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~~bstract 

The author found a limitation of the zero-one pr'ogira,rnnlln.g method: it 
can ~t take into account that some resources are substitutcble regarding some particular 
a,ctivities, i. e. the desired result is achievable by using any of them. Substitutability 
can be multi-level when the higher level resources are broader categories, containing every 
kind of resources which can be substituted regarding one or more activities. Usually 
substitutability is not a general feature but refers only to some particular activities. This 
article: 

defines this kind of substitutability, 
- describes a tree-structured model of this special kind of hie,archical substitutability, 
- introduces a measure of substitutability, called 'substitutability coefficients'. 

The author modified the original mathematical formulas: 
for calculating the constraints of higher level resources in the hierarchy, and 

- for determining the feasible solutions (a set of inequalities), 
taking the hierarchical substitutability of resources into account. 

Keywords: zero-one programming, resource allocation, substitutability. 

L Introd.uction 

Different types of mathematical programming are well known in manage­
ment science and are widely used in managerial practice for optimizing 
different sorts of objective functions subject to different sorts of constraints. 

'Resource allocation problems are concerned with the allocation of 
limited resources among competing activities so as to optimize some objec­
tive. In certain applications there is a single limited resource, e.g., money, 
whereas in others, hundreds or thousands of resources must be allocated 
prudently. ( ... ) Careful allocation of limited resources is, therefore, needed 
on different levels, starting from strategi.c, long-term planning down to 
weekly, or daily, production scheduling.' (KLEIN and Luss, 1991). 

One of these methods is zero-one programming. The author realized 
a major limitation of the original method when he tried to apply it to real 
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resource allocation problems and developed a new algorithm to eliminate 
this limitation, 

2. Zero-one 

The following notation is used: 
i = index for resources 
J = index for activities 
k = index for sets of activities (solutions) 
r = number of resources (i = 1 , , , r) 
a = number of activities (j = 1 , , , a) 

Ci = amount available of resource i (constraint i) 
Si = substitutability coefficient of resource i 

dij = amount of resource i needed for activity j (demand ij) 
'ill j = weight, representing relative importance, associated with 

j (objective function coefficient j ) 
Xl:j = value of J in solution k 

'The allocation py'obl'e:r:o. lTI zero-one programming is the 

a 

maximize: = 
j=l 

to: < Ci for every 
j=l 

assume and one. ll1eans that v'STe el-
___ .. __ .. '; or don 

such combinations 
sums of the activities} iov;er than these limitations. 

2~1. Theorei'ical 

The first In this resource allocation 1S to determine 
all sets of activities not regarding our constraints (theoretical solutions), 
Since every can assume tV10 and \ve have a activities, the 
number of theoretical solutions is 2°, For example, if we have 3 possible 
activities, the number of theoretical solutions is 23 = 8, as Fig. 1 shows_ 
'Zero' means that we don't implement that particular course of 
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o 

. r"heoretlcCLi soiutions 

'one' means that V<le it. For e)cam.pJte: solution 
implement activity 2 and 3 but don't lDJ.f,IE;!Ilent "'f'+1-~Ti'h7 

2.:2. Feas-ible Solutions 

The second step is to screen out every not feasible 
in 0/1 programming is that solution 1 
would obviously be the most desirable sohr!;icfn, 
needs more resources than we have. Solution 
feasible but a real-life problem solver 
Vie checked the feasibility of every 
then it is t.rivial that solutions 4, 6, and 7 are also feasibie~ The constviU)ts 
become the inequalities: 

C! 

L dijXI:j ~ Ci for every %. 

j=l 

If there is only one Ci resource limit lower than the overall cC~lli;UJml[)tJiOl[1 of 
a particular solution then solution k is not feasible. 
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2.8. Optimal solutions 

The third step is to choose the best feasible solution or solutions. At this 
point, it is necessary to make a distinction between the two basic versions 
of 0/1 programming depending on whether the objective function is given 
on a quantitative or on an ordinal scale. 

The above mentioned types of scales of measurement refer to the 
classical types defined by STEVENS (1946, 1951). This classification has 
become widely accepted and has been used without any change up to now. 

measurement, in the broadest sense, is defined as the assignment of 
numerals to objects or events according to rules. The fact that numerals 
can be assigned under different rules leads to different kinds of scales and 
different kinds of measurement.' (STEVENS, 1946). 

Nominal scale numerals are used only as labels or type numbers, so 
words, letters, colours, etc. would serve as well. Two types of nominal as­
signments are sometimes distinguished: one with unit classes of one mem­
ber each, and another with more than one member in each class. This scale 
has the so-called 'substitution (or permutation) group' structure because 
it remains invariant under any Xl = f(x) transformation where f(x) means 
any one-to-one substitution. 

Ordinal scale arises from the operation of rank-ordering. This scale 
has the structure of an 'isotonic (or order-preserving) group' since any 
Xl = f(x) transformation \villleave this scale form invariant where f(x) 
means any monotonic increasing function. Rankings don't express any­
thing about differences or ratios and it is a very frequent source of serious 
computational errors in life, even in the of professionals 
without sufficient mathematical backgrolllld. Ordinal numbers are very of-
ten added up, multiplied, or divided vv-ith each other as if they 
showed more than just the relative rank-order of data. These 

invalid OJ:iel:al;lOlns are meamng;less. 
successive intervals on the scale were 
such kind of information -;i\rhen ""'Ne 

T'his fact is very 11.,.\1,(',1'1".",,1" v{hen \ve distinguish the t1tVO main 

it 

any 
(rankings) . 

01 

On an inierval scale the zero is a matter of convention or conve-
nience. This scale has a 'general1inear group' structure because it remains 
invariant under any Xl = ax + b transformation vvhere a #- O. Ratios of 
interval scale numerals are meaningless because the zero point is arbitrary, 
but dividing differences of interval scale numerals is valid because in this 
case constant b, which defines the zero point, disappears during the sub­
tractions. 
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Ratio scale has a natural zero point, It has the structure of a 'sim-
'I ' , ' I '- ~ J..' '11 1 Lh' i L 1 anty group sInce any x = ax uransIOrmaulOn WL _eave u IS scale uype 
invariant where a =f: O. Ali kinds of mathematical operations are appli­
cable to ratio scales. Interval and ratio scales together are often called 
quantitative scales. 

The more conventional and better known version of 
is the one with a quantitative objective function (see e.g. DANNENBRING 

and 1981). In this case every has a quantitative Wj ob­
jective function coefficient money) which expresses hm'l favourable 
or In'lr)Ort:''.i"it to Imj:llem.ent. It is very easy to find the ~}JU,.H'.~, 

w,elj~h.ts of the activities \vithin e""very up the Wj 

j=l 

The ot)t]lm;al solution k is the OEe \vith the maz~imal 
to have more than one ot:)ti.ffi.al solutions vlith the same values but it IS 

not very IfI::quem: in practIce. 
more difficult Vvith ordinal scale ot)J(::C1GnTE function 

c"r" , coemClents In this case we know 
of our Wj values are 
real quantitative and therefore VIe cannot 
numbers as discussed above. 

the order 
"""\fIe don't kno\y the 

, , 
aGa lip the 

If \ve assign the to our activities and mark the most nl'p"rpi,,,~rj 
\vith Al and the second best v.rith and indicate p]ee:terenc:E 

relations vlith arro-"vvs from the more preferred to the less pI:ei:eITc:cL 
then \ve can dra"y a preference of our solutions as on 
could also use a simplified graph, like 2/b, by omitting the redundant 
arrows showing relations 'w"hich are obvious. For instance, arrow 
Al --i- A3 is redundant because the relations are transitive, so 
arrows Al --i- A2 and A2 --i- A3 show the relation behveen Al and A3 as 
well. ) 

The important thing in our example is the preference relation betv-leen 
solution Al and solution A2 + A3. 'vVe cannot choose between them because 
our objective function is ordinal. can't decide which solution would be 
better for us: the most preferred activity alone or the second and third best 
ones together, because we only know rankings, "Solutions Al and A2 + 
are not comparable on an ordinal scale. Such solutions are called alternate 
optimal solutions. 

What is of particular interest is that the number of non-comparable 
solutions increases exponentially as the number of activities increases. Ta­
ble 1 shows this trend as BARTEE (1971) calculated it. The results show 
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b) A 1 A2+A3 

~ 
~ 

A3 <"l!4!f----- A2 

2. Preference of feasible solutions on ordinal scale 

decrease In the degree of isomorphism bet-vveen the model 
someone makes pseudo comparisons using rankings 

"Were real numbers on a quantitative (interval or ratio) scale. 

Table 1 
The prob,leJffi of non-comparable solutions 

~Jilmber ef Number of Number of Not comparable 
activities soiutions paired 

.... 
'" 

2; 

comparisons No. % 
4 6 0 0 
8 28 3.6 

16 120 10 8.3 
;32 496 66 13.3 
64 2.016 364 18.1 

128 8.128 1.821 22.4 

and constralnts a S~)eClal n,'()niP7"Yl 

cate:g(m.es should we use? Let us see an eY;:ai:npl,::. 
and some small lorries for transporting different sorts of 

can be transported with both types of lorries, but 
Dt,c,""use of their weights or measures) are transportable 

V'ihat resource categories should we use in this 
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case, 'large tor-ry capacity' and' small lorry capacity' separately or just' lorry 
, '" ? (A h ,e ' '1 "" "b' 't" capaczty' alone. .ri .uge numoer or SImilar examples could e gIven Wl h 

skilled "workers of different qualifications, different types of manufacturing 
equipment, different raw materials, etc.) 

Some activities could make it necessary to use the finer resource cate­
gories. But hovy'" to define those activities~ demands \vhich can be done l;vith 
more than of resource? If we define such a demand in one 
of the finer this amount could be In one or more 
solutions for not one or more resource 
constraint r;,Ale defined this demand In another or 

would 

feasible 
In. because 'lTe 01 

resource 101.' any So 'vve have to enable our Illodel to use finer and 
broader resource cac.tc;g()rJLeS at the same time. 

will use the definition of 

Two or more resources are substitutable a 
activity if the desired result is achievable by using any of them. 

It is important that there can be several usages of the word 'substitutability' 
¥lith different in management science (see e.g~ KLEIN· itND L1JSS, 

1991). In our case it means free choice of different resources for the same 
purpose. 

Substitutability can be multi-level, for instance, if we have open and 
close lorries, cooled and not cooled closed ones, and different sizes of ev­
ery type. Fig. :3 shows such a multi-level substitutability structure. The 
nodes :represent resource categories and the links represent substitutability 
relations. First-level categories (the leaves oftrees) represent the finest dif­
ferentiation between our resources (the 'real' resources, if you like). Second­
level categories contain those first-level ones which are substitutable for at 
least one activity. In general: level n categories represent those categories 
on level n - 1 which are substitutable for at least one activity. In Fig. :3 
resource 1 is not substitutable w'ith any other resource for any activity. 
Resources 2, 3 and 4 are substitutable for at least one activity, but aren't 
substitutable with any other ones. Resources 5 and 6 are substitutable for 
one or more activities, and both are substitutabie with resource 7 for one or 
more other activities, but these three resources are not substitutable with 
others for any activity. 
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3. IIierarcbical substitut?'~bililY of resources 

The 111easure of Sl.:!Dstltu1:atn.ll1:y can be characterised 
These coefficients can have 

Slons or can be numerals \vithout din"lensions. 
Ior 2.., 

lOa(l-u"an:ng ca-

iIl 
,. 

Glmen-

SlOns. every Si a.lso llse OIle of the 
lorries~ ioa(i-D(,anng C8cpaC:lt.y as a unjt of mlei:lSUl:e:merlt, and in tllis ca,se the 
substitutability coefficients are ratio again "'H'·,,.,,;' dimension. 

The constraints of first-level resources are 
constraints are calculated from these, stepping from bottom l1"U':ol·cn<:: 

level. If vve use if index to sign those resource -vvhich are n - 1 
level sub-categories of resource i on level n, then constraint 1: can 
be calculated as follows: 

, 
ni, 

if 
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can define any activities' demands with any possible combination of our 
resource categories regardless of their position in the hierarchical structure. 
Considering our example in Pig. 3: if activity j needs resource 5 and/or 
resource 6, then d5j and d 6 j mean those demands which can be met exclu­
sively \vith resource 5 and vvith resource 6; '\lvhile d9j means 
those demands '.vhich can be n1et ~vith either resource 5 or resource 6~ In 

demands like 
tivities vvhich need 
such tasks \vhic1:1 can be 

uictcturlng macehJme:s, etc. 
calculations needed here. 

one 

refer to different tasKS \vithin the ac-
refers to 

with and 
of equiJ)ITlerlt (JcU1T1'::;::;, comlPute'fs, man-

~AJl these demands are there are no 

calculations of solutions are also done from bottom lip-
level. level 1 there is no c!J,allge in the met:h,o(i, on 

every other level we must take into account that all the demands defined 
on the lower In narrower resource have to be added to 
the demand defined In the broader resource category when e):amining the 

of solution k: 

a 

+ for every (,. 
j=l if 

In other words and in another mathematical formula: the amount available 
of resource i must be reduced the amount defined on lower levels in 
narro"\ver resource 

a 

~ < Ci X~'j for every 1.. 

j=l 

The two wordings and the tvv~o formulas are equivalent. 

4.. Final Re:r.narks 

A computer software for 0/1 programming with substitutable resources 
",tas at first developed for testing the new algorithm and for demonstration 
purposes only. (P.,uAl{I, 19S9/a). Since then a professional, user-friendly 
version has been developed in the author's department for general pur­
poses. CCSEGET\Y, 1992). A complex decision support system CDSS) is 
being developed, containing the substitution algorithm described above. 
This DSS development project is supported by the National Institute of 
Technological Development (OMFB). 
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