses that the consid-

ered allocation of the savings is stable, while the weights in the

weighted Shapley value are for the exogenously given “bargain-

ing powers” of the participants of the supply chain, that is, those

describe how the participants share the savings as a function of

their “bargaining powers”.

In order to demonstrate the efficiency of cooperating in a sup-

ply chain we consider the so called bullwhip effect. The bull-

whip effect explains the fluctuations of sales (demand), manu-

facturing and supply. The bullwhip effect was first observed by

Forrester [7], later Lee et al. [11] rediscovered this phenomenon.

They mentioned four basic causes of the bullwhip effect: lead-

times and demand signal processing, order batching, rationing

and gaming; and promotion effect, or price fluctuations. These

effects were investigated e.g. by Disney et al. [2].

There are three basic models to investigate the decision pro-

cesses of a firm: the Wagner-Whitin, Arrow-Karlin and the Holt-

Modigliani-Muth-Simon (HMMS) model. These models have a

stock-flow identity and a cost function. The difference between

them lies in the cost functions. The well-known lot sizing model

of Wagner and Whitin [17] assumes a concave cost function.

The basic model of Arrow and Karlin [1] applies a linear hold-

ing and a convex production cost function. The model of Holt,

Modigliani, Muth and Simon [9] assumes a quadratic function

for both the inventory holding and the production cost.

The main goal of this paper is to demonstrate that the Shap-

ley value (Shapley [15]), a cooperative game theory tool, can be

applied to supply chain analysis.. We consider an HMMS-type

two-stage supply chain and analyse the bullwhip effect appear-
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ing in this model. To show that because of the bullwhip effect the

cooperation of the manufacturer and the supplier induces sav-

ings, we develop two models: a decentralized and a centralized

HMMS-type supply chain model.

The decentralized model assumes that first the manufacturer

solves her production planning problem (the market demand is

given exogenously) and her ordering process is based on the op-

timal production plan. Then the supplier minimizes her costs

on the basis of the ordering of the manufacturer. In the central-

ized model it is assumed that the participants of the supply chain

cooperate, that is, they minimize the sum of their costs.

In the next step we compare the production-inventory strate-

gies and the costs of the manufacturer and supplier in the two

models to show that the bullwhip effect can be reduced by coop-

eration (centralized model). This cooperation can be defined as

a kind of information sharing between the parties of the supply

chain.

Finally, we discuss the question of how the manufacturer and

the supplier should share the savings their cooperation induces.

We assume that the “bargaining powers” of the participants are

given by weights summing up to one, and share the savings ac-

cording to these weighs. We demonstrate that, in this model

this concept coincides with the weighted Shapley value (Shap-

ley [16]) and it is stable, that is, it is in the core (Gillies [8]).

The main differences between this paper and Dobos and Pin-

tér [4] are as follows:

1 Dobos and Pintér [4] consider the Arrow-Karlin model (Ar-

row and Karlin [1]), while in this paper we analyze the Holt-

Modigliani-Muth-Simon model, so the two papers consider

different management science situations. Moreover,

2 Dobos and Pintér [4] assume that the manufacturer and the

supplier have the same “bargaining powers”, that is, none of

them can be considered as stronger than the other. In business,

however, typically one of the participants is stronger than the

other, that is, they do not have same “bargaining powers”. In

other words, it is desirable to take care about the participants’

“bargaining powers” when we discuss the allocation of the

savings achieved by the cooperation. In this paper, we apply

the weighted Shapley value, in which the weights reflect the

articipants’ different “bargaining powers”.

The paper is organized as follows. The decentralized model is

discussed in Section 2. Section 3 analyzes the centralized (co-

operative) supply chain model. In Section 4 we introduce some

concepts of cooperative game theory and define supply chain

(cooperative) games given by the models discussed in Sections

2 and 3. Moreover, we apply the above mentioned solution

concepts of transferable utility cooperative games to answer the

question of how the manufacturer and the supplier should share

the savings, the result of their cooperation. An exact number ex-

ample is given in Section 5. The last section briefly concludes.

2 The decentralized system

We consider a simple supply chain consisting of two firms: a

supplier and a manufacturer. We assume that the firms are inde-

pendent, that is, each makes her decision to minimize her own

costs. The firms have two stores: a store for raw materials and

a store for end products. Moreover, we assume that the input

stores are empty, that is, the firms can order suitable quantity

and that they can get the ordered quantity. The production pro-

cesses have a known, constant lead time. The material flow of

the model is depicted in Figure 1. The following parameters

are used in the models:

T length of the planning horizon,

S (t) the rate of demand, continuous differentiable, t ∈ [0,T ],

Īm(t) inventory goal size of manufactured product, t ∈ [0,T ],

Īs(t) inventory goal size of supplied product, t ∈ [0,T ],

P̄m(t) manufacturing goal level, t ∈ [0,T ],

P̄s(t) supply goal level, t ∈ [0,T ],

hm inventory holding cost coefficient in manufactured prod-

uct store,

hs inventory holding cost coefficient in supplied product

store,

cm production cost coefficient for manufacturing,

cs production cost coefficient for supply.

In the HMMS-model it is assumed that the management of

the (manufacturer and supplier) firms have fixed a production-

inventory pattern, that is, the production plans P̄m(t) and P̄s(t),

and planned inventory levels Īm(t) and Īs(t) are known before the

planning horizon. The objective of the managers of the firms is

to minimize the deviations from the fixed objective level. The

deviations are defined, as quadratic functionals with known pa-

rameters. This phenomenon was empirically tested by Holt,

Modigliani, Muth, and Simon [9]. The decision variables:

Im(t) the inventory level of the manufactured product, it is

non-negative, t ∈ [0,T ],

Is(t) the inventory level of the supplied product, it is non-

negative, t ∈ [0,T ],

Pm(t) the rate of manufacturing, it is non-negative, t ∈ [0,T ],

Ps(t) the rate of supply, it is non-negative, t ∈ [0,T ].

The decentralized model describes the situation where the

supplier and the manufacturer optimize independently, we mean

the manufacturer determines its optimal production-inventory

strategy first (the market demand is given exogenously), then

she orders the necessary quantity of products to meet the known

demand. Then the supplier accepts the order and minimizes her

own costs.

Next, we model the manufacturer in this HMMS-

environment. The manufacturer solves the following problem:

Jm =

T∫
0

{
hm

2

[
Im(t) − Īm(t)

]2
+

cm

2

[
Pm(t) − P̄m(t)

]2
}

dt → min

(1)

Per. Pol. Soc. and Man. Sci.46 Imre Dobos / Miklós Pintér



Fig. 1. Material flow in the models

I
m
(t)

Supplier Manufacturer

Production Production

P
m
(t) P

m
(t)P

m
(t)P

s
(t)P

s
(t) P

s
(t)

I
s
(t)

S(t)

s.t.

İm(t) = Pm(t) − S (t), Im(0) = Im0, 0 ≤ t ≤ T (2)

Assume that the optimal production-inventory policy of the

manufacturer is
(
Id
m(·), Pd

m(·)
)

in model (1)-(2) and the manu-

facturer orders Pd
m(·). Then the supplier solves the following

problem:

Js =

T∫
0

{
hs

2

[
Is(t) − Īs(t)

]2
+

cs

2

[
Ps(t) − P̄s(t)

]2
}

dt → min

(3)

s.t.

İs(t) = Ps(t) − Pd
m(t), Is(0) = Is0, 0 ≤ t ≤ T (4)

Notice that problem (3)-(4) has the same planning horizon [0,T ]

as that of model (1)-(2). To solve problem (1)-(2) we apply

the Pontryagin’s Maximum Principle (see e.g. Feichtinger and

Hartl, (1986), Seierstad and Sydsaeter, (1987)).

Assume that production-inventory strategy
(
Id
m(·), Pd

m(·)
)

is an

optimal solution for model (1)-(2). Then the optimal solution

must satisfy the following differential equation: İd
m(t)

Ṗd
m(t)

 =

 0 1
hm

cm
0

 ·  Id
m(t)

Pd
m(t)

 +

 −S (t)
˙̄Pm(t) −

hm

cm
· ˙̄Im(t)

 ,
with initial and terminal condition

Id
m(0) = Im0, Pd

m(T ) = P̄m(T ).

We do not prove this lemma, the proof can be found in Dobos

(2003). If production strategy Pd
m(·) is known, then problem (3)-

(4) can be solved. For the case of positive inventory level and

production rate the optimal strategy is presented in the follow-

ing.

Let us assume that production-inventory strategy
(
Id

s (·), Pd
s (·)

)
is an optimal solution for model (3)-(4). Then the optimal solu-

tion must satisfy the following differential equation: İd
s (t)

Ṗd
s (t)

 =

 0 1
hs

cs
0

 ·  Id
s (t)

Pd
s (t)

 +

 −Pd
m(t)

˙̄Ps(t) −
hs

cs
· ˙̄Is(t)

 ,
with initial and terminal condition

Ĩd
s (0) = Is0, Pd

s (T ) = P̄s(T ).

Later we use the following notations: let Jd
m and Jd

s be the op-

timal values of cost functions (1) and (3) respectively, that is,

let

Jd
m =

T∫
0

{
hm

2

[
Id
m(t) − Īm(t)

]2
+

cm

2

[
Pd

m(t) − P̄m(t)
]2
}

dt

and

Jd
s =

T∫
0

{
hs

2

[
Id

s (t) − Īs(t)
]2

+
cs

2

[
Pd

s (t) − P̄s(t)
]2
}

dt.

3 The centralized system

In this section we solve the centralized model, that is, the

model, where the manufacturer and supplier coordinate their de-

cisions. The model is as follows

Jms =

T∫
0

{
hm

2

[
Im(t) − Īm(t)

]2
+

cm

2

[
Pm(t) − P̄m(t)

]2
(5)

+
hs

2

[
Is(t) − Īs(t)

]2
+

cs

2

[
Ps(t) − P̄s(t)

]2
}

dt → min

s.t.

İm(t) = Pm(t) − S (t), 0 ≤ t ≤ T, (6)

İs(t) = Ps(t) − Pm(t), 0 ≤ t ≤ T, (7)Im(0)

Is(0)

 =

Im0

Is0

 (8)

The optimal centralized production strategies for the manu-

facturer and the supplier respectively are two equations which

are called optimal linear decision rules. (See Holt-Modigliani-

Muth-Simon [9].) The necessary and sufficient conditions be-

come a system of linear differential equations:


İc
m(t)

İc
s (t)

Ṗc
m(t)

Ṗc
s(t)

 =


0 0 1 0

0 0 −1 1
hm

cm
−

hs

cm
0 0

0
hs

cs
0 0

 ·


Ic
m(t)

Ic
s (t)

Pc
m(t)

Pc
s(t)

 +

+


−S (t)

0
˙̄Pm(t) −

hm

cm
Īm(t) +

hs

cm
Īs(t)

˙̄Ps(t) −
hs

cs
Īs(t)


(9)

with initial and ending conditionsIc
m(0)

Ic
s (0)

 =

Im0

Is0

 , and

Pc
m(T )

Pc
s(T )

 =

P̄m(T )

P̄s(T )

 .
Finally, consider a notation: let Jc

ms = Jc
m + Jc

s denote the optimal

value of cost function (5), where

Jc
m =

T∫
0

{
hm

2

[
Ic
m(t) − Īm(t)

]2
+

cm

2

[
Pc

m(t) − P̄m(t)
]2
}

dt
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and

Jc
s =

T∫
0

{
hs

2

[
Ic

s (t) − Īs(t)
]2

+
cs

2

[
Pc

s(t) − P̄s(t)
]2
}

dt.

4 The cost sharing

In this section we provide a sharing rule of the savings the

cooperation induces. It is easy to see the following result:

Lemma 1 0 ≤ Jc
ms = Jc

m + Jc
s ≤ Jd

m + Jd
s .

This result can be interpreted as follows: The total cost of the

decentralized system, that is, the sum of the supplier’s and man-

ufacturer’s costs is higher than that of the centralized system.

The question is that now, how to share the savings induced by

the players’ cooperation.

First, we introduce the concept of transferable utility cooper-

ative games. Let N= {1, 2,. . . , n} be the nonempty, finite set of

the players. Moreover, let v : 2N → < be a function such that

v(Ø) = 0, where 2N is for the class of all subsets of N. Then v

is called transferable utility (TU) cooperative game, henceforth

game with player set N.

Game v can be interpreted as every coalition (subset of N)

has a value. E.g. S ⊆ N is a coalition consisting of the play-

ers of S , and v(S ) is the value of coalition S . The value of a

coalition can be the profit the coalition members can achieve if

they cooperate, or the cost they induce if they harmonize their

actions.

In our model there are two players: the manufacturer (m) and

the supplier (s), that is, N = {m, s}, and the value of a coalition

is the cost the coalition members induce if they coordinate their

production plans and inventory strategies.

In the decentralized model the players do not harmonize their

actions, and achieve their minimal costs independently of each

other. Therefore (see Subsection 5.1)

v({m}) = Jd
m and v({s}) = J s

m.

In the centralized model the manufacturer and the supplier

form a coalition, that is, they cooperate. Therefore (see Subsec-

tion 5.2)

v({m, s}) = Jc
ms.

Henceforth let v denote the supply chain game defined above.

To sum up the above discussion, the decentralized and the

centralized model generate a (TU cooperative) game.

To answer the question of how the players should share the

savings their cooperation induces, we apply three solution con-

cepts of cooperative game theory.

First, we introduce the concept of core (Gillies [8]). In our

model the core of supply chain game v is defined as follows:

C(v) = {x ∈ <{m,s} : xm + xs = Jc
ms, xm ≤ Jd

m, xs ≤ Jd
s },

where xm and xs are coordinates belonging to the manufacturer

and the supplier respectively.

The core can be described as it consists of allocations of the

total cost of the centralized model such that none of the players

can be better off by leaving the centralized model, by stopping

cooperation, that is, the core consists of stable (robust) alloca-

tions of the costs. It is easy to see that in this model the core is

not empty, that is, there is a stable allocation of the costs.

In our model the core has the disadvantage that generally it

consists of many points, that is, it is a map-valued solution.

Therefore, the following natural question comes up: How can

we pick up only one point as a solution? Next we consider a

point-valued solution.

Let ωm, ωs ≥ 0 such that ω1 + ω2 = 1, then ωm and ωs are

called the weights of the manufacturer and the supplier respec-

tively. These weighs can be interpreted as the exogenously given

“bargaining powers” of the players.

Shapley [16] introduced the following point-valued solution

concept: The weighted Shapley value of the manufacturer and

the supplier respectively in supply chain game v

wS h(v)m = (1 − ωm)Jd
m + ωm

(
Jc

ms − Jd
s

)
,

and

wS h(v)s = (1 − ωs)
1

2
Jd

s + ωs

(
Jc

ms − Jd
m

)
.

The weighted Shapley value can be interpreted as it is an ad-

justed (by the weights) expected value of the given player’s

marginal contribution. In other words, e.g. the manufacturer’s

weighted Shapley value is the expected value with the distribu-

tion ((1 − ωm), ωm) of the manufacturer’s marginal contribution

to the cost of the two coalitions not containing her, to the empty

collation (Jd
m) and to coalition {s}(Jc

ms − Jd
s ).

In the symmetric case, when the two players have equal

power, that is, ωm = ωs = 1
2
, wS hm(v) and wS hs(v) are the

so called Shapley value of the manufacturer and the supplier re-

spectively in game v.

Next we show that in our model the Shapley solution is in the

core, hence it

Lemma 2 For any supply chain game v

(wS h(v)m,wS h(v)s) ∈ C (v) .

Proof. Let (ωm, ωs) be an arbitrary weight system. Take the

manufacturer first: Lemma 4 implies that

wS h(v)m = (1 − ωm)Jd
m + ωm(Jc

ms − Jd
s ) ≤ (1 − ωm)Jd

m + ωmJd
m,

that is, wS h(v)m ≤ Jd
m. In a similar way we can see that

wS h(v)s ≤ Jd
s .

Finally, it is obvious that wS h(v)m + wS h(v)s = Jc
ms (see e.g.

Shapley [16]).

5 A numerical example

Take the following parameters and cost functions in problems

(1)-(2), (3)-(4) and (5)-(8), as in Table 1.

In the following we solve the decentralized and the central-

ized problem.
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Tab. 1. Parameter specification for the example

Description Data

Length of planning horizon: T 5

Demand rates: S (t) sin(t)+2

Delay of the supply: τ 0.5

Manufacturing rate goal level: P̄m(·) 1.0

Supply rate goal level: P̄s(·) 0.85

Inventory size goal level in manufacturing store: Īm(·) 0.5

Inventory size goal level in supply store: Īs(·) 0.3

Initial inventory level in manufacturing store: Im(0) 0.25

Initial inventory level in manufacturing store: Is(0) 0.5

Manufacturing cost coefficient: cm 1.0

Supply cost coefficient: cs 0.5

Inventory holding cost coefficient in manufacturing store: hm 2

Inventory holding cost coefficient in supply store: hs 1

5.1 The solution of the decentralized problem

The decentralized problem is a hierarchical production plan-

ning problem. First the manufacturer solves her planning prob-

lem, then the optimal ordering policy is forwarded to the sup-

plier. Finally, the supplier optimizes her own relevant costs

based on the known ordering policy of the manufacturer.

The problem of the manufacturer is as follows:

Jm =

5∫
0

{
2

2
[Im(t) − 0.5]2 +

1

2
[Pm(t) − 1]2

}
dt → min

s.t.

İm(t) = Pm(t) − sin(t) − 2, Im(0) = 0.25, 0 ≤ t ≤ 5

The optimal solution can be determined with help of Lemma

2, because the optimal inventory level and production rate are

positive. Let the optimal the optimal solution be functions Pd
m(·)

and Id
m(·).

The minimal cost of the manufacturer is 4.604 units, that is,

Jd
m = 4.604.

In the next step we solve the problem of the supplier, where

the manufacturer’s ordering policy Pd
m(·) is given:
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Fig. 2. Optimal manufacturing and supply rates for the decentralized models

Js =

5∫
0

{
1

2
[Is(t) − 0.3]2 +

0.5

2
[Ps(t) − 0.85]2

}
dt → min

s.t.

İs(t) = Ps(t) − Pd
m(t), Is(0) = 0.5, 0 ≤ t ≤ 5

The optimal solution for the supplier is functions Pd
s (·) and Id

s (·),

applying the results of Lemma 4.

The optimal production rates and inventory levels are shown

in Figures 2 and 3.

The minimal cost of the supplier is 2.335 units, that is, Jd
s =

2.335. The total cost of manufacturer and supplier is 6.939 units

in this decentralized strategy of the supply chain, that is Jd
m +

Jd
s = 6.939.

5.2 The solution of the centralized problem

In the following we solve the centralized problem:

Jms =

5∫
0

{
2

2
[Im(t) − 0.5]2 +

1

2
[Pm(t) − 1]2 +

1

2
[Is(t) − 0.3]2

+
0.5

2
[Ps(t) − 0.85]2

}
dt → min

s.t.

İm(t) = Pm(t) − sin(t) − 2, 0 ≤ t ≤ 5

İs(t) = Ps(t) − Pm(t), 0 ≤ t ≤ 5Im(0)

Is(0)

 =

0.25

0.5


The optimal solution of this problem is given after the solu-

tion of the following differential equation (see (9)):
İc
m(t)

İc
s (t)

Ṗc
m(t)

Ṗc
s(t)

 =


0 0 1 0

0 0 −1 1

2 −1 0 0

0 2 0 0

 ·


Ic
m(t)

Ic
s (t)

Pc
m(t)

Pc
s(t)

 +


− sin(t) − 2

0

−0.7

−0.6

 (10)

with initial and terminal conditionsIm(0)

Is(0)

 =

0.25

0.5

 , and

Pc
m(T )

Pc
s(T )

 =

 1

0.85

 .
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ized models

The optimal production rates and inventory levels are shown in

Figures 4 and 5. The minimal cost of the centralized system is

 

 

Figure 4. Optimal manufacturing and supply rates for the centralized model 
 

Pmc
t

Psc
t

S t
T

n

.

t  
 
 

Figure 5. Optimal manufacturing and supply inventory levels for the centralized model 

Imc
t

Isc
t

0

t  
 
 

 
 

)(tPc

s  

Pm
c(t

) 

S(t) 

 

 Im
c(t) 

)(tI c

s  

 

Fig. 4. Optimal manufacturing and supply rates for the centralized model

6.887 units, where the manufacturer’s cost is 4.656 units and the

supplier’s cost is 2.231 units, that is, Jc
ms = 6.887, Jc

m = 4.656

and Jc
s = 2.231.

5.3 Comparison of the solutions of the decentralized and

the centralized system

First, compare the production rate and inventory level of the

manufacturer and the supplier in the cases of the decentralized

and the centralized system, where Imdt, Imct, Isdt and Isct are

for the inventory level for the manufacturer and for the supplier

in the decentralized and the centralized model respectively. In

this example the inventory level of the manufacturer decreases

in the case of cooperation, that is, in the centralized system. The

inventory level of the supplier first decreases, and then increases

when the participants cooperate in the supply chain, see Fig-

ures 6 and 7. As we see, the production level in the centralized

system is smoother, that is, the growth of the production rate is

smaller than that in the case of the decentralized system, and the

contrary is true for the supplier, that is, in the decentralized sys-

tem the production rate of the supplier is smoother than that in

the centralized system, where Pmdt, Pmct, Psdt and Psct are for

 

 

Figure 4. Optimal manufacturing and supply rates for the centralized model 
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Figure 5. Optimal manufacturing and supply inventory levels for the centralized model 
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Fig. 5. Optimal manufacturing and supply inventory levels for the central-

ized model

the production level for the manufacturer and for the supplier in

the decentralized and the centralized models respectively, and

S(t) is for the exogenously given demand, see Figures 8 and 5.

This phenomenon is the decreased bullwhip effect in the cen-

tralized model. The optimal costs of the decentralized and the

centralized problem are presented in Table 2. As we have seen,

Tab. 2. The optimal costs of the example

Decentralized problem Centralized problem

Manufacturer costs (Jm) 4.604 4.656

Supplier costs (Js) 2.335 2.231

Total costs (Jms) 6.939 6.887

the total cost of the centralized problem is lower than that of

the decentralized one. The cost reduction is approximately 1%.

In the centralized problem the manufacturer cost increases with

more than 1% and the supplier cost decreases with 4.5%.

After the above analysis the question of how to share the sav-

ings, the cooperation of the participants in the supply chain in-

duces, comes on stage.

Fig. 6. The inventory level of the manufacturer in the decentralized and the

centralized system
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Fig. 7. The inventory level of the supplier in the decentralized and the cen-

tralized system

5.4 Cost sharing

Before we introduce the weighted Shapley value, we show

graphically the core C(v)of the supply chain game. The core of

our problem is defined, as

C(v) = {x ∈ <{m,s} : xm + xs = 6.887, xm ≤ 4.604, xs ≤ 2.335}.

Using the results from Table 2, Figure 10 presents the core of

our supply chain game with a thick black line.

Assume the manufacturer’s “bargaining power” is two times

of the supplier’s, that is,ωm = 2
3

andωs = 1
3
. The weighed Shap-

ley value of the manufacturer and the supplier are wS hm(v) =

4.57 and wS hs(v) = 2.317 respectively. It means that the play-

ers share their savings equally. The weighted Shapley value

is shown in Figure 10, it is the (ωm, ωs)-weighted average of

the two endpoints of the core, that is, (wS hm(v),wS hs(v)) =

ωm(Jc
ms−Jd

s , J
d
s )+ωs(Jd

m, J
c
ms−Jd

m). Notice that, since the cooper-

ation does not allocate the savings according to the exogenously

given weights, a transfer between the supplier and the manufac-

turer is needed. As a result of cooperation the manufacturer cost

increase and the supplier’s cost decrease, that is, all the savings

go to the supplier. In order to reach the allocation, the parties

agree on, that is, the weighted Shapley value a transfer is: the

supplier must transfer 0.086 units to the manufacturer. It means

Fig. 8. The production rate of the manufacturer in the decentralized and the

centralized system

Fig. 9. The production rate of manufacturer in the decentralized and the cen-

tralized system

Fig. 10. The core

that the manufacturer and the supplier agree on a contract such

that the parties commit themselves to cooperate and the sup-

plier commits herself to pay 0.086 units to the manufacturer as

a ”price” for his cooperation.

6 Conclusion and further research

In this paper we have solved two two-stage HMMS-type sup-

ply chain models: a decentralized and a centralized model. We

have showed that the cooperation of the two players induces sav-

ings in costs.

In the next step we have considered sharing rules for the sav-

ings. We have applied cooperative game theory solution con-

cepts to this problem, and we have introduced the concept of

supply chain games. It was shown that in the two player supply

chain games the core is not empty and that the weighted Shapley

value is always in the core.

As an illustration for our results we have presented an exact

number example. In this example the supplier’s cost of adaption

in production to the fluctuations in the orderings of the manu-

facturer is higher than that of the manufacturer. Moreover, the

production costs are dominant over the inventory costs. There-

fore it is not surprising at all that in the centralized model the
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supplier has reduced her inventory level, and the manufacturer’s

inventory level is higher than that in the decentralized model,

and vice versa for the supplier.

The reason of this fact is that the manufacturer minimizes her

relevant cost in the decentralized model, so that her production

level is near to the demand rate. After cooperation the manufac-

turer gives up to follow her cost optimal production strategy to

allow the supplier to reduce her own production-inventory cost

implying a decrease in the total cost of the supply chain as well,

since the supplier’s cost saving balances out the increase of the

manufacturer’s cost.

This phenomenon points at the well known bullwhip effect

of supply chains in a way: the supplier decreased the inventory

level after information sharing (cooperation), and she adjusted

her production rate closer to the demand rate.

In this type supply chains the two players might have asym-

metrical roles. It can happen that the manufacturer has much

stronger bargaining position than that of the supplier or vice

versa. To consider the asymmetric bargaining positions we ap-

ply the weighted Shapley value as solution concept for sharing

the savings among the parties. The weights are for the supply

chain participants’ “bargaining powers”, the bigger the weight,

the stronger the given party’s “bargaining power”.

The managerial implication of the model is that the total costs

are lower in a supplier-buyer relationship in case of cooperation.

The costs of the buyer increase after cooperation which can be

financed with a side payment. A side payment is controlled by

a contract. In this paper we have avoided to investigate the sup-

ply contracts. The basis of the cooperation can be the above

mentioned supply contracts, but another tool is the information

sharing. In case of information sharing the paricipants of the

supply chain share either cost or demand information. In our

model we have examined only the information sharing of pro-

duction plans.
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