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Abstract

Classical assembly line balancing (ALB) models assume constant cycle times during production. However, this assumption oversimplifies 

the actual situation, especially in small batch production of up to a few hundred units, since employees can significantly improve their 

performance thanks to the learning effect, causing task times to decrease. Several researchers have realised the importance of the 

effect of learning in ALB. However, only a limited number of papers have so far addressed this issue. This is problematic, since ignoring 

the learning effect in ALB may lead to inaccurate results and by extension misleading conclusions. This study summarises the main 

contributions in the field of ALB that focus on the learning effect. First, assembly lines (ALs) and ALB problems are characterised. 

Next, the importance of the learning effect in ALB is highlighted, and the main learning curve (LC) models are introduced. Finally, 

an exhaustive review of the main contributions in the field of ALB and learning effect is provided. The results highlight that many 

problems in this area need to be investigated further, in relation to both conceptual model building and the development of algorithms 

for solving practical size problems.
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1 Introduction
An assembly line is a well-known mass production method 
that consists of a series of workstations connected in 
a particular order by a conveyer belt or by other material 
handling equipment. In assembly lines, the entire work 
necessary to create one product is divided into simple, indi-
visible operations called tasks. Tasks are governed by pre-
cedence constraints, which may be related to cycle time, 
capacity, workers' skills, and zoning among other factors 
(Boysen et al., 2022; Özcan and Toklu, 2009). An opera-
tor (generally human) performs the same task repeatedly 
at the corresponding station. After passing through all the 
stations, finished units quit the assembly line at the last 
station. Assembly line balancing (ALB) is the problem of 
assigning tasks to workstations while satisfying certain 
constraints (e.g., precedence constraints) and optimising 
one or more performance measures.

Simple ALB models assume constant task times during 
production, an approach which implies that the time to fin-
ish a task remains unchanged no matter how often the task 
is repeated. Nonetheless, task times may decrease due to 
learning effects when a human operator repeats the task; 
as Andress (1954) puts it laconically, "A worker learns as 

he works; and the more often he repeats an operation". 
Wright (1936) was the first to demonstrate how repetition 
and learning affect aircraft production in assembly lines 
and other repetitive tasks. He discovered that as the cumu-
lative output doubled, the average building costs per unit 
decreased by around 20%. This finding was formalised as 
the learning curve (LC), an inversely proportional con-
nection between unit costs and cumulative output. Since 
then, the significant presence of learning effects in assem-
bly lines has been reported in numerous industrial cases 
(see for example, Dutton and Thomas, 1984).

In assembly lines, learning effects are particularly signif-
icant during the launch of a new product, at the early stage 
of production (Baloff, 1971), or in case of small lot size 
production (Thongsanit et al., 2010). The period in which 
production time (or cost) decreases due to learning is called 
the learning stage. The length of the learning stage has now 
developed into a crucial performance metric for firms due 
to shorter product life cycles, increased innovation rates, 
and more frequent product introductions. Shorter learning 
stages enable greater profits if a new product enters the mar-
ket faster as a result. Businesses therefore need to consider 
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learning effects while planning, as this can substantially 
shorten their learning stage (Otto and Otto, 2014).

This paper sets out to review the relevant literature 
related to the application of the learning effect in ALB and 
to explore possible research directions in this area.

The rest of the paper is structured as follows. Section 2 
describes the main characteristics of assembly lines and 
the different modelling concepts applied for the formula-
tion of assembly line balancing problems (ALBPs). Section 
3 highlights the importance of the learning effect in ALB 
and summarises the different concepts of LCs. Section 4 
reviews the main contributions related to the consideration 
of learning effect in ALB. Section 5 discusses the gaps in 
literature and some future research possibilities. Finally, 
Section 6 draws some general conclusions.

2 Classification of assembly lines and ALBPs
In Section 2, we describe the main characteristics of assem-
bly lines and the modelling concepts on which ALBPs are 
formulated and classified. Studies in the literature have 
classified ALBPs based on assembly line characteris-
tics and several classification possibilities have been sug-
gested (Baybars, 1986; Becker and Scholl, 2006; Boysen 
et al., 2008; Erel and Sarin, 1998; Ghosh and Gagnon, 1989).

2.1 Workflow characteristics
Assembly lines are divided into two major categories 
based on the workflow features: paced assembly lines 
and unpaced assembly lines. In paced assembly lines, the 
workstations are assumed to have equal cycle time (CT) 
(which is the longest operation time of any workstation). 
In this case, each station pushes the unit to the follow-
ing station as the time equivalent to the cycle time passed. 
Some stations might finish their tasks earlier than the CT; 
however, parts still need to wait until the end of the CT.

Unpaced assembly lines are classified into two types 
based on the movement of finished parts: synchronous and 
asynchronous assembly lines. In synchronous assembly 
lines, all stations move their finished parts simultaneously 
after a fixed time, so there is no buffer between stations. 
While in asynchronous assembly lines, stations might 
have different station times, however, part at a station does 
not move to the next station unless the next station has fin-
ished its tasks.

2.2 Product characteristics
Assembly lines are classified into three basic types based 
on product characteristics: single model, mixed model, 

and multi-mixed assembly lines (see Fig. 1). In single model 
assembly lines (Fig. 1(a)), only one product is assembled. 
Therefore, there is a higher possibility for learning effect due 
to the uninterrupted repetition of the same tasks. In a mixed-
model assembly line (Fig. 1(b)), distinct models of the same 
product are assembled. Similar tasks of the different models 
are assigned to the same stations; hence, set-up time between 
models can be reduced significantly, and intermixed model 
sequences can be assembled on the same line. The third 
type, the multi-model assembly line (Fig. 1(c)), deals with 
assembling different products in batch form on an assembly 
line. Once a model's batch is produced, the stations are set 
up according to the requirements of the next batch.

2.3 Layout characteristic
Based on layout characteristics, assembly lines can be cate-
gorised into four types: Serial lines, parallel lines, U-shaped 
lines, and two-sided assembly lines (see Fig. 2). In serial 
assembly lines, also called straight lines (Fig. 2(a)), stations 
are organised serially along a conveyor belt. After finishing 
the processing at the first station, parts move down the line 
one by one to the next station, finally leaving the last sta-
tion. The cycle time is determined based on the station with 
the maximum load in case of a paced line. In a U-shaped 
line (Fig. 2(b)), stations are arranged in a U-shaped layout 
(see Fig. 2). One of the benefits of this layout is that some 
tasks can revisit some stations during the assembly process; 
hence fewer stations are needed. Another advantage is that 
operators can move freely inside the U shape, and can serve 
several stations, unlike the straight-line layout where each 
operator manages one specific station. Parallel stations 
(Fig. 2(c)) are used to divide the workload between the sta-
tions. For  instance, if the line's CT is more than desired, 
the station with the maximum workload is paralleled with 
another station to split the workload, thereby reducing the 
line CT. The same set of tasks are assigned to the parallel 
stations. The last type is the two-sided layout (Fig. 2(d)). 

Fig. 1 Assembly lines for single and multiple models; (a) single model 
line; (b) mixed-model line; (c) multi-model line
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This layout is beneficial when assembling heavy and large-
sized products such as automobiles, trucks, and large con-
struction machinery. Parts are assembled from both sides 
of the line, and more than one operator or machine works 
simultaneously at a station.

2.4 Task time characteristics
Assembly lines can be divided into two groups based on the 
nature of task time, i.e., deterministic, and stochastic task 
time (see for example Battaïa and Dolgui, 2013). When the 
expected variation in task times is negligible, e.g., in assem-
bly lines with automated machines performing simple tasks, 
task times are assumed deterministic, rendering ALBPs eas-
ier to solve (Sivasankaran and Shahabudeen, 2014). In con-
trast, in labour-intensive assembly lines, task times vary 
due to the intrinsically human nature of the work, imply-
ing that probabilistic modelling may be more appropriate 
(Bentaha et al., 2015). However, regardless of whether task 
times have a deterministic or stochastic property, they usu-
ally decrease with repetition when a task is given to manual 

labour. This systematic decrease in task time arises due to 
the learning effect. In such a problem, task time is consid-
ered a variable that depends on the learning rate of the oper-
ator (Lolli et al., 2018).

3 Simple versus generalised ALBPs
Baybars (1986) divides ALBPs into two categories: sim-
ple assembly line balancing problems (SALBPs) and gen-
eralised assembly line balancing problems (GALBPs). 
SALBPs are the most known and best-studied problems. 
Despite being too constrained to reflect the complexity of 
real-world line balancing problems, simple assembly lines 
capture the main aspects of line balancing and are consid-
ered the core of any ALBP. SALBPs are based on the fol-
lowing nine assumptions:

•	 all input parameters are known with certainty (A-1),
•	 a task cannot be split among two or more stations 

(A-2),
•	 the processing of tasks is subject to precedence con-

straints (A-3),
•	 all tasks must be processed (A-4),
•	 all stations are equipped with machines and workers 

to perform any task (A-5),
•	 task times are deterministic and not sequence depen-

dent (A-6),
•	 any task can be processed at any station (A-7),
•	 the line is considered as serial with no feeder or par-

allel subassembly lines (A-8),
•	 the line is designed for a unique model of a single 

product (A-9).

Depending on the objective function considered, 
SALBPs can be differentiated into four versions: SALBP-1, 
SALBP-2, SALBP-E, and SALBP-F. SALBP-1 aims to 
minimise the line's total idle time, which is equivalent to 
minimising the number of stations, assuming a given cycle 
time. SALBP-2 aims to minimise the cycle time for a given 
number of stations which is equivalent to maximising the 
output quantity. SALBP-E attempts to maximise line effi-
ciency (E ), where:

E T
m T

sum

c
� � . 	 (1)

The total time of all tasks  (Tsum ) is divided by the num-
ber of workstations (m) multiplied by cycle time (Tc ). 
As the total idle time is equal to:

T m Tsum c� � . 	 (2)

Fig. 2 Different types of assembly line layouts; (a) straight line; 
(b) U-shaped line; (c) line with parallel stations; (d) two-sided line

(a)

(c)

(d)

(b)
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A maximisation of E leads to a minimisation of idle 
times. Finally, SALBP-F aims to find a feasible balance 
between a given number of stations and cycle time.

Any assumption characterising SALBPs or any com-
bination thereof needs to be relaxed to account for the 
large variety of ALBPs. The line may be used to produce 
multi-models or mixed models. Zoning constraints may 
also restrict the grouping of specific tasks at the same sta-
tion/area (Baybars, 1986). There might be tasks that have 
to be performed at a specific station. There may exist par-
allel lines, U-shape lines, or two-sided lines. There may 
be other forms of positional restrictions, buffer stocks, 
and other generalities such as feeder or parallel subassem-
bly lines. Besides, task times may be either determinis-
tic or stochastic. Whether the objective is to minimise the 
number of stations or cycle time, maximise the line effi-
ciency, find a feasible balance, or optimise any other met-
ric(s), these problems are referred to as GALBPs, which 
are a generalisation of SALBPs.

4 The effect of learning in quality management
Today's competitive environment requires organisational 
learning and quality improvement. Scholars have exten-
sively studied the relationship between learning processes 
and product or service quality improvement. These studies 
have revealed the benefits of high-quality standards and 
their influence on cost reduction, the optimisation of staff-
ing methods, and the interplay between learning in dif-
ferent production processes. These studies can help firms 
improve performance and sustain success by revealing the 
link between learning and quality.

Fine (1986) researched learning and quality enhance-
ment, introducing the quality-based LC. He demonstrated 
that companies striving for high-quality levels learn faster 
than those producing low-quality products. Fine com-
pared two quality-based LCs to a volume-based LC and 
found that manufacturing higher-quality products reduces 
costs quicker. In a subsequent article, Fine (1988) applied 
quality-based learning to machine maintenance, recom-
mending intensive inspection to decrease failure costs and 
improve the production process. He emphasised the need 
for managers to conduct inspections when a machine's 
failure probability surpasses a predetermined threshold, 
highlighting the benefits of learning in this context.

Foster and Adam (1996) improved the quality-based 
learning curve model by considering the quality improve-
ment rate. Using case study data from an automotive parts 
manufacturer, they found that rapid quality enhancements 
hinder learning, while gradual improvements reduce costs 

and enhance competitiveness. Lapré et al. (2000) derived 
a learning curve for quality enhancement, focusing on 
reducing waste from defects. They analysed longitudi-
nal data from a manufacturing plant to study learning in 
total quality management (TQM) initiatives. The authors 
showed how different forms of learning contribute to 
organisational learning and the success of TQM projects.

Pinker and Shumsky (2000) created a learning model 
to optimise staffing for service quality. They compared 
the cost-efficiency and quality of cross-trained or general-
ist workers with specialist workers with experience-based 
learning. Their findings recommended a combination of 
experienced workers for quality assurance and flexible 
workers to benefit from economies of scale. In a related 
study, Jaber and Bonney (2003) developed a learning curve 
for product quality improvement in lot sizing. They con-
sidered learning in setups and product quality, with lot-
size quantity as the decision variable. The model included 
a cycle length where forgetting occurs and hampers per-
formance (total cost). Testing the model with data from 
a problematic electronics manufacturing line, they discov-
ered a conflict between learning in quality and learning in 
setups. Learning in quality favoured larger lot sizes while 
learning in setups favoured smaller ones.

5 LC models
The effect of learning is generally illustrated by an expo-
nential LC. For a comprehensive literature review, see for 
instance (Anzanello and Fogliatto, 2011). The exponential 
learning curve is defined as follows:

Y Q aQb� � � , 	 (3)

where:
•	 Y(Q) = time required to produce the Qth unit,
•	 a = time required to produce the first unit,
•	 Q = cumulative units number,
•	 b = learning coefficient.

It can be demonstrated that a doubling in the cumu-
lative production, yields a constant percentage of reduc-
tion of the unit production time. This percentage is called 
learning rate (L). For instance, L = 0.8 means that the time 
required to produce the 2Qth unit is merely 80% of the time 
required to produce the Qth unit.

The following equation shows the relationship between 
the learning rate L and the learning coefficient b.

L
Y Q
Y Q

a Q
aQ

b

b
b�

� �
� �

�
� �

�
2 2

2 . 	 (4)
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The nature of the LC is that the highest decrease in 
production time per unit occurs during the beginning of 
production and then decreases with time as Fig. 3 shows. 
Several LC models have been suggested since the initial 
discovery by Wright (1936). The widely known models are: 

1.	 the log-linear model,
2.	 the plateau model,
3.	 the Stanford-B model,
4.	 the DeJong model,
5.	 the S-model.

The listed models are well explored by Carlson (1961). 
A graphical representation of these models based on 
Yelle (1979) are depicted in Fig. 4.

Although the log-linear model remains by far the most 
adopted model, some manufacturers have discovered that 
other models better capture their learning experience. 
For example, Garg and Milliman (1961) presented the case 

of the Boeing company which show that the Stanford-B 
model describes best their operators' accumulated experi-
ence for the assembly of the Boeing 707 aircrafts.

6 Learning effect and ALB
6.1 The effect of learning on ALB
Since assembly line tasks are intrinsically repetitive, 
task times decrease with repetition because of learning. 
Commonly available ALB methods tend to ignore the 
learning effect and assume that average task times remain 
constant during production, while others allow some 
possible deviations around the average task time. These 
assumptions oversimplify the actual situation since oper-
ators can significantly improve their performance thanks 
to the learning effect, particularly in small batch pro-
duction of up to a few hundred units where the relative 
change of execution time between one unit to the next can 
be substantial (Globerson and Shtub, 1984). To illustrate 
this, suppose the stations are balanced according to the 
task time of the first unit. As the learning effect sets in, 
the time required at a station will decrease for the subse-
quent units. This decrease of task times, however, will not 
be uniform across all stations, because the degree of learn-
ing may vary based on task complexity and operators' 
learning capacity (see e.g., Argote et al., 1995; Nembhard 
and Uzumeri, 2000). If the cycle time reduces over time, 
the line will soon lose its balance leading to inefficien-
cies. Bukchin and Wexler (2016) claim that small lot size 
production is gaining more importance compared to mass 
production due to the increasing interest in product custo-
misation. This claim further emphasises the importance of 
considering the effect of learning in ALB as small batches 
are becoming more common.

6.2 Review methodology
Given the vast amount of literature on ALB and learn-
ing effect (the keyword "assembly line balancing" leads to 
more than 2,527 hits in Scopus, and the keyword "learn-
ing effect" produces more than 341,808 hits in the same 
database), we limited our literature search to a set of arti-
cles that explore both topics jointly, excluding articles that 
merely deal with one or the other.

We used Scopus and Web of Science comprehensive 
databases comprising the leading operations and produc-
tion management journals- to explore the relevant liter-
ature. Researchers have used them in previous reviews 
(e.g., Felsberger and Reiner, 2020; Glock et al., 2019). 
For searching the databases, a list of terms related to the 

Fig. 3 The relationship between the cumulative output and the unit time

Fig. 4 Different models all having the same value of Unit time 
(Yelle, 1979)
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topic of this study- ALB and learning effect- was defined, 
including the following synonyms:

•	 ALB,
•	 assembly line balancing,
•	 experience curve,
•	 forgetting curve,
•	 forgetting function,
•	 LC,
•	 learning curve,
•	 learning effect,
•	 learning function.

The keywords of this study can be found in articles 
addressing the notions of ALB and/or learning effect.

Despite the significant importance of the effect of learn-
ing in ALB, the related literature is not extended, and many 
topics remain unexplored (Eghtesadifard et  al.,  2020; 
Tamás and Koltai, 2020). The filtering of papers based on 
their relevance to the reviewed topic- The effect of learning 
in ALB- resulted in 29 papers we included in this review. 
Here we present an exhaustive review of the existing liter-
ature about incorporating the effect of learning into ALB 
models. For the sake of coherence, the literature review 
is divided into three sub-topics: Deterministic learning in 
ALB, stochastic learning in ALB, and the effect of learn-
ing and other effects in ALB. A classification of the liter-
ature based on the ALBPs and ALs' characteristics is also 
provided (see Table 1).

6.3 The effect of deterministic learning in ALB
6.3.1 The effect of deterministic learning on utilisation 
and efficiency in ALB
Globerson and Shtub (1984) were among the first to empha-
sise the importance of learning in ALB. For a simplified 
case where the infinite divisibility of tasks and the absence 
of precedence relations between tasks were assumed, they 
have shown that adopting a line design strategy by consid-
ering the operator's learning effect may increase the assem-
bly line's utilisation by up to 20%. Chakravarty  (1988) 
completed the research by using dynamic recursive opti-
misation to minimise the line's total idle time. By  com-
paring the line’s idle time with and without the learning 
effects, the author demonstrated that ignoring learning 
may lead to severe line inefficiencies causing assembly 
line imbalance and total cost increase.

Chakravarty and Shtub (1986) used iterative linear pro-
gramming to minimise the total cost, e.g., labour cost, hir-
ing, and layoff in a long cycle time assembly line by peri-
odically varying the line's cycle time due to the learning 

effect. They concluded that a more efficient line design 
could be achieved by implementing varying cycle times. 
Chakravarty and Shtub (1992) later extended their pre-
vious publication by integrating mixed-model LCs with 
aggregate planning. They proposed a non-linear integer 
optimisation model that adjusts the capacity to varying 
demand while minimising the production and buffer stock 
costs. The proposed model can be used for the evaluation 
of line design alternatives and for choosing the most effi-
cient line configuration during the start-up phase.

Bruno et al. (2021) analysed the effect of learning on task 
assignment to operators and on-line balancing. The authors 
did not aim to find an optimal solution but compared differ-
ent real-time task allocation strategies. They recommended 
larger batch size to maximise the operator's and stations' 
efficiency during the learning phase.

6.3.2 The effect of deterministic learning in SALBPs
Despite their limitations in reflecting the complexity of 
real-world ALBPs, several research papers have addressed 
SALBPs by considering the effect of learning in a deter-
ministic context.

Cohen and Dar-El (1998) were the firsts to consider 
incorporating learning effect in SALBP-1. They solved 
SALBP-1 by considering the effect of learning through two 
different approaches: cost minimisation and profit maximi-
sation. In each approach, the optimal number of worksta-
tions was analytically derived via makespan (also referred 
to as throughput time) formulation with deterministic task 
times. The major simplification in their paper is the possi-
bility of splitting task times and station times freely.

Toksarı et al. (2008) developed an algorithm that aims to 
minimise the number of stations in simple (SALBP-1) and 
U-shaped assembly lines (UALBP-1) by adopting the posi-
tion-dependent LC proposed by Biskup (1999). Applying 
the algorithm for the widely known Jackson 11 problem 
(Jackson, 1956), they demonstrated that SALBP-1 and 
UALBP-1 with homogeneous learning are polynomially 
solvable and that the inclusion of learning effects leads to 
fewer stations than intuitively predicted.

Otto and Otto (2014) addressed SALBP-1 with learn-
ing effect during the production ramp-up phase and pro-
posed a heuristic method to minimise the number of sta-
tions and shorten the learning stage. Several realistic 
assumptions were considered to account for the model's 
applicability, e.g., the integrity of tasks and individual 
LCs for each task. The authors showed that the duration 
of the learning stage can be shortened by 10% if the rec-
ommended approach is adopted.
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Table 1 Classification of the literature based on ALBPs and ALs' characteristics

Authors
ALBP type Task time type Layout type Product type Workflow type

SALBP GALBP Deterministic Stochastic Straight U-shaped Parallel Single
model

Mixed-
model Paced Un-paced

Globerson 
and Shtub 
(1984)

Others 
(Line 

utilisation 
maximisation)

X X X X

Chakravarty 
and Shtub 
(1986)

Others
(Labor cost 

minimisation)
X X X X

Chakravarty 
(1988)

Others
(Total 

idle time 
minimisation)

X X X X

Chakravarty 
and Shtub 
(1992)

Others 
(production 

and buffer cost 
minimisation)

X X X X

Karni and 
Herer (1995)

Others
(Throughput 

time 
minimisation)

X X X X

Cohen and 
Dar-El 
(1998)

SALPB-1 X X X X

Cohen et al. 
(2006)

Others
(Throughput 

time 
minimisation)

X X X X

Cohen et al. 
(2008)

Others
(Throughput 

time 
minimisation)

X X X X

Toksarı et al. 
(2008) SALPB-1 UALBP-1 X X X X X

Toksarı et al. 
(2010a) SALPB-1 X X X X

Toksarı et al. 
(2010b) SALPB-1 X X X X

Hamta et al. 
(2011)

Others 
(Cycle 

time, total 
equipment 
cost and 

smoothness 
index 

minimisation)

X X X X

Hamta et al. 
(2013)

Others 
(Cycle 

time, total 
equipment 
cost, and 

smoothness 
index 

minimisation)

X X X X

Otto and 
Otto (2014) SALPB-1 X X X X
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Li and Boucher (2017) presented a procedure to solve the 
SALBP-1 dynamically when learning occurs in an auto-
mated simple assembly line. The authors introduced back-
ward induction rules to assist the procedure in solving 
the problem backward. They demonstrated that due to 
the introduction of the recommended procedure line effi-
ciency increases, and the idle time of stations decreases.

El Abidine et al. (2022) formulated a modified mixed 
linear programming model that solves the SALBP-1 
dynamically to find the optimal number of stations when 
operators' learning prevails. The authors applied Wright's 

LC (Wright, 1936) with and without plateau assuming 
homogeneous learning for all the stations. Through prac-
tical examples, they have demonstrated that the optimal 
number of stations decreases during production because 
of learning and that the speed of decrease slows as the 
learning rate increases.

6.3.3 The effect of deterministic learning in some 
GALBPs
The assumptions underlying SALBPs are very restric-
tive when the operation of real-world assembly line must 

Authors
ALBP type Task time type Layout type Product type Workflow type

SALBP GALBP Deterministic Stochastic Straight U-shaped Parallel Single
model

Mixed-
model Paced Un-paced

Koltai et al. 
(2015) X X X X

Rabbani 
et al. (2016)

UALBP-1,2,3
+Others

(Line cost 
minimisation)

X X X X

Li and 
Boucher 
(2017)

SALPB-1 X X X X

Li (2017) ALBP-2 X X X X

Koltai and 
Kalló (2017) X X X X

Lolli et al. 
(2017) ALBP-1 X X X X

Lolli et al. 
(2018) ALBP-1 X X X X

Wang et al. 
(2019)

UALBP-1,2 X X X X

Butturi et al. 
(2020)

Others
(Total cost 

minimisation)
X X X X

Asadi-
Zonouz et al. 
(2020)

MMALBP-1 X X X X

Bruno et al. 
(2021)

Others
(Workers and 
line utilisation 
maximisation)

X X X X

Eslamipoor 
and Nobari 
(2021)

MMALBP-3 X X X X

Perez-
Wheelock 
et al. (2022)

Others
(Demand-

driven 
rebalancing)

X X X X

El Abidine 
et al. (2022) SALPB-1 X X X X

Table 1 Classification of the literature based on ALBPs and ALs' characteristics (continued)
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be studied. Therefore, researchers have intensified their 
efforts to identify, formulate and solve more realistic 
ALBPs including the effects of learning.

Rabbani et al. (2016) developed a bi-objective optimi-
sation model for a mixed-model UALBP by considering 
operator's learning. The model's objective function con-
sists of two parts. The first part is related to type 1, 2, 
and 3 ALBPs, while the second is related to ALB consid-
ering human related parameters, i.e., salary, hiring and fir-
ing costs, training costs.

Li and Boucher (2017) presented a procedure to solve 
the SALBP-1 dynamically when learning occurs in an auto-
mated single-model straight assembly line. The authors 
introduced backward induction rules. They demonstrated 
the capability of the procedure to increase line efficiency by 
minimising the number of stations and decreasing idle time.

Wang et al. (2019) established a non-linear integer pro-
gramming model coupled with a genetic algorithm to balance 
mixed-model UALBPs by incorporating the learning effect. 
Several constraints were considered, e.g., opening order of 
multiple products, workspace limitation and assembly tech-
nique restriction. The results showed the model's validity 
when reducing cycle time, increasing the balance ratio of 
the assembly line, and decreasing the standard deviations of 
task times. Asadi-Zonouz et al. (2020) used a hybrid uncon-
scious search algorithm to solve a  mixed-model type-1 
ALB (MMALBP-1) in a parallel assembly line where the 
learning effect is present. They considered several realis-
tic constraints, e.g., zoning constraints, sequence-depen-
dent set ups, and operators' learning effects. Compared with 
other algorithms, they showed that the applied algorithm 
outperforms other procedures in terms of efficiency, espe-
cially when solving large-size problems.

6.3.4 The effect of deterministic learning on assembly 
line's throughput time
Besides the previously mentioned ALBPs, a handful of 
research papers touched upon the effect of learning on 
throughput time as a crucial metric which determines the 
production output.

One of the first papers related to throughput was pub-
lished by Karni and Herer (1995) where they developed 
two heuristics: a linear programming model and a geomet-
ric mean ratio of successive task times model. The models 
determined the optimal task assignment to workstations 
when minimising the throughput times in a small-batch 
production environment. The authors demonstrated that 
optimal solutions are based on allocating work to stations 
in decreasing proportions, thus more work is assigned to 

the first station than to later stations. Cohen et al. (2006) 
addressed the same problem by developing a non-linear 
algorithm that minimises throughput time of low-demand 
products. The authors simplified the problem by making 
several assumptions, e.g., homogeneous learning for all 
the stations, no buffer between stations, and infinite divis-
ibility of tasks between stations. They have shown that the 
optimal Throughput time requires an imbalanced alloca-
tion of work to stations in the presence of learning. Later, 
Cohen et al. (2008) revised their work by assuming differ-
ent learning rates for workstations and showed that their 
previous conclusion concerning imbalanced allocation of 
work to stations in the presence of learning remains valid.

Koltai et al. (2015) developed an algorithm to calcu-
late the throughput time of a production run in the pres-
ence of learning characterised by exponential LC and 
with homogeneous learning. The authors derived many 
theorems that serve to track the bottleneck shifts during 
learning and estimate the throughput time. Koltai and 
Kalló (2017) extended their work by analysing the sensi-
tivity of throughput time with respect to the learning rate 
in a simple assembly line. They proved that the number of 
bottleneck shifts increases as the learning rate decreases. 
Furthermore, they underscored the importance of estimat-
ing the learning rate correctly, as the throughput time is 
very sensitive to changes in the learning rates, especially 
at small production quantities.

6.4 The effect of stochastic learning in ALB
Labor-intensive assembly lines intrinsically exhibit high vari- 
ability in task times due to the human nature of the work.

Hamta et al. (2011) addressed a multi-objective single 
model stochastic ALBP by developing a multi-objective 
mixed non-linear programming model. Their approach 
was based on three objectives simultaneously: cycle time, 
total equipment cost, and smoothness index minimisation 
where task times are forced to vary between a lower and 
an upper bound and are updated depending on the oper-
ator's LC and setup sequence. Hamta et al. (2013) dealt 
again with the same multi-objective ALBP by introduc-
ing a hybrid meta-heuristic approach with Biskup (1999) 
LC. Through practical examples, the authors showed that 
the developed algorithm outperforms other existing algo-
rithms in terms of execution speed.

Lolli et al. (2017) were the first to investigate a sto-
chastic SALBP-1 with a learning effect. Using the Kottas-
Lau (1973) heuristic coupled with the well-known Wright's 
curve (Wright, 1936) with a plateau, they showed that 
the optimal solution is affected by learning over time. 
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To  include the human-machine collaboration, Lolli 
et  al.  (2018) addressed the stochastic SALBP-1 again by 
adopting a new LC where subtasks are performed partly 
manually and partly automatically, and task times are 
updated accordingly. The  results showed the significant 
effect of learning on the optimal balancing solution.

Li (2017) extended their previous work by considering 
stochastic task times in an automatic assembly line where 
the agent's performance improves due to learning. They 
developed an optimisation model that aims to minimise 
the cycle time (SALPB-2) via dynamic line rebalancing.

6.5 The effect of learning and other effects in ALB
Some research papers considered simultaneously learn-
ing effect with other effects in ALB. Toksarı et al. (2010a) 
addressed SALBP-1 by formulating a mixed non-lin-
ear programming model that considers simultaneously 
learning effects with task deterioration, i.e., an increase 
in task times due to repeating the same or similar tasks. 
They concluded that the problem is polynomially solvable. 
Toksarı et al. (2010b) published another paper addressing 
SALBP-1, but this time, under four joint combinations of 
two learning effects.

7 Discussion
Most research papers on ALBPs and learning effects 
focus on GALBPs (20 papers). The explanation is straight-
forward, GALBPs provide more flexibility to formu-
late the different practical conditions of assembly lines. 
Furthermore, most research papers assume deterministic, 
straight, single-model, and paced assembly lines. Among 
the reviewed 29 papers, 23 papers assumed determinis-
tic learning against only 6 papers for stochastic learn-
ing, 26 papers assumed straight lines against 4 papers for 
U-shaped lines, and only 1 for parallel lines, while none 
dealt with two-sided lines. Regarding the product type, 
24 papers assumed single-model against 5 for Mixed-
model, while multi-model has been ignored. Seventeen 
papers assumed a paced line, while only 12 addressed 
an un-paced line. Therefore, future research work needs to 
correct the underlying assumptions and account for real-
world ALBPs in all their diversity.

Despite growing efforts to bridge theory and practice, 
the practical relevance of research results about ALB with 
learning remains limited. One of the limitations concerns 
the underlying assumptions that tend to oversimplify the 
real complexity of problems. For instance, most research 
studies addressing workforce allocation assume the same 

LC model for all workers. We understand, however, that 
a single LC model may not be able to capture the worker's 
personal learning experience. A promising course of action 
for future research is the application of different LC models 
based on the worker’s individual characteristics (e.g., age, 
gender, prior experience, and level of education, among 
others) to better account for the workers' learning process.

The incapacity of current procedures to solve medium 
to large-size problems (30+ tasks) remains a challenge to 
solving practical ALB problems with learning. The ALBP 
is NP-hard since a simplified version of the problem, 
i.e., the one with no precedence constraints between tasks, 
is a bin-packing problem that is NP-hard in the strong 
sense. The existing optimum-seeking algorithms can 
merely be used to evaluate the performance of heuristic 
procedures by finding the optimal solutions to small-size 
problems. Hence, developing algorithms to solve realis-
tic-size ALB problems with learning within acceptable 
computation time is another issue for future research.

In the presence of learning, the optimal solution is 
highly sensitive to the worker's learning rate, as a slight 
change in the learning rate may affect the solution's opti-
mality. In practice, though, it is difficult to determine the 
worker's learning rate accurately. Analysing the shift of 
the optimal solution according to the change in the learn-
ing rate is essential in such cases. As most studies on ALB 
with learning lack such an analysis, we recommend that 
future studies conduct a sensitivity analysis to investigate 
the robustness of their solutions.

8 Conclusions
In this paper, the relevant literature on ALB with the learn-
ing effect has been explored. First, assembly lines based 
on their features have been characterised and ALBPs 
based on their underlying assumptions have been classi-
fied. Then, the importance of learning effect in ALB has 
has been discussed and the most relevant LCs has been 
explained. Finally, we have reviewed and classified the 
existing literature on ALB with leaning effect. 

The review shows the growing interest in considering 
the effect of learning in ALB, although the literature is not 
very extended yet, and many research topics remain unex-
plored. We have also observed a tendency to address more 
generalised problems (GALBPs) rather than simple prob-
lems (SALBPs), presumably as they offer more flexibility 
with regard to modelling the different ALBPs. The review 
has also revealed that certain assembly line characteristics 
are more explored than others, e.g., deterministic, straight, 
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single-model, paced assembly lines. Therefore, we rec-
ommend that future researchers diversify their model 
assumptions in a way that accounts for the large variety of 
real-world ALBPs.

It is hoped that this review can be a valuable reference 
for those who wish to undertake new research relating to 
ALB with a learning effect.
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