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Abstract

We evaluate the relative errors attributable to using the ex-

pected economic life of an asset to calculate present value in-

stead of the correct approach of calculating the expected present

value when the cessation point of the asset is uncertain. We com-

pare the continuous-time case of exponential cash flows and ex-

ponentially distributed asset life with its discrete-time analogue

of geometric cash flows and geometrically distributed asset life.

We find that if the discount rate and growth rate are equal, the

error is always zero. If the growth rate exceeds the discount rate,

the error can easily be severe and reach 100%. If the discount

rate exceeds the growth rate, the error cannot exceed 30%, but

such large errors may occur for any expected asset life. In the

discrete case, this error limit depends on expected asset life and

is somewhat lower for shorter lives. For realistic cases, even a

small percentage point difference between the discount rate and

the growth rate can lead to considerable errors.
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1 Introduction

In the discounted cash flow (DCF) framework, the worth

of a capital asset (henceforth simply asset) is computed by

discounting its expected future cash flows at an appropriate

rate (discount rate) that expresses the cost of capital. As de-

scribed in related textbooks (e.g., especially [20,32,33] and also

[17, 18, 23, 31, 36]), the computation can typically take one of

two forms: discounting discrete cash flows (i.e., cash flows oc-

curring at equally spaced time periods, typically years) at a dis-

crete discount rate (i.e., the effective rate for one period) or dis-

counting a continuous cash flow stream (i.e., cash flow is a con-

tinuous function of time) at a continuous discount rate (i.e., the

rate assuming an infinitesimal period of capitalization). Math-

ematically, the former approach is defined by Eq. (1), and the

latter is defined by Eq. (2). We assume, as usual, an identical

discount rate across periods.

Pd =

N∑
n=1

Fn (1 + i)−n (1)

Pc =

T∫
0

F (t) e−rt dt (2)

where P is the present value; the indices d and c refer to the

given approach, that is, “discrete” and “continuous”, respec-

tively; n is the index of periods in the discrete case; N (an inte-

ger) is the life of the asset expressed in periods; Fn is cash flow

at the end of period n; T (a real number) is the life of the asset

expressed in periods; t is time; F(t) is the continuous cash flow

function; i is a discrete discount rate; r is a continuous discount

rate; and e is the base of the natural logarithm.

The discrete and continuous discount rates are related to one

another as

i = er −1, or equivalently r = ln(1 + i) (3)

We note that we use the term “asset”, generally defined as any

series of cash flows; therefore, we consider only present value.

In this general interpretation, cash flows of a capital budgeting

project, for example, are not distinguished as usually done (e.g.,

initial investment, net return or revenues/disbursements, salvage
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value – see, e.g., in [37,41]), and consequently net present value

is – as it is conceptually – just a specific present value. For

convenience, we start the indexing in Eq. (1) from 1, although

our findings in this paper are not affected by starting from 0, as

is done in some textbooks.

In Eqs. (1) and (2), essentially all variables, such as the cash

flows, discount rates and asset lives may be uncertain; that is,

they may be random variables. Therefore, valuation and invest-

ment decisions should be based on the expected present value

(see, e.g., [32, 37] and references therein). Although textbooks

usually recognize the stochastic nature of these variables, for

computational simplicity, they substitute the expected values of

the random variables into the present value formula instead of

taking the expectation of the whole expression. This is an ob-

vious source of computational error, leading to biased present

value and, possibly, to incorrect investment decision.

In this paper, we are concerned with error attributable to the

uncertainty of the economic life of an asset, N or T (henceforth

usually simply “life”) – that is, the moment in time when the

series of cash flows terminates. For a more tractable analysis,

we assume non-stochastic discount rates and that cash flows are

stochastically independent of asset life (for a numerical method

of dealing with correlation between cash flows and life in dis-

crete time, see [38]). Based on this latter assumption, for no-

tational parsimony, we omit the expectations operator for cash

flows, so that F itself will henceforth denote expected cash flow.

Under our assumptions, the usual but incorrect textbook compu-

tations (henceforth referred to as “conventional”) are as follows

(e.g., [32, 33]):

P̂d =

E(N)∑
n=1

Fn (1 + i)−n (4)

P̂c =

E(T )∫
0

F (t) e−rt dt (5)

where E(.) is the expectations operator, and a hat indicates that

a present value is approximate.

In contrast, the correct approach is to calculate E(P), on

which investment decisions should be based. The difference be-

tween E(P) and P̂ clearly depends on the cash flow pattern and

the distribution of asset life. In this paper, we examine the geo-

metric gradient series pattern and geometrically distributed asset

life for the discrete case, and the exponential pattern and expo-

nentially distributed life for the continuous case. In other words,

these patterns are growing annuities, which are generally used in

practice because their present values can be given in nice closed

forms. We assume that growth rates are non-stochastic. The ge-

ometric and exponential distributions are also each other’s dis-

crete versus continuous counterparts and are perhaps also the

most frequently used distributions in reliability engineering, in

modeling failure rates (e.g., [21,24]). These distributions are the

only “memoryless” distributions; that is, the life of an item does

not depend on how long the item has survived (e.g., [21, 24]).

They describe completely random failures – the middle (and

longest) section of the bathtub curve in reliability engineering

(e.g., [27]). Thus, we can also say that incorporating life uncer-

tainty into present value calculations is an explicit consideration

of underlying technical characteristics, and it is desirable to rec-

oncile technology and economics [1].

Our contributions in this paper are threefold. First, under the

above-described pattern, distribution, and parameter assump-

tions, we evaluate the relative error of computing present value

based on expected life instead of the expected present value.

This error measure is defined as

ε =
P̂

E (P)
− 1 (6)

where ε denotes the relative error. In this formulation, a positive

error means that the conventional approach overstates the cor-

rect present value, and a negative error implies understatement.

(Note that these points apply to the magnitude of the present

values; thus, in the case of negative present values, the reverse

is true if we look at the actual values. To avoid ambiguity, we

will be concerned with the magnitude, i.e., the absolute value,

of present values in this paper.)

We are the first to look at the relative error, which we deem a

better descriptor of computational error than the absolute error,

i.e., P̂ − E(P), which was examined by Chen and Manes [15].

Relative error is dimensionless and is expressed as a percentage

deviation, whereas absolute error is expressed in dollars. As we

demonstrate, in using relative error, we are able to establish lim-

iting conditions on errors that are unobtainable in working with

absolute error. For example, we establish that the relative error

cannot exceed approximately 30%, provided that the discount

rate exceeds the growth rate. Such limits are not obtainable us-

ing absolute error. Additionally, we present convenient graph-

ical illustrations of the behavior of relative error, which, again,

cannot be done with absolute error, which depends on actual

dollar amounts.

Second, we explicitly extend the analysis to the negative do-

main of growth rates and discount rates. Consideration of neg-

ative growth rates is quite plausible, but the inclusion of neg-

ative discount rates might seem less obvious and require some

justification. A negative discount rate corresponds to an asset

with negative expected return – such investment opportunities

can be considered as “hedges” or “insurance” against asset pric-

ing factors. In the terminology of the most widely used model

for estimation of the cost of capital, the Capital Asset Pricing

Model (CAPM), this means assets that have such a large nega-

tive beta that the risk premium, in absolute value, exceeds the

risk-free rate, yielding a negative discount rate. In fact, em-

pirical evidence has recently shown that this may be the case

with, e.g., energy efficiency and renewable energy projects (e.g.,

[2, 4, 5, 7, 8, 11, 25, 28]), as it is argued that energy prices exhibit

contra-cyclical behavior (e.g., [6, 9, 26, 30, 34]). In this paper,

we consider the theoretical range of both the growth and dis-
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count rates in the –1 to 1 open interval.

Third, we provide a thorough comparison of the discrete and

the continuous case. Such a comparative study, to the best of our

knowledge, has not yet been published. Although the two cases

bear many similarities, there are essential differences.

Our findings can be summarized as follows for both the dis-

crete and the continuous case, as they are found to bear a close

resemblance to one another. If the discount rate exceeds the

growth rate, then the conventional approach always overstates

the expected present value, with an error that can be at most ap-

proximately 30%. However, for any given expected life, there

exist several growth rate and discount rate combinations for

which such a maximum is attained. In the discrete case, as the

main point of distinction with the continuous case, the value

of this maximum depends on the expected life and is lower for

shorter lives but cannot be lower than approximately 13%. If the

discount rate is equal to the growth rate, then the error is always

zero; thus, in this case, the conventional approach is perfectly

accurate. If the discount rate is less than the growth rate, the

conventional approach always understates the expected present

value, with an error that can reach the theoretical limit of 100%

in magnitude, for any expected life. We highlight that, in this

case, the error is very sensitive to the difference between the

discount rate and the growth rate. As a rule of thumb, we can

establish that for a given discount rate and growth rate combina-

tion, a longer expected life – or, conversely, for a given expected

life, a larger difference in absolute value between the two rates

– results in a larger error. In particular, we find that for real-

istic cases of 10 to 20 years of expected life and a 2% to 1%

difference between rates, the error may exceed 10%, which can

be considered significant. These results also call attention to the

importance of precision in growth rate and discount rate estima-

tion.

The remainder of this paper is structured as follows. The next

two main sections discuss the continuous case and the discrete

case separately. The continuous case is taken first because its

results are simpler and more tractable. These main sections are

also divided into two subsections: mathematical derivations are

followed by evaluations of errors. A discussion section consol-

idates the results also in graphical form, and provides a simple

illustrative numerical example. A final section concludes.

2 Continuous case

2.1 Derivation of present value formulas

Recall from the introduction that we assume a continuous ex-

ponential cash flow pattern. Thus, the evolution of cash flows is

mathematically represented as

F (t) = C e jt (7)

where j is a non-stochastic and time-invariant continuous

growth rate, and C is a constant.

The present value of such a pattern, following from Eq. (2), is

computed as (e.g., [32, 33])

P =

T∫
0

C e−(r− j)t dt =
C

r − j

(
1 − e−(r− j)T

)
(8)

(We have dropped the c index, as we focus solely on the contin-

uous case in this section.)

Recall that the life of the asset, T , is a random variable. Thus,

under the conventional approach, the present value is calculated

as

P̂ =
C

r − j

(
1 − e−(r− j)E(T )

)
(9)

The correct calculation, by contrast, is

E (P) = E

(
C

r − j

(
1 − e−(r− j)T

))
(10)

Notice that the present value in Eq. (8) is a function, in other

words, a transform of the random variable T . Assuming a pos-

itive C, it can be established from the second (partial) deriva-

tives with respect to T that the present value function in Eq. 8

is strictly convex if and only if r < j, and it is strictly concave

if and only if r > j. Now, based on Jensen’s inequality, the di-

rection of the bias between Eqs. (9) and (10) can be established.

That is, P̂ < E(P) if and only if r < j; then, the conventional

approach provides an understated present value. Conversely,

P̂ > E(P) if and only if r > j; then, the conventional approach

provides an overstated present value. (In the case of negative

C, i.e., negative present values, just the opposite is true.) Note

that equality occurs when r = j (for then the second [partial]

derivative is zero, so that the function in Eq. (8) is both convex

and concave). In this case, the exponent in Eq. (8) is zero and

the integral becomes

P =

T∫
0

C dt = CT (11)

Because C is a constant, it is apparent that CE(T ) = E(CT ),

that is, P̂ = E(P). Thus, the conventional approach is perfectly

accurate if and only if r = j.

It is important to note that the findings thus far are indepen-

dent of the actual probability distribution of T .

If we rewrite the expected present value in Eq. (10) as

E (P) =
C

r − j

(
1 − E

(
e−(r− j)T

))
(12)

we notice that the expectation term is, in fact, the moment-

generating function of T . Thus, knowing the distribution of T ,

and provided that its moment-generating function exists, the ex-

act formula for the expected present value can be given. Alter-

natively, a general approximation based on a Taylor series ex-

pansion (at T = E(T )) can be used, usually by retaining only

first and second order terms, as follows (e.g., [15, 39]):

E
(
e−(r− j)T

)
≈ e−(r− j)E(T ) +

(r − j)2

2
e−(r− j)E(T ) V (T ) (13)
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where V(T ) is the variance of T . Note that Eq. (13) can also

be interpreted as an adjustment to the conventional approach, P̂

(cf. [39]), namely

E (P) ≈ P̂ −
C (r − j)

2
e−(r− j)E(T ) V (T ) (14)

We note another possible formulation for computing the ex-

pected present value, E(P). Building on the definition of ex-

pected value, we seek the solution of

+∞∫
−∞

P fP (P) dP = E (P) (15)

Where fP(P) is the probability density function (pdf) of the

present value P.

Because P is a transform of the random variable T , Eq. (15)

can be rewritten by substituting Eq. (8) as follows (see, e.g.,

[10]):

+∞∫
−∞

P fT (T ) dT =

+∞∫
−∞

C

r − j

(
1 − e−(r− j)T

)
fT (T ) dT

=
C

r − j

1 −
+∞∫
−∞

e−(r− j)T fT (T ) dT


= E (P)

(16)

Where fT (T ) is the pdf of asset life T . Notice that the integral

expression on the left is actually the moment-generating func-

tion; thus, this formula is equivalent to Eq. (12). The parameters

in Eq. (16) may, of course, be required to meet some restrictive

conditions in order to achieve convergence of the integral, that

is, for the moment-generating function, and thus the expected

present value, to exist.

We further note that the technique of the Laplace transform

can also be used to compute the expected present value. For a

discussion of this approach see, e.g., [12, 14, 22].

Now, recalling our assumption that asset life is exponentially

distributed, we substitute the moment-generating function of the

exponential distribution into Eq. (12) to obtain the closed form

solution for the expected present value (see, e.g., [15, 41]):

E (P) =
C

r − j

1 − 1

1 −
−(r− j)

λ

 =
C

r − j

(
θ (r − j)

1 + θ (r − j)

)
(17)

where λ is the parameter of the exponential distribution, and

θ denotes the mean of the exponential distribution, that is, the

expected life of the asset (in other words, E(T ) = θ), which is

related to the distribution parameter via θ = 1/λ.

Verifying the convergence criteria from Eq. (16), we find that,

assuming positive expected asset life, θ(r− j) > −1 must hold in

order for E(P) to exist; otherwise, E(P) = ∞. (If θ is zero, then

E(P) is also zero, and the relative error is undetermined due to

division by zero.)

2.2 Evaluation of relative error

Dividing Eq. (9) by Eq. (17) and subtracting 1, the relative

error is

ε =

C
r− j

(
1 − e−θ(r− j)

)
C

r− j

(
θ(r− j)

1+θ(r− j)

) − 1

=
(
1 − e−θ(r− j)

) (
1 +

1

θ (r − j)

)
− 1

(18)

Notice that the relative error is independent of the cash flow pa-

rameter C. It should also be noticed that Eq. (18) is, in fact, a

function of a single variable: substituting x = θ(r − j), the error

can be expressed as

ε =
(
1 − e−x) (1 +

1

x

)
− 1 (19)

It follows from the previous discussion that if x ≤ −1, then, be-

cause E(P) equals infinity, the error is –100%, and if x = 0,

which occurs when r = j, the error is zero. (x = 0 occurs

also in the theoretical case where θ = 0, but then we have a

degenerate distribution, and the error is undetermined due to di-

vision by zero, see earlier. We assume a positive expected life.)

Fig. 1 shows the plot of the absolute value of the error function

in Eq. (19). We take the absolute value of the error to express

the magnitude. The issue of sign has been discussed above in

reference to Jensen’s inequality.

Fig. 1. Function of the absolute value of the relative error in variable x =

θ(r − j)

As Fig. 1 shows, the relative error has a local maximum. Dif-

ferentiating Eq. (19) with respect to x and solving for zero pro-

duces only one real root, at x ≈ 1.79, where ε ≈ 29.84%. Be-

cause we take the absolute value of the error, the global max-

imum is 100%. It can be seen in Fig. 1 that in the negative

domain, the error is very sensitive to x. We can also establish

that if x converges to infinity, then the error converges to zero.

However, if we examine the composition of the variable x, the

interpretations of the limiting cases become more subtle. First,

consider what is probably the least unrealistic of the limiting

cases, namely, that the expected life is infinity. This limiting

case is meaningful if and only if r > j, which is the convergence

criterion of the present value integrals when θ is infinity, and if
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this criterion holds, the error is indeed zero. Otherwise, neither

the conventional nor the correct present value exist (i.e., both are

infinity). Plausibly, uncertainty does not matter in the case of an

asset that is expected to be infinitely lived (provided, of course,

that its present value exists). Convergence of either the discount

rate or the growth rate to either positive or negative infinity yield

meaningless results. If the discount rate is infinitely large or the

growth rate converges to negative infinity, both the conventional

and the correct present values are zero; thus, the relative error,

which is a ratio, is not meaningful. If the discount rate converges

to negative infinity or the growth rate is infinitely large, neither

the conventional nor the correct present value exists. (Thus, con-

vergence of x to negative infinity is not meaningful.)

Now, further examining the composition of the variable x and

knowing that, as θ is positive, x is positive if and only if r > j,

and x is negative if and only if r < j, the results can be inter-

preted as follows. If the discount rate exceeds the growth rate,

then the error cannot exceed 30%, but this maximum can be at-

tained for every expected life θ, as there exist several (in fact,

infinitely many) r − j combinations for which the extremum

condition is satisfied. This is because the parametric equation

x = θ(r − j) by itself is an underdetermined system of equations

and thus has infinitely many solutions. In other words, the real

number x can be written as the product of two real numbers in

infinitely many ways. If the discount rate is smaller than the

growth rate, then the upper limit of the error is 100%, which

again, for the reason just mentioned, can be attained for every

expected life. Fig. 1 clearly shows that, in this case, the error

is very sensitive to the difference between the discount rate and

the growth rate. When the two rates are equal, the error is zero,

as discussed earlier.

It is also worthwhile to more closely examine the monotonic-

ity of the error function depicted in Fig. 1. In the negative do-

main of x, the function is strictly decreasing (more precisely, on

the −1 to 0 open interval because below −1, the error is identi-

cally 100%; see earlier), and in the positive domain, it is strictly

increasing up to the local maximum at x ≈ 2, beyond which the

function is strictly decreasing. As x is the product of two vari-

ables, if we take one of them as fixed, x changes in magnitude in

the same direction as the other variable changes in magnitude.

That is, for a given rate difference, r − j, x increases/decreases

in absolute value as the expected life, θ (which is assumed to

be always positive), increases/decreases. Similarly, for a given

expected life, x increases/decreases in absolute value as the rate

difference increases/decreases in absolute value. We can argue

that, for realistic cases, the rate difference may rarely exceed

10% in absolute value (e.g., a 10% discount rate paired with

a 0% growth rate) and the planning horizon (i.e., the expected

life) may rarely exceed 20 years. These practical constraints

correspond to a limit of x = 2 in the positive domain, approx-

imately the point of the local maximum. In fact, this implies

that the local error maximum is unlikely to be attained in prac-

tice. Under these tentative assumptions, the relevant range of

x can be confined to −1 to 2. (The range of −2 to −1 can be

neglected, as the error is already at the theoretical maximum of

100% in that region.) Thus, recalling our monotonicity obser-

vations, the following rule of thumb can be stated: for a given

rate difference, the larger the expected life – or, alternatively, for

a given expected life, the larger the rate difference in absolute

value – the larger is the magnitude of the error. A caveat must

be added, however, for the sake of precision. Because the abso-

lute value of the error function is not symmetric around x = 0

(i.e., in the negative domain of x, it is “steeper”), it may oc-

cur that, given an expected life, a negative rate difference has

a larger error magnitude than what a more positive rate differ-

ence (i.e., the absolute value of which is larger than the absolute

value of the negative difference) has. In other words, for a given

expected life, a decrease/increase in the rate difference to the

extent that it changes sign may result in an increase/decrease

in the magnitude of the error even though the absolute value of

the rate difference decreases/increases. Therefore, we make the

clarification that by “a larger rate difference in absolute value

(or magnitude)” we mean henceforth that a positive (negative)

rate difference is made more positive (negative); thus, a change

of sign is ruled out. (We note that this change of sign issue does

not occur when the rate difference is given because the expected

life is assumed to be always positive. Thus, that kind of formu-

lation of our rule of thumb requires no such caveat.)

Fig. 2 plots error functions for specific expected lives, to bet-

ter illustrate the above points (regarding, for example, local error

maximum attainable for every expected life and monotonicity

under realistic constraints).

Fig. 2. Absolute value of the relative error as a function of the rate difference

δ = r− j for expected lives of θ = 2 (solid), 5 (dashed), 10 (dotted), and 20 (gray)

As a side-observation, we note that similar conclusions can

be drawn using the Taylor series approximation formula in

Eq. (13). Knowing that the variance of an exponentially dis-

tributed random variable is the square of its expected value, we

can approximate the error function (omitting here tedious alge-

braic manipulations) as

ε ≈
x2

2 ex −2 − x2
(20)

which behaves similarly to the exact function in Eq. (19) and
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also has a single local maximum in the positive domain, at x ≈

1.59, with an approximate value of the local error maximum of

48%. These results can be seen as close to those obtained via

the precise analysis.

Finally, we identify the advantage of working with the rel-

ative error, or more precisely, why the local maximum cannot

be obtained using the absolute error. The absolute error can be

written as (following Chen and Manes [15])

φ = P̂ − E (P)

=
C

r − j

(
1 − e−θ(r− j)

)
−

C

r − j

(
θ (r − j)

1 + θ (r − j)

)
= C

1 − (1 + θ (r − j)) e−θ(r− j)

(1 + θ (r − j)) (r − j)

(21)

It is obvious that Eq. (21) cannot be rewritten as a function of

a single variable; in fact, it is a function of at least three vari-

ables because the cash flow parameter cannot be eliminated. The

system of equations in which the partial derivatives are all zero

cannot be solved; therefore, the necessary conditions for the ex-

istence of a local extremum are not fulfilled. This is plausible

because several absolute errors exist for which the same relative

error is attained, and thus, although the relative error is maximal,

the absolute error can be arbitrarily large.

3 Discrete case

3.1 Derivation of present value formulas

We recall from the introduction that, in the discrete case, we

assume a geometric gradient series cash flow pattern. Thus, the

evolution of cash flows is defined mathematically as

Fn = F1 (1 + g)n−1 (22)

where g is a non-stochastic and time-invariant discrete growth

rate.

We also note an interesting similarity between the continuous

and discrete growth patterns used in our analysis: the “period-

wise” integrals of the exponential cash flow function in Eq. (7),

that is, the series of integrals over successive periods, produces a

geometric series (i.e., also an exponentially growing series, but

in discrete time). To show this, we first compute Fn as a period-

wise integral of Eq. (7) as

Fn =

n∫
n−1

C e jt dt = e j(n−1) C

j

(
e j −1

)
(23)

From this, we can evaluate the discrete growth rate (for any n)

as

1 + g =
Fn

Fn−1

=
e j(n−1)

e j(n−2)
= e j (24)

which completes the demonstration. Notice that, not surpris-

ingly, we arrived at the same relationship between g and j as

that between i and r in Eq. (3).

Returning to Eq. (22), the present value of Fn, as of time zero,

is computed as

Pn = Fn (1 + i)−n =
F1

1 + g

(
1 + g

1 + i

)n

(25)

where Pn denotes the present value of Fn.

Thus, Pn represents a geometric series, and using the well-

known formula for the sum of a geometric series, the present

value of the series of cash flows (shown previously in Eq. (1))

can be given as (e.g., [32, 33])

P =
F1

1 + i

(
1+g

1+i

)N
− 1

1+g

1+i
− 1

=
F1

i − g

1 − (
1 + g

1 + i

)N (26)

(We have omitted the d index, as it is clear that we are discussing

the discrete case in this section.)

Recalling that the life of the asset, N, is a random variable,

under the conventional approach, the present value is calculated

as

P̂ =
F1

i − g

1 − (
1 + g

1 + i

)E(N)
 (27)

The correct calculation, by contrast, is

E (P) = E

 F1

i − g

1 − (
1 + g

1 + i

)N (28)

Note that the present value in Eq. (26) is a function, i.e., a trans-

form of the random variable N. As both g and i are assumed

to be greater than −1, the quotient (1 + g)/(1 + i) must be posi-

tive. Thus, assuming a positive F1, it can be established from the

second (partial) derivatives with respect to N (assuming for the

moment that N is a continuous variable) that the present value

function in Eq. (26) is strictly convex if and only if i < g and

strictly concave if and only if i > g. Now, based on Jensen’s

inequality, the direction of the bias between Eqs. (27) and (28)

can be established. That is, P̂ < E(P) if and only if i < g;

then, the conventional approach provides an understated present

value. Conversely, P̂ > E(P) if and only if i > g; then, the

conventional approach provides an overstated present value. (In

the case of negative F1, i.e., negative present values, just the

opposite is true.) Equality occurs when i = g, although then the

second (partial) derivative and the closed form present value for-

mula in Eq. (26) are both undetermined due to division by zero.

This is actually the result of the violation of the convergence cri-

terion for the sum of the geometric series, namely, that the ratio

of successive terms must be less than 1 (in absolute value). Re-

calling the present value formula for the individual terms of the

series in Eq. (25), we obtain in this case, also by substituting i

for g (see, e.g., [32, 33])

Pn =
F1

1 + i
∀n ≥ 1, from which P = N

F1

1 + i
(29)

Because both F1 and i are non-stochastic, it is apparent that
F1

1+i
E (N) = E

(
N

F1

1+i

)
, that is, P̂ = E(P). Thus, the conventional

approach is perfectly accurate if and only if i = g.

It is important to note that the findings thus far are the same as

those that have been established in the continuous case and are

again independent of the actual probability distribution of asset

life.
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If we rewrite the expected present value in Eq. (28) as

E (P) =
F1

i − g

1 − E

(1 + g

1 + i

)N (30)

we see that the expectation term is actually the probability-

generating function of N. Thus, knowing the distribution of N,

and provided that the power series representation corresponding

to its distribution converges, the exact formula for the expected

present value can be given.

Alternatively, we can again retreat to an approximation based

on a Taylor series. Assuming for the moment that N is a

continuous variable and expanding the expectation term about

N = E(N) and retaining only first and second order terms, we

have

E

(1 + g

1 + i

)N ≈ (
1 + g

1 + i

)E(N)

+

(
1 + g

1 + i

)E(N) ln2
(

1+g

1+i

)
2

V (N) (31)

where V(N) is the variance of N. Notice that Eq. (31) can, again,

be interpreted as an adjustment to the conventional approach, P̂

(similar to Eq. (14) in the continuous case). Specifically,

E (P) ≈ P̂ −
F1

i − g

(
1 + g

1 + i

)E(N) ln2
(

1+g

1+i

)
2

V (N) (32)

Similarly to the continuous case, an alternative formulation for

computing the expected present value, E(P), can be stated.

Building on the definition of expected value for a discrete ran-

dom variable, we seek the solution of

∞∑
n=0

pP (n) P|N=n = E (P) (33)

where pP(n) is the probability mass function (pmf) of the present

value P.

Again, because P is a transform of the random variable N,

Eq. (33) can be rewritten, by substituting Eq. (26) into it and

exploiting the fact that the sum of the infinite series of a pmf

equals 1 by definition, as follows (see, e.g., [10]):

∞∑
n=0

pN (n)
F1

i − g

(
1 −

(
1 + g

1 + i

)n)

=
F1

i − g

1 − ∞∑
n=0

pN (n)

(
1 + g

1 + i

)n
 = E (P)

(34)

where pN(n) is the pmf of life N. The parameters in Eq. (34)

may, of course, be required to meet some restrictive conditions

in order to achieve convergence of the sum of the infinite series,

that is, for the expected present value to exist. Notice that this

power series is, in fact, the probability-generating function of N,

so we have arrived at a formulation equivalent to Eq. (30).

We further note that the technique of the Z-transform (which

can be regarded as the discrete-time equivalent of the Laplace

transform) can also be used to compute the expected present

value. For a discussion of this approach see, e.g., [13, 35].

Recalling our assumption that asset life is geometrically

distributed and substituting the corresponding probability-

generating function into Eq. (30), we find the closed form solu-

tion for the expected present value (see, e.g., [19]):

E (P) =
F1

i − g

1 − α 1+g

1+i

1 − (1 − α)
1+g

1+i

 =
F1

i − g

 1

1 +
1+g

η(i−g)

 (35)

where α is the parameter of the geometric distribution, and η

denotes the mean of the geometric distribution, that is, the ex-

pected life of the asset (in other words E(N) = η), which is

related to the distribution parameter via η = 1/α. There are ac-

tually two versions of the geometric distribution – we use the

one for the domain of positive integers; that is, asset life cannot

be zero (see [19]).

Verifying the convergence criteria from Eq. (34), we find, ex-

ploiting the fact that expected asset life must be positive, that∣∣∣ 1+g

1+i

∣∣∣ < η
η−1

must hold in order for E(P) to exist; otherwise,

E(P) = ∞. Because both g and i are assumed to be greater than

−1, the absolute value sign can be omitted, as the ratio is always

positive. Note also that η cannot be zero, as asset life is assumed

to be at least 1 period.

3.2 Evaluation of relative error

Dividing Eq. (27) by Eq. (35) and subtracting 1, we obtain the

relative error, after considerable algebraic manipulation:

ε =

F1

i−g

(
1 −

(
1+g

1+i

)η)
F1

i−g

(
1

1+
1+g

η(i−g)

) − 1

=

(
1 −

(
1 + g

1 + i

)η) 1 +
1

η
(

1+i
1+g
− 1

)  − 1

(36)

Notice that the relative error, similar to that of the continuous

case, is independent of the cash flow parameter F1. More im-

portant, however, is the fact that, in contrast to the continuous

case in Eq. (18), the error function in Eq. (36) cannot be rewrit-

ten as function of a single variable. This is clear from the fact

that η is an exponent in one term and a multiplier in another.

Due to this limitation, the analysis of the discrete case is more

involved than that of the continuous case. However, the above

formulation helps us recognize that Eq. (36) can be rewritten as

a function of two variables, if we substitute into the expression

y = (1 + g)/(1 + i). Then,

ε = (1 − yη)

1 +
1

η
(

1
y
− 1

)  − 1 (37)

It follows from the previous discussion that if y ≥ η/(η − 1),

then, because E(P) equals infinity, the error is −100%; and if

y = 1, which occurs when i = g, the error is zero. Note also that

for η = 1, the error is also always zero (in this case, we have a

degenerate distribution similar to θ = 0 in the continuous case).

Although Eq. (37) is a function of two variables, in essence,

it is very similar to the single-variable error function Eq. (19)
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in the continuous case. To see this, substitute z = η( 1
y
− 1)

and apply a first order Taylor series approximation to show that

e−z =

(
e

1
y
−1

)−η
≈

(
1 + 1

y
− 1

)−η
= yη, from which Eq. (37) can

be rewritten as

ε ≈
(
1 − e−z) (1 +

1

z

)
− 1 (38)

which has the same form in z as Eq. (19) has in x. Thus, we can

expect results in the discrete case to be similar to those we found

in the continuous case.

Fig. 3 shows the plot of the absolute value of the error func-

tion of two variables, given in Eq. (37), for specific values of

η. Again, we take the absolute value of the error to express the

magnitude. The issue of sign has been discussed above, in ref-

erence to Jensen’s inequality.

Fig. 3. Function of the absolute value of the relative error in variable y =

(1 + g)/(1 + i) for expected lives of η = 2 (solid), 5 (dashed), 10 (dotted), and 20

(gray)

As Fig. 3 shows, for every η, for y < 1, the relative error has a

local maximum, the value of which is conditional on η. Because

we take the absolute value of the error, the global maximum is

100% for every η. In the domain where y > 1, the error is very

sensitive to y. These observations closely accord with those for

the continuous case, with the difference that in the discrete case

the shape of the error function, more precisely, the value of the

local maximum, varies (slightly) with η. The main characteris-

tics, however, are the same – that is, for a given expected life,

the discrete and continuous errors behave identically. This is

confirmed when we examine more closely the composition of

the variable y. If y < 1, which occurs if and only if i > g, there

exists a local error maximum. The error is very sensitive to val-

ues of y > 1, which occur if and only if i < g. The error is zero

when y = 1, which occurs if and only if i = g. (Our assumptions

do not allow y to equal 0.)

The main difference between the discrete and the continuous

case, which can be observed in Fig. 3, is that in the discrete case,

the value of the local error maximum is not the same for every

expected life, as was the case in the continuous case. For ex-

ample, for an expected life of 5 periods, the value of the local

error maximum is approximately 22%, in contrast to the approx-

imately 30% attainable in the continuous case. Fig. 3 also shows

that (and this can be verified by examining the partial deriva-

tives) the location and the value of the local maximum are both

increasing in η. That is, they are lowest for η = 2, when the value

of the local error maximum is 12.5%, obtained at y = 0.5, and

highest as η approaches infinity. For example, for η = 1000, the

value of the local error maximum is 29.8%, which is the same

maximum value we found in the continuous case and is obtained

at y = 0.998. It is intuitive that the largest possible value of the

local error maximum in the discrete case should be the same as

that in the continuous case because, from the “view of infinity,”

the length of the discrete periods is infinitesimal, that is, the dis-

crete case looks to be continuous. Therefore, we can establish

that the error in the discrete case cannot exceed 30% if i > g.

We also note that this theoretical extreme is approached quite

rapidly, e.g., for η = 20, the value of the local error maximum is

27.8%.

Additionally, it is important to recognize that because both

i and g are typically small (i.e., close to zero), the ratio y be-

haves quite analogously to the rate difference i − g. (This can

be verified, e.g., via a first-order Taylor series approximation of

the ratio in two variables.) That is, the larger the difference in

magnitude, the further the ratio is away from 1, where the error

is zero. Thus, the results so far accord with those established in

the continuous case. That is, for a longer expected life, the rate

difference must be smaller to attain the local error maximum.

Thus, as η increases, the point of the local maximum moves

closer to y = 1 (see in Fig. 3).

In summary, we can draw conclusions very similar to those

we drew in the continuous case. If the discount rate exceeds the

growth rate, then the error cannot exceed 30%, but a maximum

of at least 12.5% can be attained for every expected life η (except

for 1), as there exist several i − g combinations for which the

extremum condition is satisfied (in fact, infinitely many because

both i and g can be real numbers). This is because the parametric

equation y = (1 + g)/(1 + i) by itself is an underdetermined

system of equations and thus has infinitely many solutions. In

other words, the real number y can be written as the ratio of

two real numbers in infinitely many ways. If the discount rate

is smaller than the growth rate, then the upper limit of the error

is 100%, which can be attained for every expected life. Fig. 3

clearly shows that, in this case, the error is very sensitive to the

ratio of the rates. When the two rates are equal, the error is zero,

as discussed earlier.

It is also worthwhile to examine some limiting cases of the er-

ror function. If the expected life converges to infinity, the error

is meaningful if and only if i > g, which becomes the conver-

gence criterion of the series composing the present values, and if

this criterion holds, the error is indeed zero. Otherwise, neither

the conventional nor the correct present value exists (i.e., they

are both infinity). This is the same observation we made in the

continuous case, and again it reflects that uncertainty does not

matter in case of an asset that is expected to be infinitely lived

(provided, of course, that its present value exists). Convergence
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of either the discount rate or the growth rate to either positive

or negative infinity yield meaningless results in the discrete case

as well. If the discount rate converges to positive or negative

infinity, all terms in the series are zero (see Eq. (25)), so both

the conventional and the correct present values are also zero;

thus, the relative error, which is a ratio, is not meaningful. If the

growth rate converges to positive or negative infinity, all terms

in the series are infinitely large, so neither the conventional nor

the correct present value exists.

Finally, the same rule of thumb that we formulated for the

continuous case can be formulated for the discrete case. Let us

now recall the practical boundaries introduced in the evaluation

of the continuous case. First, the rate difference may rarely ex-

ceed 10% in magnitude. Adding that the individual rates them-

selves are unlikely to exceed 20% in magnitude, this translates

into a minimal y of approximately 0.9. Second, the expected life

may rarely exceed 20 years – for η = 20, the local maximum

is obtained at y ≈ 0.9, and for smaller values of η, it is ob-

tained at smaller values of y (see the previous discussion). Thus,

we can establish that, under these practical constraints, the local

maximum is unlikely to be attained, and thus it is sufficient to

consider only the two monotonic ranges above and below y = 1.

It can also be observed in Fig. 3 (and verified by examining the

partial derivative) that in this range, the error is increasing in η.

In conclusion, for a given rate difference, the larger the expected

life – or, alternatively, for a given expected life, the larger the

magnitude of the rate difference – the larger is the magnitude

of the error. This is the same rule as the one formulated above

for the continuous case. The same caveat made in the continu-

ous case applies here as well, that is, because the absolute value

of the error function is not symmetric around y = 1, we clarify

that “larger” as pertains to the magnitude of the rate difference

means that the rate difference is “more positive (negative)”.

Due to its complexity and limited relevance, we omit the dis-

cussion of the similarity of the results obtainable by using the

Taylor series approximation formula in Eq. (31) compared to

the precise analysis. Additionally, discussion of the difference

between absolute and relative errors is omitted for the same rea-

son.

4 Discussion of results

As we have shown, the error characteristics in the continu-

ous and the discrete case are quite similar. It might be argued

that a discount rate higher than the growth rate is the typical

case in real life. If so, then it is somewhat reassuring to know

that, given any rate difference and asset life combination, the

error cannot exceed 30%. However, it is discomforting that, at

least theoretically, a non-negligible error maximum may occur

for any expected life (or any rate difference). Generally, a long

(short) expected life associated with a small (large) rate differ-

ence may give rise to such an extreme situation. As was argued,

however, analysts may rarely encounter this error maximum in

practice. If the growth rate exceeds the discount rate, the pic-

ture is much more dire. Then, the error has no limit except the

theoretical maximum of 100% and, in addition, is more sensi-

tive to the rate difference. The case of negative discount rates is

particularly relevant here: then, even for very small, near-zero

growth rates, the error may be severe, and for this to occur, the

discount rate need not be very negative, as we show below. Per-

haps the best way to demonstrate possible computational errors

attributable to using expected asset life, rather than computing

the expected present value, is via a graphical illustration. Fig. 4

shows nomograms (two-dimensional diagrams) that exhibit the

severity of errors for various discount rate and growth rate com-

binations for expected lives of 2, 5, 10, and 20 periods, in both

the continuous and discrete cases. For a more tractable demon-

stration, we cut off rates above 20% in magnitude.

As the nomograms show, the continuous and discrete cases

are very similar, as expected. It is alarming to observe that the

error may easily exceed 10%, which can be considered signifi-

cant, and that for that to happen, the rate difference need only be

a few percentage points. For example, in the continuous case,

for an expected life of 10 periods, rate differences of 2% and

−2% produce errors of 8.8% and −11.4%, respectively. For an

expected life of 20 periods, rate differences of 1% and −1% pro-

duce the same error percentages. As follows from our previous

findings and as seen in Fig. 4, as the expected life increases,

the band of rate combinations associated with errors of less than

10% shrinks. That is, a given rate difference (typically) implies a

more severe error, the longer is the expected life (as stated in our

rule of thumb). These results call attention to the importance of

precision in growth rate and discount rate estimation, as even a

small percentage point deviation can have serious consequences.

That is, for imprecise rate estimates the error may be found to be

negligible, so the analyst would wrongly think that it is unnec-

essary to bother with computing the expected present value and

would simply use the expected life. Whereas, the error may be

much larger if the correct rates were used, and the computation

of the expected present value would be clearly preferred. The

nomograms presented here help assess such possible errors.

Finally, we provide a brief illustrative example to present the

error characteristics numerically. Consider an energy efficiency

project, specifically, an installation of photovoltaic cells on the

rooftop of a building, where the returns consist of a single cash

flow stream resulting from savings on energy costs. (Other rel-

evant cash flows, e.g., operation and maintenance costs, can

usually be neglected for such projects, so consideration of the

savings flows alone is a good working approximation.) Such

a project can be fairly described as a growing annuity of cash

flows, accounting for possibly rising fuel prices. The life of

photovoltaic cells may be approximated by a memoryless prob-

ability distribution, such as the exponential or geometric distri-

bution (e.g., [29, 40]). We assume in this example a reasonable

20-year expected life for the project. As discussed in the intro-

duction, several papers have argued for the counter-cyclical na-

ture of energy prices and found empirically that related projects
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Fig. 4. Comparative evaluation of errors for various expected lives and discount rate – growth rate combinations; darker colors indicate more severe errors
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may have a negative beta in the CAPM. A negative beta may

imply a negative discount rate, depending on one’s assumptions

about the market parameters (i.e., the risk-free rate and the ex-

pected market risk premium). Because some of these papers

(e.g., [2, 11, 28]) observe that the possibility of a positive beta

generally cannot be ruled out for energy-saving projects (i.e.,

they cannot reject the null hypothesis of zero beta, cf. [16]), and

because Andor and Dülk [2] conclude that the risk-free rate is

generally a fair approximation for the cost of capital for such

projects, we consider a narrow range of discount rates around

zero. The growth rate is examined in a similarly narrow range,

as it is not expected to be large for an extended period of time.

For reference, some negative growth rates are also included. We

consider one year as the interest period. We note that the in-

traperiod pattern of cash flows may not be precisely described

as an exponential growth in the continuous case, or as an end-

of-period lump sum in the discrete case, but the error attributable

to this issue is negligible for the small discount rates we use (see

[3] for a thorough discussion of this topic). Table 1 summarizes

the errors for the various rate combinations.

Tab. 1. Relative errors (rounded to integers) for various discount rate and

growth rate combinations for the illustrative project with an expected life of

20 years. A positive error means overstatement, and a negative error means

understatement, of the correct present value.

Continuous case

j r −6% −4% −2% 0% 2% 4% 6%

−5% −11% 9% 20% 26% 29% 30% 29%

−3% −45% −11% 9% 20% 26% 29% 30%

−1% −100% −45% −11% 9% 20% 26% 29%

0% −100% −69% −26% 0% 15% 24% 28%

1% −100% −100% −45% −11% 9% 20% 26%

3% −100% −100% −100% −45% −11% 9% 20%

5% −100% −100% −100% −100% −45% −11% 9%

Discrete case

g i −6% −4% −2% 0% 2% 4% 6%

−5% −12% 9% 20% 25% 27% 28% 27%

−3% −46% −11% 8% 19% 25% 27% 28%

−1% −100% −45% −11% 8% 19% 25% 27%

0% −100% −68% −25% 0% 14% 22% 26%

1% −100% −98% −43% −11% 8% 19% 25%

3% −100% −100% −95% −42% −11% 8% 19%

5% −100% −100% −100% −92% −41% −10% 8%

As Table 1 shows, the errors are not negligible and may even

be severe for the realistic scenarios examined. This is not sur-

prising in light of our earlier results, as here we are dealing with

a long life combined with a small rate difference. Perhaps the

most realistic scenario is the 2% risk-free rate as the discount

rate and a zero growth rate (if we are thinking in real terms),

for which the error is approximately 15%, which is significant.

Therefore, computation of the expected present value is desir-

able in the case of such an energy efficiency project.

As a complement to practical recommendations, we note that

for the valuation of companies the issue of expected present

value is probably not relevant, as such valuations typically as-

sume an infinite life, along with the condition that the discount

rate exceeds the growth rate, and, recalling our related findings,

in this case the error is zero.

5 Conclusions

In this paper, we have shown that if the economic life of an

asset is uncertain, the expected present value should be calcu-

lated instead of simply substituting the expected life of the as-

set into the present value formula. The computational error at-

tributable to the latter approach depends on the cash flow pat-

tern of the asset, the cost of capital, and the probability distri-

bution of the asset life. We have evaluated relative errors for

the case of a continuous exponential cash flow pattern and ex-

ponentially distributed life, as well as for their discrete equiva-

lents of a geometric gradient cash flow series and geometrically

distributed life, for various costs of capital. By using the rel-

ative error we have gained insights that previous studies have

not achieved because they were working with absolute, rather

than relative, error. Most notably, we found a local error max-

imum if the discount rate exceeds the growth rate and showed

that this maximum can be attained for any expected life. We are

the first to present a detailed comparison of the discrete and con-

tinuous cases and to demonstrate that very similar conclusions

can be drawn in the two cases. The most essential difference

concerns the local maximum, the value of which is found to

vary with the expected life in the discrete case, while it is in-

variant in the continuous case. More concretely, we found that

if the discount rate exceeds the growth rate, then the error can-

not be larger than 30% in either the discrete or the continuous

case, and the correct present value is overstated. This value of

the local error maximum can be attained for every expected life

in the continuous case, but it can be attained only for relatively

long (approximately 20 periods or longer) expected lives in the

discrete case. In the discrete case, the value of the local error

maximum is smaller for a shorter expected life and is found to

be at least 12.5%, except for an expected life of one year, when

the error is zero. The error is also always zero if the discount rate

is exactly equal to the growth rate. We found that the error may

easily become severe if the growth rate exceeds the discount rate

and may even reach the theoretical maximum of 100%, both in

the discrete and continuous case. The correct present value is

then understated. Setting practical constraints on the possible

range of rates and expected lives, we have formulated the fol-

lowing general rule of thumb: for a given difference between

the discount rate and the growth rate, a larger expected life – or,

alternatively, for a given expected life, a larger rate difference

in magnitude – results in a larger magnitude of the error. Our

findings call attention to the need for precision in discount rate

and growth rate estimation, as, for realistic cases, even a single

percentage point rate difference may result in a non-negligible

error. An empirically supported illustrative example was pre-

sented to highlight possible errors, including cases with negative

Present value under uncertain asset life 812013 21 2



discount and/or growth rates. Analyses similar to that presented

in this paper could be conducted for other cash flow patterns and

probability distributions.
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