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Abstract

The Analytic Hierarchy Process (AHP) is an extensively used tool for setting up the rank
order of the alternatives in multiple criteria decision making problems. AHP has been
widely applied in practice with inconsistent paired comparison matrices. In this case,
however, the rank order of the alternatives does not remain stable, a rank reversal may
occur. In this paper it is dexrzonstrawd that this phenomenon is inherent in AHP even if
the matrix is slightly inconsistent only. Conditions and regions of such a rank reversal are
also given.
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1. Introduction

Indigenous to many real world systems is the problem of choosing the best
alternative from a set of competing alternatives under conflicting criteria.
The Analytic Hierarchy Process (AHP) is a multicriteria decision mak-
ing method that represents the decision problem in a hierarchical network
structure. AHP develops priorities for the alternatives based on the deci-
sion maker’s judgment throughout the system by utilizing pairwise ratio
estimates as entries of its paired comparison matrix and then determining
the relative dominance (rank order) of the alternatives on a ratio scale.
Ever since the development of the AHP in the late 1970’s (SaaTv,
1977), a great number of criticisms of this approach have appeared in the
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literature. One of the more controversial aspects of AHP is the phenomenon
of rank reversal. It has been shown that rank reversal in AHP may occur
due to (1) if the pairwise comparison matrix is inconsistent. and (ii) when
synthesizing the local ratio-scale priority weights (the normalized princi-
pal eigenvector components) into global weights by means of an additive
function even if the matrix is perfectly consistent. This paper presents the
analysis of rank preservation and reversal in AHP in relation to case (i).
Case (1i) is not examined in this study. The interested reader may find
a discussion of this issue e.g., in DYER and WENDELL (1983), SaL0o and
HAMALAINEN (1992) and SCHONER, WEDLEY and CHoO (1993).

The occurrence of such a rank reversal might be serious in practice
when a wrong alternative is chosen by the decision maker as the best.
Some simple examples have made it clear that the introduction of a new
alternative may reverse the rank order of the old alternatives if it is a replica
{copy) of any of the old alternatives (BELTON and GEAR. 1983}, or even if
it is not a replica, but if it differs entirely from the old alternatives (DYER
and WENDELL, 1985). Both proponents and opponents of AHP agree that
these types of rank reversal may occur, but disag‘ree on the legitimacy
of them. This problem has been considered by numerous authors and a
persistent debate has followed; see WATSOXN and FR ELING (1983), SaaTy
and VARGAS (1984). BELTON and GEAR ({1983). VARGAS (1983), HARKER

and VARGAS [(1087), Saaty (1987), SCHONER and \ DL} Y {1989, DYER

(1990), SAaATY (1990) and HARKER and VARGAS (19
The major goal of this paper is to demons‘tr" te that AHP is not an
adequat’e tool to handle multicriteria decision making problems as long as

s contaln even the

hes

the inconsistent ratio ’ A1e i the consistent

estimates in only a sin deviation
perfect consistency is int
pair of elements. If rank l‘ex'ersal occurs in this case, then. obuoush
result also holds for matrices with an arbitrary number of perturbed pairs
of elements, We consider a sing‘le criterion only.

Since decision makers almost always supply incounsistent ratio esti-
mates the resulting components of the principal eigenvector may produce
a biased ranking of the alternatives. By performing a comprechensive anal-
ysis we present conditions for the preservation and reversal of the rank
order of the alternatives for different cases. To provide these conditions of

a possible rank reversal it is required that the components of the principal
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eigenvector be given in explicit form. They have been developed in FARKAS
and ROzsa (1996) where a formal study of the solution to the algebraic
eigenvalue problem of the paired comparison matrices is presented.

]

Overview of Analytic Hierarchy Process

This section reviews the basic definitions of AHP that are relevant to our
subject. Basic notions and axiomatic foundation of AHP have been devel-
1 vy (1986). He defined the positive square matrix A€ Ry,
e paired comparisons of the alternatives with respect to a

nts of the pazred comparison matric A=(a;;), corre-

Jdues of alternative A; over alternative

sy

ach possible pair of the Jternaﬁvea
the alternatives are inversely related

1—'!

DEFINITION 1: The positive matrix A€ Ry, is called a reciprocal matriz
if its elements a;; satisfy the relation
1

aij = E— (
Jt

et
N

DEFINITION 2: The positive matrix A€ Ry, is called a consistent matriz
if its elements satisfy the relation

agaj, = ap Vi, g, k. (2)

Hereafter we recall (2) as the general consistency condition. If it does not
hold for any triad that may be composed from elements of A, then the
positive matrix A€ Ry, is called an inconsistent matriz.

The ultimate goal of AHP is to derive the relative dominance and
the rank order of the given set of alternatives. The relative dominance of
the alternatives gives the overall priority of an alternative over the other
alternatives with respect to a given set of criteria. We define this term in
the following way.

DerFiNIiTION 3: A positive real number representing a proportion of the
total priority of the decision maker that is allocated to the ith alternative
is called relative dominance (relative standing) of the ith alternative over
the other alternatives.

DeriNiTION 4: The preference order of the alternatives given by the deci-
sion maker is called rank order of the alternatives.
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A rank order of the alternatives is transitive if
A; > A; andA; > A, imply Ay > AL Vi, j k. (3)

The relative dominance of the alternatives is interpreted on a ratio scale,
whereas the rank order of the alternatives is usually given on an ordinal
scale. Thus, the rank order of the alternatives is automatically given if
their relative dominance can be determined.

SAATY (1986, p. 848) proved that the relative dominance of the ith
alternative is the ith component of the normalized principal right eigen-
vector of A, if A 1s a consistent matrix. In addition, he presented a proof
that this result also holds for a reciprocal matrix which is not necessarily
consistent (SAATY, 1986, p. 853).

The question we raise at this point is whether the components of the
principal eigenvector produce the true relative dominance, and hence the
true rank order of the alternatives when, in fact, A is noi a consistent
matrix. We will investigate whether the rank order of the alternatives
obtained for the consistent case is invariant to a slight perturbation in
a;; of a consistent matrix or not. This perturbation is assumed to be a
continuous function of one parameter.

In the next sections we study the behaviour of the components of the
principal eigenvector of the paired comparison matrix. We first define the
specific case where the paired comparison matrix is perfectly consistent.
Then, we discuss the simple perturbed case where one pair of elements
is ‘spoiled’ and therefore, the matrix becomes inconsistent. Finally, we
introduce the extended perturbed case where the matrix is augmented by
a_supplementary new column and row. The characteristic equati
these matrices will be given. The analysis of the rank reversal problem will
be performed by comparing the corresponding elements i
eigenvectors for the three cases under cons

t

3. Paired Comparison Matrices of 8

According to Definttton 2, any consistent paired comparison matrix

can be expressed as the product of a (column) vector u and a (row) vector
L
¥

H
p—

Ag =uv
where

v =[l,z1,22,...,Tn-1), @ >0 (=1,2,....n-1)



and

DT =diag< 171,79, .., Tno1 > (6)
and the vectere” =[1,1,..., 1], obviousl
D lAgD =ee’, (7)

That means Ag has zero eigenvalue with multiplicity n — 1 and a single
positive eigenvalue, A = n. The corresponding right and left eigenvectors
of Ag are u and v~ respectively.
In this context we examine matrices with

These matrices have a positive real eigenvalue of o aAzmaﬂ modulus which
is a simple root of the characteristic equation and all elements of the cor-
responding right and left eigenvectors are positive. Hereafter we will refer
to them as mazimal eigenvalue and principal eigenveciors (right and left)
of the positive matrix.

positive elements only.

4, Paired Comparison Matrices of General Form

DEFINITION 6: If the positive matrix A € Ry is reciprocal, but it is not
consistent, it will be called a general paired comparison matriz.

Two subcases will be distinguished: the simple perturbed case and the
extended perturbed case.

4.1 Simple Perturbed Case

In this paper the simplest case of general paired comparison matrices will
be considered only when a single pair of elements of a specific paired com-
parison matrix is ‘spoiled’.

DEFINITION T: If one pair of elements, say aj2 and a91 of a spoﬂed specific

paired comparison matrix has the form a2 = 21 +¢, ao1 = ET-E’ then
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it will be called a stmple perturbed paired comparison matriz depending on
one parameter, €.

If the components of the principal eigenvector of a simple perturbed
paired comparison matrix in the function of ¢ are developed. then the rank
order of the alternatives of the specific paired comparison matrix can be
compared with that of the sumple perturbed paired comparison matrix

In FARKAS and ROzsa (1996) it is proven that the characteristic poly-
nomial pa{A) of A is

pn(A) = det[AI ~ (n —2)Q], (9)
where
(10)
It should be noted that )
— > -1 (11)

since the elements of A are (finite) positive numbers. If r
eigenvalue of A, it can be obtained from the equation [cf.{9)]:

. ) ) ) L
rP—=nr°—(n-2)Q =0, (12}

where 7 > n [see FARKAS and R0Ozsa (1996)]. Tt

cipal eigenvector can be obtained from the one-ra

[u f ] since its columus are proportionzal to the m‘in(ngi

DEFINITION 8: If a sin Wple Denarb paired compazison matrix is bordered
£ .

This case occurs when any of the alternatives (say the kth one) con-
tained in the given decision problem is repeated in the course of the decision
process. The repeated alternative is called a replica or a copy.

Introducing the characteristic polynomial

)

AL - A —Xel” .

Poii(M k) = det , (13)
( / - (m)T 23 L
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T . .
where eg [Ov , 0,1-.0,...,0-], the characteristic equation for the
extended perturbed paned comparison matrix, A p, can be written as

Let the maximal eigenvalue of A g be denoted by Amax(k). In FARKAS and
R&zsa (1998) it is shown that (14) leads to the equations

L3 2 s\ ¢ 4z
Amay J} - ( -+ 1)}‘3‘51a*«<.7) - -7-(7’ - 2}(2 =0 if J = 1,2, (13)

and
Amax (k) — (n + i k=3,4...., 7 (18)

=
; (Amexiq)) qu (\)xnmxgq))}. g=1..... n
T, Fa - . o cxru} o v 3 Find +1 - 3 rs £ ou
In the next section we will consider the case when the first column of the

simple perturbed paived comparison matrix is repeated.

5. The Issue of Hank Heversal

The concept of rank rever
that for two consecutive e l‘,

of a specific paired comparison matrix
i < Uity (17)

holds. Further, suppose that for the corresponding two elements, uf](r)

and U~~1 () of the principal eigenvector of a simple perturbed paired com-
parison matrix,

us(r‘>uzs__u(7) (18)
holds (for any j). In this case we say that the rank order of the alternatives
i and (i + 1) has been reversed due to the perturbation. The reversal of
the rank order between the ¢th and (i + 1)th alternatives can be defined in
a similar way for the other cases.
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In this section we will investigate whether such a rank reversal might
occur at all
i) for the specific versus the simple perturbed case, and
il) for the specific versus the extended perturbed case, respectively.

By comparing the principal eigenvectors for the specific, for the sim-
ple perturbed, and for the extended perturbed paired comparison matrices
Ag, A and Apg, respectively, it turns out that their elements are propor-
tional to each other for the elements with indices 3 < j < n. Consequently,
no rank reversal can occur between any pair of these alternatives regard-
less of whether the elements a1 and ag2; of the specific paired comparison
matrix are perturbed or not, nor which of the columns k is repeated. For
all other alternatives, however, the occurrence of a rank reversal can not
be precluded. In subsections 5.7 and 5.2 the conditions of rank reversal
between the first two alternatives will be determined. The location of any
rank reversal will be given in the function of —LCT and r. The analysis of the
rank reversal issue will be presented in subsection 5.3.

According to the theory developed by Saaty the rank order (order
of magnitude) of the components of the principal eigenvectors determine
the rank order of the corresponding alternatives. Therefore, rank reversal
must not occur either in the specific versus the simple perturbed case or
in the specific versus the extended perturbed case. Based on the results
shown 1n subsections 5 i and 5.2, we present a detalled analysis of the
rank reversal issue in 4.3 where it becomes clear that the theory of relative
ing in the decision

dominance given by Sa ty contradicts the facts emer

o

making processes.
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Consider the case when 1 > 1. We
two elements of the 1111c1pa1 eigenvectors for the specific and the smmle
perturbed cases, denoted by A and B are given [see FaRKAS and R&zsa
(1996)}:

Specific case: Simple perturbed case:

Al 1 AS:p—(n—-1)

n—2 a7
. i S. 1 L |
B: 7 B . e+ L f

Iy I
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It is apparent that the rank order is A>B. Rank reversal occurs if
A% <BS ie.,if

1 . € ,
rp=(n-D]< ————— +(n-2)—]. (19)
z1(1+ —) £
]
After rearranging (19) the inequality

| s 2Un =D +rlr—n)fr—(n—2)] .
y(zy) = [r—(n—-1)]zf - ik ) ¥ rir = njir = (n )Jztr‘rlr—(nwl)] <0

{n—2)
(20)

L

F I
/

is obtained. The two zeroes of the polynomial y(xy), denoted by =y and
(1% -
z\"/, are functions of r and n

\ (U \
7 = fr{rong, x5 - folron),

and they provide the boundaries of the interval over which (20) is satisfied:

folron) < oy < fulr.n). 21
From (20) we obtain
PO
. &1 D
fvirin) = \’ \E
(22)
. . oo 3 g ’
Felron) =

where
a=2(n=2)+r(r—n)r—{n-2),

B=[r—-{n- 2)]\//(7’ —n){r?(r —n) +4(n - 2)},
2(n = 2)[r = (n = 1)}

i

5.2 Rank Reversal: Specific Case versus Exiended Perturbed Case

Assume that 27 > 1. We know that Amax(g) > n+ 1 and Amax(g) > r hold
for ¢ = 1,2,....n. In order to simplify notation, let Amax(j) = A

(7 = 1,2). The first two elements of the corresponding principal eigen-
vectors for the specific and the extended perturbed cases are given [see

FARKAS and ROzsA (1996)]:
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-}

Specific case:  Extended perturbed case:

A 1 A x—(n-1)
€
1 1 n—2 77
. = 7_1_ st
B: T BE: 11{1+1'€1+ A 1+l%}.
Rank reversal occurs if AL <BE. ie., if
A-A=(n~1 ———————-—/\+n—2 I. 23)
e iEm s LR (
After rearranging (23) the inequality
I 1 . “r 2 A .
o) = S =2)A=(n—1)ai— {2(n =2)+ S\~ (n = 2)][A = (n+ 1)]}as
+HA=n)n-2)<0 (24)

. . - s . - ) (L)
is obtained. The zeroes of the polynomial yf(m), denoted by Z; ' and

~(U) c .
Zy . are functions of A and n:

~(L - E (
1§ ' = jg“(/\, ). = fr (/\ n).
and they give the boundaries of the interval over which (24} is satisfied:
A E E -
j_;' (}\ n < xy < ff:i/\ n) (2)/

Irom (24) we obtain

where




5.8 Analysis of Rank Reversals

The basic idea in analysing a possible rank reversal is based on the deriva-
tion of a direct functional relationship among the maximal eigenvalues of
the specific, the simple perturbed, and the extended perturbed matrices,
n,7 and Amax(j). respectively. For a given ratio (567) the maximal eigen-
value 7 of the simple perturbed matrix A € Ry, can be found by solving

Eq. (12) where @ is given in (10}:

. &1 L ) .
of the extended perturbed matrix Arp € Ry, can be found by solving
Eq. (15)

[ EN?
3 \ W2 N/ P
Amex (J) = (n+ D Amax(j) — 2(n = 2) % = 0. (28)

_}_

Since a given ratio for (f—) applied to the case of a simple perturbed matrix
is identical to that applied to an extended perturbed matrix, this term can
be eliminated from Egs. (27) and (28). Thus, we obtain

A () = (n 4+ DAL () = 2(0° = nr?). (29)

Fig. 1 shows the functional relationship among the maximal eigenvalues
n, 7 and Apax(7), (j = 1,2) for a paired comparison matrix of order 3.
This graphical representation of the problem demonstrates that for any
given ratio (f;) , the maximal eigenvalues of the simple perturbed and the
extended perturbed matrices, r and Amax(j). (j = 1. 2} can easily be found.

Furthermore, using (29). Amax(j) can be considered to be a function
of r:

Amax(J) = A(r). (30)

Substituting (30) into (26) and introducing the functions

fLE(/\(7)n) = gr{r.n)
fEAE).n) = gu(r.m)

the interval (25) can be expressed in function of r as

(31)

gr(r.n) < zf < gu(r.n). (32)
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f1g. 1. Relationship among the maximal eigenvalues n,7 and Apmax(j), (J =

For feasible values of wi. the functions fi-{r. n), J L( n)and go(r.n), . (r.n}
are plotted for n = 3 in Fig. 2 [see (21) and {32)]. in order to study the phe-

nomenon of rank reversal. the behaviour of thes fzz,cuons is investigated
in the cases

[EEE N

is more complicated. I
certain value ro > n for which fi(rg.n)
For the other values of r we get

e
g

e

o=

go{r.n) < folron), i n<r <y,

and
geiron) > fr(ryn), i 79 <71 < <,

Kn—1)+EK2(n-1)2+4K(n — 2)

T =
0 oK
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where

and X\ is defined by (29) as a function of r.

Sign of
function Rank order
&
O o o
o [T e
& — ~ 9
(r.3) &: N oy :.:. 92 gg
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15 n o] oa
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E =0 >0
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- B —~ i
I gL(rl:S/} |
i ! | ! | ! | 1 i !
3 rE 4 5 6 7 8 r g

Fig. 2. Characteristic regions of rank reversals

Since the curves of the functions gu(r.n) and fo(r,n) plotted in Fig. 2
have no intersection within the range 1 < z7 < =0, for each value of r,
intervals of different lengths can be found in a manner that the sign of
the function gy (r,n) differs from the sign of fu(r.n). In an analogous
manner, intervals of different lengths can also be found within the range
0 < 271 < 1 where the signs of the functions f.(r.n) and g.(r, n) differ. The
only exception occurs at their intersection for r = r¢ given in (33) and (34)
where the function gi(r,n) crosses fi(r,n). These ranges of z1 contain the
set of all possible values of 1 which might appear in any simple perturbed
matrix and in their corresponding extended perturbed matrix, therefore in
these intervals rank reversals will always occur. Eventually, the spectral
properties of the defined matrices cause these rank reversals.
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Given any ratio of (—), the corresponding maximal eigenvalue of a
r

simple perturbed matrix can be found from Fig. 1. Let it be denoted by
r”. By finding the intersections of the plotted functions and a vertical
segment drawn over r”. six characteristic regions (1. through VI.) can be
distinguished. From (20) and (24), it is obvious that the quadratic func-
tions y(z1) for r = v and yE(;rl) for Amax = A(r7) are negative between
their two roots, whereas beyvond their roots, they are positive as shown in
Fig. 2. Rank orders are shown for each region by the arrows indicating
their directions. Thus, a downward-sloping arrow represents a descending
rank order. while an upward-sloping arrow indicates an ascending rank or-
der. Note that Fig. 2 refers to the case where a descending rank order is
given for the specific matrix, since z1 > 1.

In making use of these symbols, it 1s easy to find the regions of all

possible occurrences of rank re‘versals between any pairwise combination

es. Rank reversals occur within a specified interval of

associated two columns of Fig. 2. Single hatcned areas indicate the regions
for x1 wh :

the arrows are pointing into opposite directions in the
: )
the

ere rank reversals of A and B occur between the specific and the
general cases, whereas double hatched svmbols are used to indicate the

rank reversals between the simple perturbed and the extended perturbed
als occur:

cases. Hence. rank rever

’J7

spond 1o the relative dominance of the alter
importance. {n contrast to the rank order of
cept of relative dominance has not be T

he ordinal scale. Saat tv's
lent to the statement that t
provide the relative dominance Of d-e alter-

v



Through this paper we studied whether the eigenvalue method is a
proper tool for finding the true ranking of a set of alternatives or not. We

have shown that a continuous change in the perturbation parameter results
in the alteration of the order of magnitude of the elements of the princi-

pal eigenvector According to Saaty’s definition, this fact would imply the
change of Lhe rank order of Lhc alternatives. How rever, the rank order of
the ‘hus, we arrived at a contradiction.

clative dominance of the alterna-
he principal eigenvector conflicts
T 18 tnconsistent.

s Method of Analytic
sal - A Comment. Omega,

Jol.
DvYER, J. 9 1990 Rc ncuk on the Analytic Hierarchy Process. Management Science,

L J. of the Analytic Hierarchy Process.
Vo wagement, The University of Texas at
Austin, Austin.

FarkAs, A. — ROzsa, P. (1996): An Analysis of the Rank Reversal Problem of the
Analytic Hierarchy Process in Case of An Inconsistent Paired Comparison Matrix.

'

Working Paper 96/12. International Management Center, Budapest.
Harker, P.T. - Varcas, L. G. {1987): The Theory of Ratio Scale Estimation: Saaty’s
Analytic Hierarchy Troce<s, Moeanagement Science, Vol. 33, pp. 1383-1403.
Harker~P.T. - \f»\Dcw L. G. (1990): Reply to Remarks on the Analytic Hierarchy
- . Managemeni Science, Vol. 36, pp. 269-273.
SaaTy. T. L. (19 7): A Scaling Method for Priorities in Hierarchical Structures. Journal
Maihematical Psychology, Vol. 15, pp. 234-281.




78 A. FARKAS znd P. ROZS4

Saaty, T. L. (1986): Axiomatic Foundation of the Analytic Hierarchy Process. Manage-
ment Science, Vol. 32, pp. 841-855.

Saaty, T. L. (1984) Rank Generation, Preservation, and Reversal in the Analytic Hier-
archy Process. Decision Sciences, Vol. 18, pp. 157-177.

SaaTy, T. L. (1990): An Exposition of the AHP in Reply to the Paper ‘Remarks on the
Analvtic Hierarchy Process’. Management Science, Vol. 36, pp. 259-268.

Saaty, T. L. - Varcgas, L. G. (1984): The Legitimacy of Rank Reversal. Omega, Vol. 12,
pp. 514-516.

Saro, A. A, ~ HAMALAINEN, R. P. (1992): On the Measurement of Preferences in the
Analytic Hierarchy Process. Research Report A47, Helsinki University of Technol-
ogy, Systems Analysis Laboratory, Espoo. Finland.

SCHOYER, B. - WeEDLEY, W. C. (1989): Ambigucus Criteria Weights in AHP: Conse-
guences and Solmiona Decision Sciences, Vol. 20, pD 462-475.

ScHONER, B. - WEDLEY, W. C. - Cuaoo, E. U. (1993): A Unified Approach to AHP
with Linking Pins. Lurapean Journal of Opemtzom Re~ca7ch, Vol. 64, pp. 384-392.

Varcas, L. G. (1985): A Rejoinder. Omege, Vol. 13, p. 249,

Watson, S. R. - FREELING. A. N. 5.(1983};: Comment on: Assessing Attribute Weights
by Ratios. Omege. Vol. 11, p. 13.





