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Abstract 

The Analytic Hiemrchy Process CAHP) is an extensively used tool for setting up the rank 
order of the alternatives in multiple criteria decision making problems. AHP has been 
widely applied in practice with illconsistent paired comparison matrices. In this case, 
however, the riwk order of the alternatives does not remain stable, a rank reversal may 
occur. In this p,'Lper it is demonstrated that this phenomenon is inherent in AHP even if 
the matrix is slightly inconsistent only. Conditions and regions of such a rank reversal are 
iilso given. 

decision rllultiple criterir1-. ratio estirnation. 

" 1... 

Indigenous to many real world systems is the problem of choosing the best 
alternative from a set of competing alternatives under conflicting criteria. 
The Analytic Hierarchy Process (AHP) is a multicriteria decision mak­
ing method that represents the decision problem in a hierarchical network 
structure. AHP develops priorities for the alternatives based on the deci­
sion maker's judgment throughout the system by utilizing pairwise ratio 
estimates as entries of its paired comparison matrix and then determining 
the relative dominance (rank order) of the alternatives on a ratio scale. 

Ever since the development of the AHP in the late 1970's (SAATY, 

1977), a great number of criticisms of this approach have appeared in the 

1 This paper was partially supported by the Hungarian National Foundation for Scientific 
Research, Grant I\o.: T UJ4:32. 
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literature. One of the more controyersial aspects of .\HP is the phenomenon 
of rank reversal. It has been shuwn that rank reversal in AHP may occur 
due to (i) if the pairwise comparison matrix is inconsistent. and (ii) ,,;hen 
synthesizing tht~ local ratio-scale priority weights (the normalized princi­
pal eigenvector components) into global weights by means of an additive 
function even if the matrix is perfectly consistent. This paper presents the 
analysis of rank preservation and reversal in AHP in relation to case (i). 
Case (ii) is not examined ill this study. The interested reader may find 
a discussion of this issue e.g., in DYER and \YE:"DELL (19S.5), SALO and 
H.:\:VI.:\L.:\]:"E:" (1992) and SCHO:"ER, \YEDLE'{ and CHOO (1993). 

The occurrence of such a rank reversal might be serious in practice 
when a wrong alternative is chosen by the decision maker as the best. 
Some simple examples have made it clear that the introduction of a ne'\\" 
alternative may reverse the rank order of the old alternatives if it is a replica 
(copy) of an!' of the old alternatiyes (BETO:" and GEAR, 1983). or even if 
it is not a replica. but if it differs entirely from the old nlternatiyes (DYER 
iind \YE:'DELL. 1985). Both proponents and oppoIlPnts of AHP agree that 
these types of rank reyersal may occur, but disagree on the legitimacy 
of them. This problem has been considered by llUlllerous authors and Cl 

persistent debate has followed: see \YATSO:" and FREELI:"G (1983), SAATV 
and VARGAS (1984). BELTO:\ and GEAR (1985). V.-\RG:\S (1985). H.-\RKER 
and VARG.\S (1981). S:\:\1'Y (1987). SCllO\TR and \YEDLEY 1989j. DYER 
(1990), SAATY (1990) and H:\RKER and VARGAS (1990). 

The major of this paper is to demonstrate that .-"-HP is Hot an 
adequate tool to handle multicriteria decision makillg problems as long as 
the expert judgments comain evell the slightest degree of inconsistency. \\"e 
show that the eigenyalue approach used in AHP a nn"+,>C"T 1<:llll"c1l1 0 
if all the ratio estimates cere consistent. but that the method canllot 
true ranking of the alternatiyes if these estimates a.re inconsistent. Conclu-
sioHS are dra\YIl OIl the '" 1'<1 r>l P~T 

of the inconsistent ratio estimates differs from that of the consistent ratio 
estimates in only a single pair of elements. Thus, Cl slight deyiation from 
perfect consistency is introduced and is characterized by one perturbed 
pair of elements. If rank reyersal occurs in this case, then. obyiollsly this 
result also holds for matrices with an arbitrary number of perturbed pairs 
of elements. \Ye consider a single criterion only. 

Since decision makers almost al'ways supply inconsistent ratio esti­
mates the resulting components of the principal eigenYector may produce 
a biased ranking of the alternatiyes. By performing a comprehensiye anal­
ysis we present conditions for the preseryation and reversal of the rank 
order of the alternatiyes for different cases. To provide these conditions of 
a possible rank reyersal it is required that the components of the principal 
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eigenyector be given in explicit form. They have been developed in F.-\RKAS 

and R6zSA (1996) "'here a formal study of the solution to the algebraic 
eigenvalue problem of the paired comparison matrices is presented. 

2. Overview of Analytic Hierarchy Process 

This section reviews the basic definitions of AHP that are relevant 1:0 our 
subject. Basic notions and axiomatic foundation of AHP have been devel­
oped by SAATY (1986). He defined the positi've square matrix AE 
representing the paired comparisons of the alternatives ,,\'ith respect to a 
criterion C. The elements of the paired comparison matrix ). cone-

to the yalnes of alternative m'er alternative 
\virh respect to criterion C for each possible pair of the alternatiyes. 

The strength of preference yalues of the alternatives are inYersely related 
(reciproc al condition). 

DEFI::\ITlO::\ 1: The positive matrix is called a mainx 
if its elernents a;J the relation 

1 
(1) 

DEFI::\ITlO::\ 2: The positi've matrix 
if its elements satisfy the relation 

R'\Hn) is called a consistent matrix 

(2 

Hereafter "Ye recall (2) as the general consistency condition. If it does nl)t 
hold for any triad that may be composed from elements of then the 
pOSltlve matrix R,\f{n) is called an inconsistent matrix. 

The ultimate goal of AHP is to derive the relative dominance and 
t he rank order of the giyen set of alternati,'es. The relative dominance of 
the alternatives gives the overall priority of an alternatiye over the other 
alternatives with respect to a given set of criteria. \Ve define this term in 
the follO'l\'ing way. 

DEFI:,'ITlO::\ 3: A POSItIve real number representing a proportion of the 
total priority of the decision maker that is allocated to the ith alternative 
is called relative dominance (relative standing) of the ith alternative over 
the other alternatives. 

DEFI::\ITlO::\ 4: The preference order of the aiternatives given by the deci­
sion maker is called rank order of the alternatiyes. 
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A rank order of the alternatives is transitive if 

Ai> Aj andA j > Ab imply Ai > Ak Vi,j,k. (3) 

The relative dominance of the alternatives is interpreted on a ratio scale. 
whereas the rank order of the alternatives is usually given on an ordinal 
scale. Thus, the rank order of the alternatives is automatically given if 
their relative dominance can be determined. 

SAATY (1986, p. 848) proved that the relative dominance of theith 
alternative is theith component of the normalized principal right eigen­
vector of A, if A is a consistent matrix. In addition, he presented a proof 
that this result also holds for a reciprocal matrix which is not necessarily 
consistent (SAATY, 1986, p. 8.53). 

The question we raise at this point is whether the components of the 
principal eigenvector produce the true relative dominance, and hence the 
true rank order of the alternatives when, in fact, A is not a consistent 
matrix. \Ve \vill investigate \vhether the rank order of the alternatives 
obtained for the consistent case is invariant to a slight perturbation in 
aij of a consistent matrix or not. This perturbation is assumed to be a 
continuous function of one parameter. 

In the next sections we study the behaviour of the components of the 
principal eigenvector of the paired comparison matrix. \Ve first define the 
specific case where the paired comparison matrix is perfectly consistent. 
Then, we discuss the simple perturbed case where onc pair of elements 
is 'spoiled' and therefore, the matrix becomes inconsistent. Finally. ,ve 
introduce the extended perturbed case 'where the matrix is augmented by 
a. supplementary new column and rO'w. The characteristic equations of 
these matrices will be given. The analysis of the rank re-;;ersal problem v;ill 
be performed by comparing the correspoliding elements of the principal 
eigenvectors for the three cases under cqil~;lCleratlOl.l. 

3. Paired IVIatrices of ;':;I)eCl1!:lc Forn1. 

DEFI;\ITIO;\ .5: If the positive matrix E RM(n) is reciprocal and consis-
tent, it will be called a specific paired comparison matrix. 

According to Definition 2, any consistent paired comparison matrix 
can be expressed as the product of a (column) vector u and a (row) yector 

where 

T 
=uv, (4) 



and 

u= fL~,~, ... , 1 
- Xl x2 Xn-l 

T 

Introducing the diagonal matrix 

= diag < 1, Xl, X2,· .. , Xn-l > 

and the vector eT = [L 1, ... ,1]' obviously 

and the characteristic 

T = ee-

IS 

T] \n-l(\ ) - ee == /\ /\ - n~ / . 
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(5) 

(6) 

(8) 

That means has zero eigenvalue with multiplicity n - 1 and a single 
positive eigenvalue, A = n. The corresponding right and left eigenvectors 

T of are u and v- , respectively. 
In this context we examine matrices with positive elements only. 

These matrices have a positive real eigenvalue of maximal modulus which 
is a simple root of the characteristic equation and all elements of the cor­
responding right and left eigenvectors are positive. Hereafter we will refer 
to them as maximal eigenvalue and principal eigenvectors (right and left) 
of the positive matrix. 

4. Paired Comparison Matrices of General Form 

DEFI.\'ITION 6: If the positive matrix A E R,vl(n) is reciprocal, but it is not 
consistent, it ,,,ill be called a general paired comparison matrix. 

Two subcases \vill be distinguished: the simple perturbed case and the 
extended perturbed case. 

4.1 Simple Perturbed Case 

In this paper the simplest case of general paired comparison matrices will 
be considered only when a single pair of elements of a specific paired com­
parison'-matrix is 'spoiled'. 
DEFINITION 7: If one pair of elements, say Ql2 and Q21 of a 'spoiled' specific 
paired comparison matrix has the form al2 = Xl + E, a21 = Xl~€' then 
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it will be called a simple perturbed paired comparison matrix depending on 
one parameter, E. 

If the components of the principal eigenvector of a simple perturbed 
paired comparison matrix in the function of E are developed, then the rank 
order of the alternatives of the specific paired comparison matrix can be 
compared with that of the simple perturbed paired comparison matrix. 

In FARKA.S and ROZSA (1996) it is proven that the characteristic poly­
nomial Pn(X) of A is 

where 

It should be noted that 
E .- >-1 

.q 

(9) 

(l0) 

SlIlce the elements of A are (finite) positive numbers. If r is the maximal 
eigenvalue of it can be obtained from the equation [cf.(9)]: 

.) 

- Tlr- - (n - 2)Q = O. (12) 

where T > n [see F-\RE.-\.S and ROZSA (1996)]. The components of the prin­
cipal eigenvecror can be obtained from the one-rank Inatrix~ adj\! r1-
[uD ( since its columns are proportional to the eigenvecwr. 

.2 Extended Perturbed Ca.,e 

In this subSection. bordered COI1l1panSOIl Hlatrice::s \yill be considered. 

DEFINITION 8: If a simple perturbed paired comparison matrix is bordered 
by one of its columns and by the corresponding row, it will be called an 
extended paired comparison matrix. 

This case occurs when any of the alternatiyes (say the kth one) con­
tained in the given decision problem is repeated in the course of the decision 
process. The repeated alternative is called a replica or a copy. 

Introd ucing the characteristic polynomial 

\ (n) 1 -Aek 

2,\ 
(13) 
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(-1)T 1 l, n 
where e l;' = [O~ .... , 0.1-.0, ... ,0-]. the characteristic equation for the 
extended perturbed paired comparisoll matrix, can be written as 

Let the ma.'(imal eigenvalue of be denoted by Amax(k). In FAREAS and 
R6zSA (1996) it is Sho\Yll that (14 leads to the equations 

U) - (n + 1 (j)-2(n-2 = O. if j = 1. 2, (15) 

and 

(7:)-(7[+1 ( 7. 
, re • l)Q == 3.4 ..... 71~. 

where Q is given m and q) > n + 1 and Amax ) > r [see 1Il 

FARl(AS and R6zSA (1996)]. 
TIle elelllents uf the principal are deIloted 

(qj) = (q) )l. q=1. .... n. 

In the next section \\'f' '.';i11 consider the case when the first column of the 
perturbed paired comparisoll matrix is repeated. 

:). The Issue of Rank Reversal 

'T'he concepT of rank reyer:-:;al is introduced in f,he follo'vving '.vay. Suppose 
1" hat for t\,;o COIlseen live elements. 11 i and Ui.,.l of the principal eigenvector 
of a speciJ£c paired comparison matrix 

< Ui+' ( 17) 

holds. Further, suppose that for the corresponding two elements, ut (1') 
and lLT~Lj(r) of the principal eigenvector of a sim.ple peTtTLTbed paired com­
parison matrix. 

(18) 

holds (for any j). In this case \ve say that the rank order of the alternatives 
i and (r + 1) has been reversed due to the perturbation. The reversal of 
the rank order bet\veen the ith and (i + 1 )th alternatives can be defined in 
a similar \vay for the other cases. 
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In this section we will investigate whether such a rank reversal might 
occur at all 

i) for the specific versus the simple perturbed case, and 
ii) for the specific versus the extended perturbed case, respectively. 

By comparing the principal eigenvectors for the specific, for the sim­
ple perturbed, and for the extended perturbed paired comparison matrices 
As, A and AE, respectively, it turns out that their elements are propor­
tional to each other for the elements with indices 3 ::; j ::; n. Consequently, 
no rank reversal can occur between any pair of these alternatives regard­
less of whether the elements U12 and a2l of the specific paired comparison 
matrix are perturbed or not, nor which of the columns k is repeated. For 
all other alternatives, however, the occurrence of a' rank reversal can not 
be precluded. In subsections 5.1 and 5.2 the conditions of rank reversal 
between the first two alternatives will be determined. The location of any 
rank reversal will be given in the function of ;1 and r. The analysis of the 
rank reversal issue will be presente(l in subsection 5.3. 

According to the theory developed by Saaty the rank order (order 
of magnitude) of the components of the principal eigenvectors determine 
the rank order of the corresponding alternatives. Therefore, rank reversal 
must not occuT either in the specific versus the siIllple perturbed case or 
in the specific versus the extended perturbed case. Based all the results 
shown in su bsectioIls 5.1 and 5.2, ,'le present a detailed analysis of the 
rank reversal issue in 5.3 where it becomes clear that the theory of relative 
dominance given by Saaty contradicts the facts emerging in the decision 
making processes. 

Consider the case when Xl > 1. "Ye know that r > n holds. The first 
two elements of the principal eigenvectors for the specific and the simple 
perturbed cases, denoted by A and B are given [see F.';'REAS and R6zSA 

(1996)]: 

B: 

Specific case: 
1 

I 
Xl 

Simple perturbed case: 
A S

: )' - (n - 1) 

B S : 1 { 1 + n - 2 * } 
Xl E 7' E' 1+- 1+-

Xl Xl 
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It is apparent that the rank order is A> B. Rank reversal occurs if 
AS BS ' 'f ~_ < , l.e., 1 

1 7'(1' - (n - 1)] < ~~~-
Xl (1 + -) 

:CI 

After rearranging (19) the inequality 

+ (n - 2)~]. (19) 
Xl 

y ) == [r-(n-l +[1'-(71-1)] < 0 

(20) 

is obtained. The two zeroes of the !), denoted by 
n 
LI) and 

~ are functions of 7' and n: 

= II ). = (T~n)~ 

and they provide the boundaries of the interval O-fer which (20) is satisfied: 

, , S < (7', )) J < ,I') (r,7/.). 

From (20) we obtain 

'where 

" +:3 I 
h )'. ll) = -~-I - l 

- 3 f' 
(l'.n == --' , 

~, ) 

Lt = 2(n - 2) + 1'(1' - nl[)' - (n - 2)]. 

,13 = [7' - (n - 2)] - n){r2(1' - n) + 4(71 - 2)}, 

~( = 2(71 - 2)[1' - (n - 1)]. 

5.2 Rank Reversal: Specific Case versu.s Extended Pertv:rbed Case 

(21) 

(22 ) 

Assume that ;1'] > 1. \Ve knmv that /\rnax(q) > n + 1 and Amax(q) > r hold 
for q = 1,2, ... ,72. In order to simplify notation, let /\max(j) = A 
(j = 1,2). The first t\VO elements of the corresponding principal eigen­
vectors for the specific and the extended perturbed cases are given [see 
FARKAS and R6zSA (1996)]: 
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Specific case: Extended perturbed case: 
A.. 1 A E : A - (n - 1) 

1 1 ') 
B: - BE:2x~ { c +n- __ -=--::-}. 

Xl I 1 + ;:, A 1 + 
Rank reyersal occurs if A E <BE, i.e .. if " 

') f . 
A - lA - (n - 1)] < ------=--1). + (71 - 2)-]. 

.1:dl + 1:' 
(23) 

After rearranging (23) the inequality 

+(A - n)(n - 2) < 0 

1S obtained. Tht: zeroes of the polynomial yE (.1'1). denoted by and 

. are functions of A and n: 

-(LI rE( \ ) :c l . = JLA,1l . 

and they give the boundaries of the interyal owr which ( is satisfied: 

From (24) \,"e obtain 

E 

(26) 
E 

1\, et-
\ /\" n) = ----;0:---

'wherE' 

,\ 
2) + 2"[A - (ll - 2)][A - (n + I)), 

;3E = [A - (n - - (n + 1)]{( 2")2[A - (n + 1)] + 2(n - 2)}, 

rE = (n - 2)[A - (n - 1)]. 



5.3 A.nalysis of Rank Reversals 

The basic idea in analysing a possible rank reversal is based on the deriva­
tion of a direct functional relationship among the maximal eigenvalues of 
the specific the simple perturbed. and the extended perturbed matrices, 
71. I' and Ame.Aj). resp('ctively. For a given ratio Cr,~ ). the maximal eigen­
value I' of the simple perturbed matrix A E R.\f(n) c'an be found by solving 

(12) '.,·here Q is given in (10): 

( .i.. )2 
')\ . = O. 
-) 1 ..J... 

- I _ 

(27) 

f' 

ratio .-:=--) ~ rhe lllClxirnal U)· =1. 
1,' 1 

of the extended perturbed nlatrix E call be found by solving 
Eq. (15): 

--=--o- = O. (28) 

Since a giyen ratio for (xl', ) applied to the case of a simple perturbed matrix 
is identical to that applied to all extended perturbed matrix. this term can 
be eliminated from Eqs. (27) and (28). Thus, ,ye obtain 

(29) 

1 shO\ys the functional relationship among the maximal eigenvalues 
n. )' and Amax(j), (j = 1. 2) for a paired comparison matrix of order 3. 
This graphical representation of the problem demonstrates that for any 
giyen ratio ( ), the maximal eigenvalues of the simple perturbed and the 

extended perturbed matrices, )' and Amax(j), (j = L 2) can easily be found. 
Furthermore, using (29). Arnax(j) can be considered to be a function 

of 1': 

Amax(j) = A(r). (30) 

Substituting (30) into (26) and introducing the functions 

(31 ) 

the interval (25) can be expressed in function of l' as 

gdr, 71) < xf < gu(r, n). (32) 
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A 2 

(~.) 
Z(n-Z) --'-

1+~ 
X1 
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1. Relationship among the maximal cigcllvalues n. rand 
72=:3 

!: (j 1. for 

For feasible values of .r 1, the functions fu n), fd r, n) and gdr, ,gL (t, n) 

are plotted for 17 = 3 ill F1g. 2 [see (21) and (32)J. In order to study the phe­
nomenon of I"clIlk reversal. the behaviour of these functions is investigated 
in the cases 

i) if :q > l. and 
ii) 'r II ;[1 < l. 

In case Sl1lce DdT, > fc:(r, n) for n < T < x. the of 
depicted by a dashed line above the 

a solid line. 
Case iil is more complicated. It can be shown that there exists a 

certain value 1'0 > n for 'which fdro, n) = gL(ro: 
For the other ,'alues of I' we get 

if n < T < TO, 

and 

gL(r,n) > fdT:n), if TO < l' < X, 

J{(n - 1) + vJ{2(n - 1)2 + 4I,-(n - 2) 
TO = 

2J{ 
(33) 



where 

I{ = -;--~--~-

and A is definc:d by (29) as a function of r. 

0.1 

c 
o 
CTl 
Q; 

0: 

Sign of 
function 

IV <0 

~~~============t='j 

VI >0 >0 

11 
I I I , 

3 r* L 6 7 

Rank order 

8 

Fig. 2. Characteristic regions of rank re\'ersals 

,.5 

(34) 

9 

Since the cun-es of the functions gd t, 11) and fd r. n) plotted in Fig. 2 
have no intersection within the range 1 < x} < x, for each value of r, 
intervals of different lengths can be found in a manner that the sign of 
the function gdr.l1) differs from the sign of fdr, n). In an analogous 
manner. intervals of different lengths can also be found within the range 
0< .r} < 1 v;here the signs of the functions fdr. 11) and gdr, n) differ. The 
only exception occurs at their intersection for r = 1'0 giyen in (33) and (34) 
where the function gd 1',11) crosses h (1'. n). These ranges of :t'1 contain the 
set of all possible values of .T1 \yhich might appear in any simple perturbed 
matrix"and in their corresponding extended perturbed matrix, therefore in 
these intervals rank reversals will always occur. Eventually. the spectral 
properties of the defined matrices cause these rank reversals. 
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E 
Giyen any ratio of (-). the corresponding maximal eigenyalue of a 

Xl 
simple perturbed matrix can be found from Fig. 1. Let it be denoted by 
r. By finding the intersections of the plotted functions and a wrtical 
segment dra'wn oyer r~. six characteristic regions (1. through \T) can be 
distinguished. From (20) and (24), it is obvious that the quadratic func­

tions y(xrJ for r = r* and yE(.q) for /\max = A(r~) are negatiw bet\,"een 
their n\"o roots. whereas beyond their roots, they are positiw as 5ho\\"11 in 
Fig. 2. Rank orders are shown for each region by the an'O'.Ys indicating 
their directions. Thus, a dO\vnward-slopillg arro'w represents a descending 
rank order. while an upward-sloping arrO\y indicates an ascending rank or­
der. :'\ote that Fig. :2 refers to the case -;,"here a descending rank order is 
giyen for the specific matrix. since Xl > l. 

In making use of these symbols, it is easy to find the regions of all 
possible occurrences of rank reversals betv;;ecn any pairwise combination 
of the defined cases. Rank reversals occur \\"ithin a specified interyal of 
the values of :rl if the arrows are pointing into opposite directions in the 
associated two columns of Fig, 2. Single hatched areas indicate the regions 
for :r 1 ,;,-here rank reversals of A and B occur bet\"';eeIl the and the 
general cases, \vhereas double hatched symbols arc used to indicate the 
rank reversals between the simple perturbed and the extended perturbed 
cases. rank reversals occur: 

i) -\\-ithin regIons III and 1\-. bet-,,:';een Ihe specific and the sinlple per­
turbed cases: 

\\-ithin regions 11. 111.1\ alld -. bet-\yeen the 
cases: 

v·;ithin regions 11 and 
tended perturbed. cases . 

bet..,yeen the 

• -~'~,",V~CUHr;~,l. no rank l'eyersals occur 
defineu cases if neither colurnn is 

chosen. 

\\~hether the CODlpOnel1ts Ol the 

<:lEd eXTended 

and the ex-

corre-
spond to the relative dOlninance of the alrernatiycs 15 EL 111attel' of utrnost 

In contrast to the raIlk order of et :3eI of alrernariy€s. the C011-

cept of relative dominance has not been UIllI'Ol'Il1.i:' III the _"\'HP 
literature. Therefore~ e'.--eryone is entitled to d-efinc rhis terrn as 

have chosen Definition 3 in this paper 1,Yhich is 
:\evertheless. whichever definition of the relative dominance is used. the 
resulting vector (set of the scores) must not conflict ",-ith the of 
the ordinal scale. Saaty's definition (see in SAATY. 198i, p. 161) is equiy­
aient to the statement that the components of the principal eigenvector 
provide the relative dominance of the alternatives. 
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Through this paper \,-e studied ,,-hether the eigenvalue method is a 
proper tool for finding the true ranking of a set of alternatives or not. \Ve 
haye shuv.'11 that a continuous change in the perturbation parameter results 
in the alteration of the order of magnitude of the elements of the princi­
pal eigenyector. According to Saaty's definition, this fact ,,-ould imply the 
change of the rauk ordei' of the aheIIlatives. Howeyer, the rank order of 
the alternatiyes must be invariant. Thus. i\"e arrived at a contradiction. 
Conseqnently. Saaty's definirion of the relatiye dominance of the alterna­
tlye;;; bping to the elemPIlTs of the principal eigenyector conflicts 
?):ith if the; compUT1S071 moinx 18 I nconsl.sieni. 

_-1.n or Tile used in AHP "vas presented. \Ve 
ShO\\~ed thaT the key Cl re'/ersal of the ranking of the-
ai1::crnatiyes is the of the ratio estilnates. If rhe paired COTI1-

111Cltl'ix i:--; inconsistenT. thcIl the introduction of a ne\," alternative 
if either it is cl or if it differs entirely from 

f he old (llternative~. EVC'll if t he paired cornparison Inatl'ix is consistent~ 
he introduction of any Type of a ne'w aiternatiye but one alters the consis­

Tency of rhe 111Cltrix. This feature of :\,"HP liInits its scope and application 
lO reai v;odd problems. because 1Il praccice the consistency of the paired 

a pnon. 
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