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Abstract
It is suggested that economic problems with stochastic character can be easily solved if
the cost variables, which are stochastic in nature, have as their source the stochastic char-
acter of the failure. The economical aspects of reliability and the knowledge of reliability

engineering in applied economic analysis are of much more importance than it is devoted
in literature. This paper presents some examples of this issue.

In the first part, the present value computation technique using transform technique
is outlined, which, is rarely applied in economics analysis. The second part shortly sum-
marises the most important theorems of reliability engineering. Finally, in the main part,
a cost model is presented which can be used to address stochastic economic problems,
where sources of stochastism are failure processes.
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1. Introduction

Economic analysis (engineering economics) and reliability engineering usu-
ally appear as independent disciplines to be dealt with and taught sep-
arately. Although most comprehensive textbooks of both fields (such as
PARK and SHARP-BETTE, 1990; GossgNn, 1991; IRESON and CoOoMBS, 1988;
GROSH, 1989) make some direct or indirect hints at their relations to the
other discipline, yet, these references — often only in some words — suggest
a very loose and superficial connection. In my opinion, this is not the case.
Many stochastic economic problems can only be managed with thorough
knowledge of both economic analysis and reliability engineering.

In this paper I summarise some traditional basic concepts and new
approaches of economic analysis and reliability engineering with the help
of which I will find a solution for problems involving both disciplines. I
think that all this will also demonstrate the close connection of both sci-
entific fields.
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2. Some Parts of Economic Analysis
2.1 Present Value of Cash Flow Series

The theoretical and practical importance of present value and net present
value is well known. Only the most important relations will be summarised
below.

2.1.1 Presenti Value of Discrete Cash Flow Series

P(i)= ifh(l-:-z')", (1)

where

i the discount rate

P(i): the present value under i

the number of compounding periods {usually

2.17.2 Conitinuous Compounding
in (e’xﬁineﬁ“i‘\g} economic analysis, vear is usually used as the interest
period because iny i i 1
a calendar vearis a

=1+ M -1, (2
where
i the effective annual interest rate
T the nominal interest rate per year
M: the number of interest (compounding) periods per vear
r/AL:  the interest rate per interest period
Assuming a compounding of infinite {frequency, we obtain:

fepr = lim (1+ U) T 1= -1 (3)

J Moo
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In this case, we speak of continuous compounding. (It is worth mentioning
that approximation of an in reality annual compounding by a continucus
compounding does not evolve a serious error. For example, if 7 =10%, then
i == 10.5%. Therefore it is usually allowable to use this approximation, in
such cases where the use of continuous compounding seems to be much
more practical.)
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It is often appropriate tc treat cash flows as though they were continuous
} A ‘ 11 ; representation is

orm and gradient

nuous cash flow differs from the dis-
as Fy, becomes continuous f(¢) and
inuous compounding is e — 1,

1ation yields

.
>3 — £y T g Iy
1(1)———;‘/({)6 av '\,)
ot
i
where
L7 it o ey e L cr Lraggn ot ,”‘} .y 1
HE) - continuous cash fow function of the project
¥ e nominal interest rate [r=In{1+1)]

e time expressed 1n vears

2.2 Application of Transform Technigues in Compuiation
of Present Values

Papers on application of various transform techniques in economic analyses
have been appearing in bibliography of engineering economics in the early
seventies (BUuck and HiLr, 1971, 1974, 1975 and MuTH, 1977). I will
shortly demonstrate the application of the Laplace transformation.

2.2.1 Application of the Laplace Transformation in
Determination of Continuous Cash Flow Present Value

The general formula of present value of continuous cash flows has been
demonstrated in Eg. (4). As Buck and HirL (1971) recognized, the gen-
eral form of this integral bears a close resemblance to the definition of the
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Laplace transforms. That is, if the function f(¢) is considered to be con-
tinuous, then the Laplace transform of f(¢), written L{f(#)}, is defined as
a function F(s) of the variable s by the integral

3]

L{f(t)} = F(s) = [ f(t)e dt ()

<

over the range of values of s for which the integral exists. Replacing s
in Egq. (5) with the continuous compound interest rate r simply generates
Eq. (4); thus, taking a Laplace transform on the cash flow streams over an
infinite horizon time (PARK and SHARP-BETTE, 1990):

P(r)=L{f(t)}. (6)

As Laplace transform of the most important functions can be found in
tables (e. g. FODOR. 1966). and the operational rules of Laplace transform
are also known (e.g. FODOR 1966), the almost optional present value f(7)
can be relatively simply determined. On the basis of the above, we can
also determine the present values of the general form of the most important
continuous cash flows. By tabulating these present values, we obtain a well
applicable tool for quick determination of present values of cash flows with
different characteristics. represented in Table 1.

3. Some Parts of Reliability Engineering
o
3.1 Basic Formulations

useful life (or length of hife. or time to ‘
piece of equipment). The failure law for the component can be described

in several wayvs. Perhaps the most fundamental formulation is in terms of

3

F(1), the cumulative distribution function defined as the probability that
the unit ‘lives’ for at most time ¢, and which we write as:

F(t)= P{T < t}. (7)

This is also referred to as the unreliability function. An equivalent and
sometimes more useful formulation is the reliability function R(¢), the prob-
ability that the component lives longer than time 7, which is designated as:
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It is traditional also to describe the failure law in terms of the density
function

f(t) = F'(t) (9)

which must have the following properties that

/f(t)dt ~1. (10b)
0
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3.2 Renewal Processes

We have frequent occasion in reliability engineering to work with renewal
processes, as typified by the following situation. Let an equipment consist
of renewable units. Let this equipment start to work at time t = 0. The
m-th unit of the equipment works until it fails at time ¢y;, when it is
instantaneously replaced by a new one. This new unit in turn functions
until its failure at time ¢,,9, whereupon it is immediately replaced, and so
on. The failures occur at random times depending on the same probability
law about which various assumptions can be made. Let Nn(#) be the
integer random variable that designates the number of failures of m-th
unit by time ¢. It is desired to formulate an expression for

Prn(t) = P{Nm(t) = n} (1)

the probability of n failures of m-th unit by time ¢. Let {7,; be the failures-
free working time of m-th unit between i-th and (i — 1)-th failures. If all
Tmi are independent random variables with the same distribution. then we
can define the expected value and the variance of N,,(¢) discrete random
variable, in knowledge of the commutative distribution function Fin(#) of
the continuous random variable 7. The expected value of Np(¢). 1. e. the
number of failures of m-th unit by time ¢, is the so-called renewal function

Dm(t). (GNEDENKO et al., 1965

_ N Iy { 19
= il Lo
Vi nnl) J
n+1
Tretnn £ L sl e T £5 1s e e FAPIN e ]
Instead of function ? ot L) 1Ls derivative is oitell examined
\ !
dn(t) = Do (1) (14)

This is the so-called renewal density function that gives the

i€l k)‘ Th(:
failures occurring during the next unit o f 1

time for all moments ¢ (if the unit
of time is small) (GNEDENKO et al., 1963). From Eq. (9) and Eq. (14}, it
can be deduced that the renewal density
following form of the infinite series:

e
)= Zfrnn(f)~ (

n=1

imction can be expressed in the

ot
<t
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As the examined equipment consists of M independent renewable units,
thus the renewal function and the renewal density function of the equipment
are:

M

D(t)= > Dm(?). (16)
m=1
M

d(t) =Y dml(t). (17)
me=1

(GNEDENKO et al., 1963).

‘here A;. the parameter of the exponential distribution, is the so-called

olsson (1ene'\«a1) rocess. in this case Pmn(z‘). D a(t) and dm(?) can be
written in the following simple forms (GNEDENKO et al., 1965):

"U(“

P‘mz P{“; )= 7?} = (Am —e (19)
dom(t) = Am. (21)

3.8.2 Renewal Process with Normal Distribution

If the distribution of 7, is a normal distribution and we assume that ¢ <<
i, where o is the standard deviation and u is the expected value of 7,, then
D (t) and dm(t) are given as follows (GNEDENKO — BELJAEV — SOLOVIEV,
1965):

o

Dm(t)=S @ (t — n“), (22)

n=1

@({:—}\/ﬁ j e 7

where
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which values can be easily determined by the help of tables (e. g. (GROSH,
1989), and

(23)
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This renewal density function has a very characteristic wave shape, which
is depicted in Fig. 1.
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Fig. 1. Density function of a renewal process with normal distribution
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ppropmate data. An essential part of ihese necessary daLa epresent
cost data. thus, their estimation with the highest possible accuracy is a
task of key importance.

In the opinion of IRESON and CoOOMBS (1966), the majority of cost
estimating methods is based on the premise that the system cost is in a
quantifiable way logically related to some of the system’s physical or per-
formance characteristics. This is generally derived from historical cost data

by regression analysis. The most common form of estimating algorithm is:

C = flz1,....2n), (24)



where

oF the amount of cost

7 a mathematical function

T .Zn: cost variables correlated with some physical or

performance characteristics of the system (equipment).

this approach is its easy application. Its
ge. on the o(hex nano is that it gives a deterministic model for

T ns an exaggerated simplifi-
as well, We can derive from
In this case, naturaﬂ‘f

models can give in many cases
ase ot such cost variables,
ges and which have very
ti aracter and, concern-

tainly seem to be too com-
ut in many cases it is not so.

> functions of cost

2. These variables should be independent from each other.

3. The stochastic character of the change of the amount of cost has
its source in the stochastic character of the failure (Of course in the
presented model we can manage stochastism of other sources as well,
but this paper focuses on problems which can be approached with the
help of reliability engineering).

4. We should possess functions of cost variables to be managed in a

deterministic way (i. e. with sufficient data to determine these func-
tions).
5. We should possess sufficient data to determine the probability func-
tions of the renewal processes.
Following each failure the renewal (replacement) takes place in very
short time.

@)}




7. The performance of the equipment should be uniform in time.

The conditions No. 2. 6 and 7 can be broken up, but it makes the
model more complicated, thus I will not refer to them in this paper.
With all these conditions the model can be described as

L M
c(t)=> ki) + > amdm(t). (25)
(=1 m=1
where:
c(t): the cost density function showing the change of cost during

a time unit

(of course, if this time unit is small).
ki(t):  the time function of the cost component

induced by the [-th cost variables during the time unit.
dm(t): the renewal density function of the m-th unit

of the equipment (see Eg. (14)).
Am: the costs incurred at the failure (replacement) of

the m-th unit of the equipment.

As in the economic analysis in general the task is to determine the
present value. so in the following the determination of the present value
will be presented.

For analysis the time interval should last from 0 to

As in the case where the amount of the cost is a random variable, the

o

aim 1s to determine the expected value of the amount of cost until 7
The present value of the deterministic part of Eg. {23}
L
N
%, W £
g kit

=1
gives the sum of present value of the components. The present value of the
components can be easily determined with the help of Table 1. The results
can also be considered as expected values. where the variances are zeros.
The determination of the present value of the stochastic part o

Eq. (25)

1~y

seems to be more complicated. For the sake of better understanding, let
us examine a simple stochastic case. Let the ¢ timing of F cash flow be a
random variable {(as can be seen in Fig. 2).
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‘ash flow with uncertain timing (source: ParK and S#arP-BETTE, 1990}

Following this, the expected value and the variance of the present
value of ' at a nominal rate of » (on the basis of PARK and SHARP-BETTE,
(1990) are given as follows:

(26)

= FE(e™ ™), (27)

where f(t) denotes the probability density function about the timing of F.
From Chapter 2. the expression for

/f(t)e_rtdt
0

is known as the Laplace transform of the function f(¢) and is denoted by
L{r). Since the Laplace transform of most standard forms of probability
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functions is known (e.g. in Park and SHARPE-BETTE, 1990), we may easily
calculate E(e™"). That is,

E(e™™) = Lif(t)] = L(+). (28)
The variance computation is
2

Var(e™™) = L(2r) - L{r)".

The task is to determine L {r), the Laplace transform pair of dn(f). The
expected value and the variance of present value of the stochastic part of
Eq. (25) are:

M Rt
E[P(r)] = Z E{Pn(r)]= D @mLm(r) (30)
m=1 m=1
and
M %
- ‘ =, . 2 + ]
Var[P(r)l = ) Var[Pn(r)] = A (\L,MEI)»—LWU) ) (31)
m=1 m=1 ‘
or if time horizon lasts from 0 to 7T
M M
- T . = . s . T P P
E[P (rj]= }J E[Pi(]‘)J = L angz(\m (32)
m=1 =1
and
M
VarlP ()= 3V (33)
m=1

T denoted the present value and the Laplace transform

where P* and L
irom O to 7.
If d;n is the renewal density function of a Poisson renewal process (see

Eg. (21)), we have a very simple matter, because

E[Pm(r)] = L{am /\1 } - 7(; (34)
and
EPAM] = L {am s} = S (1- 7). (35)
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In the case of renewal process with normal distribution, we do not have
to face such difficult problems either, if p << I. Then Eg. (23) is well
approachable with the function:

dm(t) =

(36)

= [

(see Fig. 1) (GNEDENKO et al., 1965). Then the case is equal to the earlier
one presented for the Poisson renewal process (see Eg. (34) and (35).

If pisnot << T, then the task is fairly difficult. We have to determine
the Laplace transform pair of Fq. (23). As we know the Laplace transform
of a sum 1s the sum of the Ta’)lace transforms of the elements, so the

Li(r). (37)

As (o << p. thus Lp{7) can be closely approximated as

Z La(r). (38)

where > L dwotes the rounding-off to the next whole number.

Thc 135L task is to determine Ln (r), the Laplace transform pair of

T
(t—np)?
B C '77"4"
ovV2nmw
0

which can be given as follows:

e

T 2
. t—np}”
LIty = -—-%-_/@'(9m2 e Tdt (39)
oV 2nw ]
— ‘@(/—(-——{—70—-— @(\/—(ro-——)ﬂ

If

p=Ty— 5
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and
qg=r10 — &.
d e
then

Q

LX) = e (@ (VA +9)) — 2(av/m)] (40)

On the basis of the above, the expected present value of this case can be
also easily determined as:

EPa(] = e[ (va(= +a)) - &(avi) .

n=1 :

(41)

S—

i

And finally, T present Fig. 3, which represents a ¢(?) cost density function,
and consists of three different cost components with different characters.
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Fig. 5. Cost density function, which consists of three different
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different characters.
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Line 1 represents the renewal density function of a renewal process with

normal distribution (g = 2,0 = 0.3) (see Fg. (23)), where the cost of a

failure is a1 = $5,000. We can calculate the expected present value of this

cost component at nominal rate 10% and time from 0 to 4 with the help
f Eq. (39) and Eg. (40) as:

E[P/(10%)] =

the cash fow stream of a deterministic cost component

1 T S
(f(t) = OOO@ 0.9¢ )A The present value of this stream until T=4 can be
easily determmed ith the help of Table I
c53 1 e 55,000 1 = o H0.150.9))
E[F(10%)] = 5% 09( —e )
The expected present value of c(t) time from 0 to 4 is the sum of the three

comp onents:

E[P*(10%)] = E[P{(10%)] + E[P5 (10%)]) + E[P; (10%)] = $13,723.

5. Sumrmary

The computation of the present value of many stochastic economic prob-
lems can be easily managed using a cost model based on reliability engineer-
ing approach. This is therefore achieved by using the Laplace transform
pairs of the main renewal processes, as they give simple functional forms.

It is recommended that further literature reviews need to deal with
these issues more thoroughly.
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