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1. Introduction
Investigating the connection between time direction and macrostatistics

REICHENBACH develops a theory of probabilistic causation in [11. He dis-
tinguishes the two time directions by two types of so called conjunctive fork
both constructed of two correlating events A and B and of a third event C
regarded as the common cause or of an event F regarded as the common
effect of the correlation, respectively. The ACB and the AEB forks are
open toward the future or the past, respectively, so by their help the time
direction can be defined. In this paper we do not investigate the physical
and philosophical problem arising in the evolution of the causal theory of
time (see [2]), we rather turn our attention to one of the key concepts of
the theory, namely the concept of common cause.

M his paper is the outline of two forthcoming papers submitted to the Ini. Journ. of
Theor. Phys. under the title Reichenbach's C'ommon (C'ause Definition on Hilberi lattices
and to the Found. of Phys. under the title C'an Reichenbach’s Common Cause Definition
be (Generalized to Non-commutative Fvent Structures?




Reichenbach gives several examples of how a correlation between two
events can be explained by means of a common cause. ‘Suppose both lamps
in a room go out suddenly. We regard it as vmprobable that by chance both
bulbs burned out at the same time and look for a burned out fuse or some
other interruption of the common power supply. The improbable coinci-
dence is thus explained as the product of a common cause... Or suppose
several actors in a siage play fall ill showing symptoms of food poisoning.
We assume that the poisoned food sterns from the same source — for in-
stance, that it was contained in a common meal - and then look for an ezx-
planation of the coincidence in terms of a cornmon cause.’

Reichenbach defines commorn cause in the following way. Let 4 and
B be two events which happen simultaneously more frequently than can
be expected for chance coincidences, that is

p(AB) > p(A)p(B) . (1)
In order to explain this correlation, let us assume that there exists a com-
mon cause . We introduce the assumption that the fork ACB satisfies
the following relations:

p(AB|C) = p(4|C)p(BIC) . (1)
p(AB|C) = p(A[C)p(BIT) | (3)
o(4]C) > p(A[T) , (4)
p(BIC) > p(BIC) . (3)

conditioned on the common cause o
independent, Or, in other words, t
. . ;

he common cause

iy they

than C. In this sense the cause of the correlation is € and not C.
Let us see two quantitative examples. Let there be ten balls in a box,

nine painted white, made of wood and one painted black, made of plastic.

The probability of pulling a ball made of artificial material p(a), pulling

a black ball p(d), or pulling a ball which is black and plastic p(ab) equals

1/10. So there is a correlation between these events:

‘ 1
1_10 = p(ab) > p(a)p(b) = 755 -
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What can be regarded as a common cause in this case? The common cause
¢ which screens off the correlation is the event of pulling the black, plastic
ball. The conditional probabilities are the following:

plable) =1, plaley=1, pble)=1,

p(able) =0, plale) =0, p(bfe) =0,

Table 1
DIE
Even Odd
Right  Left Right Left
oot T T
T H} Th  H}
Hi T} Ay T3
H, H} Hy H?

Ey
1

Let p(H}BZ) and p(T}a'Q) denote the relative frequency of getting head or
tail, respectively, by the first or the second coin, respectively, on the right
side. Let p(Hé‘z) and p(TE'Q) denote the same situation on the left side.
Let the two events in question be that getting head by the first coin on the
different sides. The relative frequencies p(H}) and p(H}) equal 1/4. The
relative frequency of the joint event p(Hp, H}) equals 1/8. So there is a
correlation between these events:

1 ; 1
3 =p(Hp, H1) > p(Hp)p(H]) = -

What is the common cause in this case? C is the event that we throw an
even number by the dice. The probabilities conditioned on the common
cause and its complement are the following:

1 1 1
p(H}l?',Hll:lC) - Z ’ p(H}lle) = “2' 3 P(H};lc) = -2‘ )
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p(Hp, HE[C)=0, p(HRIC)=0, p(HIC)=0,

which satisfy again (2)-(5).

It is worth seeing how the definition of common cause contains direct
causation, i.e. when the cause of the correlation of the events 4 and B is
not a third event C but A or B itself, respectively. Both A and B written
in the place of C satisfy (2) and (3). Furthermore (4) is fulfilled for C = A4,
and (5) for ¢ = B. So the requirements for 4 or B to be the common
cause are reduced to the inequalities:

p(B|4) > p(Bl4),
p(A|B) > p(4|B) ,

respectively.

From now on we take this definition of the common cause for granted
and turn our attention from its physical motivation to its mathematical
structure,

>

2. The (lassical Case

Let () (92, F,pj be a Kolmogorovian probability measure space and let (77)

1

the conditional probability of £ given F be defined as it is usual:

Let 4, B ¢ {2 be two correlating events, lLe.
pldANB (4)ptB] (6)
pl4 >p(A)piB) . 6)

Reichenbach defines the common cause of the correlation a
Definition An event ( is said to be the common caus

<

c
between 4 and B if the events 4, B and C satisfy the following relations:

@
Q

Fin

or W
o

(¢

p(AN B|C) = p(A|C)p(BIC) | (7)
p(AN B|C) = p(A|C)p(B|C) , (8)
p(4]C) > p(4[C) , (9)
p(BIC) > p(B|C) . (10)

Now we do not investigate the question under what conditions a common
cause satisfying (7)-(10) exists. We rather turn our attention to the ques-
tion whether the existence of a common cause really yields correlation. The
answer is given by the following
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Theorem (Reichenbach, 1856) Let A, B and C be elements of a Kol-
mogorovian probability measure space and let them satisfy (7)-(10). Then
A and B correlate, i.e. they satisfy (6).

Proof In the proof we use the following three equations:

(o) p(A) = p(C)p(A|C) + p(C)p(A|D),

identities in & Kolmogorovian probability measure space,

(v) is true} (T)-{8) are true. From these relations we find by some simple
computations that

p(4 N B) = p(4)p(B) = p(C)p(O)[p(AIC) — p(AIO)[p(BIC) - p(B|C)] .

Because of (9)—(10) and under the assumption 0 < p{C) < 1, we get that
p(ANB)—p(4d)p (B) 3 which was to be proven.

Fmall}, we list some relations following from (7)-(8) and («)-(+) which
show how the common cause increases the probability of happening A, B
and AN B:

p(AlC) > p(4) >  p(AC,

p(BIC) > p(B) > p(BIC),

p(ANB|C) > p(AnB) > p(ANB|C).

These equations together with the derivability of the correlation from the
existence of the common cause show the power of the definition in the
classical case. But let us go over to the quantum case!

3. First Generalization

Let (i) P(H) be a Hilbert lattice and W be a pure state represented by
the unit vector w. For the projections F and F in the lattice let (i7) the
conditional probability of E given F' in a state W be defined in the following
way:
pu(EANF) Tr(W(EAF))

pu(F) = Tr(WF)

pu(E|F) =

(Now we disregard the logical and mathematical difficulties arising from
this generalization of the Bayes rule.) Let A, B ¢ P(H) and assume a
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correlation between A and B in the state W, 1i.e.

pu(A A B) > pu(A)pu(B) . (11)

We define now the common cause of the correlation in the quantum case:

Definition An event C is said to be the common cause of the correlation
between A and B if the events A, B and C satisfy the following relations:

pu(4ABlC’) pu(A|C)pu(B|C) | (12)
pu(ANB|CT) = pu 4IC" pu(BICT) (13)
pu(A]C) > pu(4]CT) (14)
pe(B|C) > u(BIC’”) (15)

Now we show that the analogue of Reichenbach’s theorem does not hold in
this case. So we claim the following

pu(4)pu (B or am’icorrelate, i.€. pw(ﬁ". NnB)< pw(.—é)pw(B); or be inde-
pendent, i.e. pp(ANB) = pu(A)pu(B).

of Let P(H3) be the mOJecuon latti
space ffg with the basis { z,y, z
plane zy, RanC™ be the axis
each mher in line z, both havi
zz meeting with z at an a'lgle S.
We claim that for all o, 5 € (0, %), (12)-(15) are satisfied. The condi-
tional probabilities are the followin :

pu(AAC)  Tr(W(AAC))  cos’B

H‘{- = - - - :1
P (4]C) pu(C) Tr(WC) cos?3
pe(BAC)  Tr(W(BAC)) cos’d
pe(BIC) = pe(C) —  Tr(WO)  cos? =1
. T / 2
pulA A B|C) = pu(ANBAC) _ Tr(W(AANBAC)) _cos B _,

2w (C) Tr(WCQC) cos?f3
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Fig. 1. The projections 4, B and U in P{Hg]
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since w is in the plane xz, so its projection onto the plane zy and the axis
x are equal.

Ly Pu:(-’i A Cﬁ{) TT(W—(A A CJ_))

AlC— = =
PolAICT) == ) TT(WC-L) 0
iy _ Pu(BACT)  Tr(W(BACH))
pu(BICT) = e (CLY T T Tr(WChH =0
1 pu{ANBACH)  Tr(WAABACY)) _
pu AN Blc ) - pu(c;) - TT(W’C’.‘_) =0,

since the intersection of 4, B and A A B with C are 0-projections. By
these numbers Egs. (12)—(15) are satisfied:

1 =pu(A A BIC) = pu(A|C)pu(BIC) =1,
0= pu(A A B|CY) = pu(4|CH)pu(BICY) = 0,
1 =pu.(A|C) > pu(4]CT) =0,
1= pu(B|C) > pu(BICT) = 0.

So C can be regarded as the common cause of the correlation between A
and B by the above definition.
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Let us examine whether there exists a correlation between A and B
indeed, i.e. whether (11) is satisfied. The two sides of Eq. (11) are the
following:

pu(AAB)=Tr(W(AAB)) =cos’8 ,
pu(A)pu(B) = Tr(WA)Tr(WB) = (cos’8 + sin’Beos’a)?

In Fig. 2 we represent the relation between the sides of (11) in the param-

eter space (o, B) . We can see that the parameter space is divided into
two regions by a curve reaching from the line (0, @) to the point (5, Z) rep-
resenting the places where p,.(ANB) = pu(4)pw(B), i.e. where the events
A and B are independent. The region ‘under’ the curve represents the
places where py, (AN B) < pu(A)pw(B), i.e. where the events 4 and B an-
ticorrelate. Finally, the region ‘above’ the curve represents the correlating
places where p.,.(AN B) > pu.(A)pu(B).

So we have found an example where for two events 4 and B a third
event (' can be chosen which can be regarded as the common cause, but 4
and B do not necessarily correlate; they can anticorrelate or be indepen-
dent.

C nrrd ation

In the next section we take another definition of the common cause on the
Hiiber lattice using another definition of the conditional preobability and
examine the validity of the analogue of Reichenbach’s theorem.

4, Second Generalization

Let (i) P(H) be a Hilbert lattice and W be a pure state determined by
the unit vector w. For the projections E and F'in the lattice let (27) the
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conditional probability of E given F in a state W be defined in the following
way:
Tr(FWFE)
Tr(FWF)
The motivation of this definition comes from the theory of measurement. If

we carry out a measurement of an observable represented by the projection
Fin a pure state W then the state transforms as follows:

pu(E|F) =

ot

i~ I

oll ot - NV — Wr

transformation can be regarded as the ‘renormalized pro JéCLIO‘Q of the state

1 onto the subspace RanF'. This rule is due to Liiders (see [3], [4]). Using
o s 1

the above notation now we are able to define the common cause in terms
of this new conditional probability: Let .é}B € P(H) and let there be a
in
Lo

1
iation between 4 and B in the s

o
O
"
=
o
s

puw(AAB)> pu(A)pu(B) . (16)

. (' is said to be the common cause of the correlation
f the events A, B and C satisfy the following relations:

Tr(We(ANAB)=Tr(WcA)YTr(WeB), (17)
Tr(i'i/'cvﬁ(r'l/\b)) = Tr(m AT (W1 B) (18)
Tr(Wed) > Tr(Wear A) (19)
Tr(WeB) > Tr(WeLB) . (20)

Now we ask the question again whether A and B correlate, provided there
exists a third event ¢ such that conditions (17)-(20) hold. The answer is
again negative.

Theorem Let A, B and C be elements of a Hilbert laitice and let them
satisfy (17)-(20). Then A and B do not necessarily correlate.

Proof In the proof we give a rather technical counter-example which satis-
fies (17)—(20) but does not satisfy (16). Let us take the same three dimen-
sional Hilbert lattice P(H3) as before with the basis {z,v, z} (See Fig. 3).

Since in Egs. (17)—(20) C and C* do not appear explicitly, in the first step
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we do not determine these projections; instead we search for two unit per-
pendicular vectors we and we . which satisfy (17)—(20), and at the end we
return to the projections. Let RanAd and RanB be two planes intersect-
ing each other in z meeting with z at an angle . By Fig. 2 there exists
uniquely a vector v in the plane zz for which pu.(AA B) = p.(4)ps(B). Let
this vector v be w1, so (18) is satisfied.

Fig. 3. The position of we and wer in P(Hz)

Our task is now to find a vector w¢ perpendicular to weo. so that

(17) and {19j—(20) be satisfied. The last two inequalities can be satisfled
as follows: Let o tend to %. i.e. et RanA and RanB tend to the plane zy.
Then by Fig. 2 3 also tends to 5, l.e. wo. tendsto the axis z. Let

ane 1

7 5
v per')es.hdicu,ar t0 Wes bwy 5. Now this plane is Infinitesimallv

%—a] <L, Du,. ;(.4) —pv_;c_.lE) < :1(5), and for every ‘ i
plan pL\A) > 1—22(8), pu(B) > 1 — 22(6). So (19)-(20) are satisfled
for every v in 5.

Now let us pick out the vector from the plane § which satisfies
also (17). Instead of searching for a vector we satisfving pu.(4 A B) =
Duc (A)pu-(B), we pick out two other vectors w’ and w” for which in-
equalities hold with the opposite sign, i.e. p (AAB) > p,(A)p(B) and
Py (AA B) < pun(A)per(B). Let w' be the vector determined by the in-
tersection of the planes zz and S. In Fig. 2 we can see that w' is in the cor-
relating region, so for w' pu (A A B) > pu(A)py(B). Let the other vector



ALIZATIONS 197

NOROLMOGOROVIAN GENER

S

w’ be determined by the intersection of the planes yz and S which is the
axis y itself. For w” puv(A A B) = 0 since w’ L A A B, but pyn(4) # 0
and py(B) # 0, s0 pur (A A B) < pr(A)per(B). Now let us use the con-
tinuity of the pu(-)-function on the plane S. If there is a vector w' for
which pu (A A B) > py(A4)p.(B) and a vector w” for which p(4A B) <
pui (A)pyr(B), then there must be a vector between them in the plane S for
which pw(AA B) = pu(A)pw(B). Let this vector be we, so (17) is fulfilled.

So we have found two vectors w¢ and weo for which (17)-(20) are
satisfied. What are the projections ¢ and C— , and what is the original w
vector? Let (' be the projection for which RanC is the plane S, let C* be
the projection determined by w,.. Then w can be any of the vectors in
the plane T spanned by we and we. except for w' and w”.

Now let us choose a possible w for which independence or anticorre-
lation happens. Let w be the vector determined by the intersection of the
planes yz and T (see Fig. {).

Fig. 4. The position of w in P(Hjy)

For w puw(A A B) = 0, since w is in the plane yz. Now there are two
possibilities: In the case that p,(B) = 0 or py.(4) = 0, then p(AA B) =
pu(A)pu(B), i.e. A and B are independent; in the case that p.(B) # 0
and py(A4) # 0, then pu(AA B) < pu(A)pw(B), i.e. A and B anticorrelate.
So our counter-example satisfies (17)—(20) but not (16) and this was to be
proven.
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5. Conclusions

In our paper we have generalized the original notion of common cause
given by Reichenbach in two different ways. The definitions differed from
each other in (i) the type of the probability space and (i7) the definition
of conditional probability. The possibilities — included the original one —
were the following:

1. (1) (2,F,p)is a Kolmogorovian probability measure space,

] _ p(EAF)
(i) p(BIF) = BEOE)

2. (i) P(H)isa Hﬂbert lattice,
(i) pu(BE|F) = 22070,

3. (i) P(H) is a Hilbert lattice,

(i) puw(E|F)= .—____T:;‘S(F};fg).

‘We have investigated the question whether the existence of a2 common cause
for two events defined by (2)—(5) implies a correlation between the events.
The answer in the first, classical case was affirmative, so it showed the deep
consistency of the denmulon‘ The meaning of the notion of common cause
in the other two, quantum cases is not so obvious since it is although true
that correlation can sometimes be explained in terms of a common cause
but also independence can sometimes be ‘explained’ by that. So in the
quanium case not even the statement is false that we always find a common
cause for a correlation (as it can be shown on an appropriate small Hilbert
lattice) but also the opposite statement, namely that common cause always
‘leads to’ correlation.
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