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Abstract
In this paper a novel methodology founded on the joint appli-
cation of analytic decomposition of empirical failure rate time 
series and soft computational techniques is introduced in order 
to predict bathtub-shaped failure rate curves of consumer elec-
tronic goods. Empirical failure rate time series are modeled 
by a flexible function the parameters of which have geometric 
interpretations, and so the model parameters grab the charac-
teristics of bathtub-shaped failure rate curves. The so-called 
typical standardized failure rate curve models, which are 
derived from the model functions through standardization and 
fuzzy clustering processes, are applied to predict failure rate 
curves of consumer electronics in a method that combines ana-
lytic curve fitting and soft computing techniques. The forecast-
ing capability of the introduced method was tested on real-life 
data. Based on the empirical results from practical applica-
tions, the introduced method can be considered as a new, alter-
native reliability prediction technique the application of which 
can support the electronic repair service providers to plan their 
resources in the long run.

Keywords
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1 Introduction
Nowadays, the level of after sales service is an important 

quality factor to which significant attention is paid in the market 
of consumer electronic goods. New products are launched with 
an ever increasing pace within decreasing periods of time. The 
constantly increasing demand for electronics and the current 
dynamism of product development result in shortening product 
life-cycles. In such a highly competitive environment not just 
the manufacturing, but the aftermarket services are also out-
sourced to service provider companies that provide electronic 
repair services – as after sales services – on behalf of the prod-
uct brand owners (original equipment manufacturers, OEM). 
Companies dealing with electronic repair services process field 
returns which enable them to produce empirical failure rate 
curves for consumer electronic goods. These goods are typically 
tested functionally, the application of specific reliability tests in 
case of these products is not a common practice. In addition to 
that, considering the shortening product life-cycles, the curves 
of failure rate functions of consumer electronics are bathtub-
shaped with all the three characteristic phases of the traditional 
bathtub curve: the decreasing first phase, called infancy period, 
the quasi constant second phase, which is also referenced as the 
period of normal operation or useful life, and the third, increas-
ing one representing the wear-out period. The failure rate func-
tions, that are also called hazard functions, represent the char-
acteristics of product life (Goel and Graves, 2006; Economou, 
2004; Campbell et al., 1992). Similarly to product- or business 
related life-cycles (Gelei and Dobos, 2014), the failure rate 
functions can be considered as characteristics that reflect the 
product reliability over the product life-cycle. 

Product failure rates are time-dependent, and so they can be 
considered as time series. The complete empirical failure rate 
time series of end-of-life consumer electronic products of the 
same commodity can be taken as an empirical knowledge base 
of product reliability. This knowledge can be built up from field 
data and can be used to predict the unknown failure rate curves 
of newly marketed products of the same commodity. 

Our approach is founded on an analytic decomposition of 
empirical failure rate time series by using a flexible model 
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function that can describe all phases of the traditional bathtub-
shaped hazard function curve well. The most important prop-
erty of the introduced model function is that each of its param-
eters has a geometric interpretation that is related to the shape 
of the failure rate curve. After applying appropriate transforma-
tions to the model functions, those can be standardized and the 
standardized models can be clustered based on their parameters. 
This process results in typical standardized failure rate curve 
models that can be used to predict failure rates of active prod-
ucts. The developed forecasting method is founded on measur-
ing fuzzy similarity between the known fraction of failure rate 
time series of the studied active product and each fitted typical 
standardized failure rate curve model. In this sense, our method 
is a hybrid one that combines times series, analytic curve fit-
ting and soft computing techniques. The introduced method 
was tested on real life data and its goodness was compared to 
widely used forecasting techniques such as the moving aver-
age, the exponential smoothing, the linear regression and the 
auto-regressive integrated moving average (ARIMA) methods. 
Results of practical application are discussed in a case study. 
Our main conclusion is that the forecast based on typical stand-
ardized failure rate curve models is able to indicate the turn-
ing points of the bathtub-shaped failure rate curve in advance 
in contrary to the traditional statistical forecasting techniques 
that do not have such a capability. Another advantage of our 
method is that it does not require the knowledge of the failure 
rate probability distribution, or the knowledge of the so-called 
stress factors that the product will operate along with. Based 
on the empirical results from practical applications, our method 
can be considered as a viable alternative reliability prediction 
technique. Application of our method can support the electronic 
repair service providers to plan their resources in the long run. 

The remaining part of our paper is structured as follows. Sec-
tion 2 discusses the state of the field. In Section 3, the failure 
rate curve model is introduced that we apply for decomposing 
the empirical failure rate time series and characterize them by 
parameter vectors. In this section, we also discuss the standard-
ization of the failure rate curve models, their fuzzy clustering, 
and our prediction method that is based on typical standardized 
failure rate curve models. Our method is demonstrated through 
a real-life example in Section 4. Finally, key conclusions and 
the managerial implications are discussed in Section 5. 

2 Literature review
Economou (2004) distinguishes four categories of reliability 

methods: reliability predictions, qualitative methods, quantita-
tive methods and analytic models. Reliability methods are based 
on database tools, such as the US Navy’s Military Handbook 
(MIL-HDBK) 217 or Telcordia SR 322, etc. Qualitative meth-
ods involve aggressive testing such as Highly Accelerated Life 
Test (HALT), or Highly Accelerated Stress Screening (HASS), 
or techniques based on engineers’ experience like Failure Mode 

and Effect Analysis (FMEA). Quantitative methods deal with 
techniques like Finite Element Analysis (FEA) or Physics of 
Failure. Analytic models are a blend of reliability prediction 
tools and quantitative methods, such as Weibull analysis and 
life stress distribution (Economou, 2004). 

Many papers deal with the extensions of analytic models that 
are based on Weibull-, exponential, Marshall-Olkin extended 
uniform, and log-normal distributions (e.g. Marshall and Olkin 
1996; Abid and Hassan, 2015). In some models, new param-
eters are introduced that refer to the circumstances of usage, 
production, etc. It could be said that properly modeled environ-
mental stress is fundamental of varied environment oriented 
reliability prediction (Yi-kun et al., 2015). 

According to Lee and Lee (2008) there are three different 
techniques for prediction: statistical methods, similarity analy-
ses using failure rate databases, and physics-of-failure meth-
ods. Goel and Graves (2006) classify the techniques into two 
groups: empirical-based models and physics-of-failure models. 

The Military Handbook 217 by the US Navy in 1965 is 
regarded as a milestone in the history of failure rate forecasting. 
Since then it has become a widely accepted standard for reliabil-
ity prediction in industrial electronics. Many methods which can 
be used in the electronic industry were developed based on this 
standard. Two notable works are the 217Plus(TM) Handbook of 
Reliability Prediction Models (Denson, 2006) and the FIDES 
Guide 2009 (Fides Gropus, 2009). Held and Fritz (2009) stud-
ied and evaluated the FIDES Guide 2004 (previous release of 
FIDES Guide) and RIAC-Handbook-217Plus (2006) models by 
comparing their results to field data. Both models require system 
decomposition and a wide range of known circumstances which 
represent environmental and operational influences. 

Another approach was followed by Perera (2006) who cre-
ated a new predictor called reliability index to predict failure 
rates of mobile phones. However, a significant correlation was 
found between the reliability index and the failure rate, the 
method requires a series of different types of tests. 

During the past few years, besides adding new parameters 
or factors to already existing models, new approaches that are 
founded on soft computing methods such as fuzzy logic or arti-
ficial neural networks have been discovered (e.g. Chen, 2007; 
Xue et al., 2003, Al-Garni and Jamal, 2011). Nowadays, the 
above mentioned techniques are widely used as mathematical 
tools that offer an alternative way to deal with complex systems. 
Recently, artificial neural networks have been widely used not 
only in the electronic industry, but also in several other indus-
tries to predict failure rates. Kutylowskla (2015) used artificial 
neural networks to predict failure rates of water-pipe networks. 
Son et al. (2009) presented a soft computing technique for 
acquiring a proper maintenance plan for individual parts in a 
complex system. They used a combination of neural network 
and evolutionary algorithm to discover the relationship between 
individual parts of a complex system to optimize its reliability. 
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Our method can be taken as a hybrid one that involves his-
torical failure rates represented by time series as inputs, and 
combines analytic curve fitting and soft computing techniques 
to generate the typical standardized failure rate curve models 
that are the base of our forecasting algorithm. The standardized 
failure rate curve model, which we introduce here, can be con-
sidered as an alternative of the standard line segments failure 
rate curve model presented by Dombi et al. (2015). The novelty 
of our method lies in the application of our failure rate curve 
model, which due to its flexibility, can fit well to a very wide 
range of bathtub-shaped failure rate time series. The developed 
method is mainly advantageous in long-term forecasting of fail-
ure rates. It is able to indicate the turning points of the bathtub-
shaped failure rate curves in advance, while traditional statisti-
cal forecasting techniques lack this capability. Application of 
our method can support the electronic repair service provider 
companies to plan their resources based on long-term predic-
tions of failure rates of products that they need to repair. 

3 The methodology
3.1 Inputs

Let us assume, that we have the 

λ λ λi t i t i tni, , ,,
0 1

, ,

time series  (i = 1, 2, ..., m) , each of them represents the com-
plete empirical failure rate curve of a product, and the studied 
products are all from the same well-defined product category. 
The  λi,t0 

, λi,t1 
,… , λi,tn  values denote the failure rates of the ith 

product week by week, and from this point, the simplified
λi,0 

, λi,1 
,… , λi,ni

  notation is used for time series  λi,t0 
, λi,t1 

,… , λi,tni 
. 

The approach introduced here is based on the phenomenon that 
failure rate curves of the studied consumer electronic products 
are bathtub-shaped with three characteristic parts: the first de-
creasing, the second quasi constant, and the third increasing 
part as depicted in Fig. 1.

t

Fig. 1 Example for a bathtub-shaped failure rate curve

3.2 Fitting a model function to empirical failure rate 
time series

In our approach, a parametric function is applied as a model 
of each  λi,0 

, λi,1 
,… , λi,ni

  historical failure rate time series of end-
of-life products   (i = 1, ..., m)  which is based on the following  
gμ,ω : [0,1] → [0,1],  x ( )x g xµ ω, gμ,ω(x)  function:
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where  0 < μ < 1
 
. Function  gμ,ω(x)  is derived from Dombi’s 

kappa function that can be used as a unary operator in fuzzy the-
ory (Dombi, 2012a; 2012b). It can be seen that function  gμ,ω(x)  
is monotonously increasing from 0 to 1 if the parameter  ω  is 
positive, and it is monotonously decreasing from 1 to 0 if  ω  is 
negative. Parameter  ω  determines the slope of the function 
curve in the  (μ, 0.5)  point. The function has a value of 0.5 in 
the locus  μ . If  | ω | ≠ 1 , then the curve has an inflection point in 
the  (0,1)  interval. If   | ω | = 1 , then  gμ,ω(x)  is either convex or 
concave or a line in the  (0,1)  interval, depending on the value 
of  μ . If   ω = 0

 
, then  gμ,ω(x)  is constant with a value of 0.5. 

Main properties of function  gμ,ω(x)  are summarized in Table 1.

Table 1 Main properties of function  gμ,ω(x)

ω μ monotony shape in 0,1

0 < ω < 1 0 < μ < 1 increasing turns from concave to convex

ω = 1 0 < μ < 0.5 increasing concave

ω = 1 μ = 0.5 increasing line

ω = 1 0.5 < μ < 1 increasing convex

ω > 1 0 < μ < 1 increasing turns from convex to concave

−1 < ω < 0 0 < μ < 1 decreasing turns from convex to concave

ω = −1 0 < μ < 0.5 decreasing convex

ω = −1 μ = 0.5 decreasing line

ω = −1 0.5 < μ < 1 decreasing concave

ω < −1 0 < μ < 1 decreasing turns from concave to convex

Figure 2 depicts different examples for curves of function     
gμ,ω(x). 

It is to be highlighted that the curve of function  gμ,ω(x)  
can have various shapes and so its appropriate linearly trans-
formed variants are suitable to model the decreasing first and 
the increasing third phases of the bathtub-shaped failure rate 
curves of electronic products. It is also worth mentioning that 
parameters  ω  and  μ  are responsible for the shape of the func-
tion curve, that is, these have geometric interpretations, and 
so modeling based on function  gμ,ω(x)   has certain semantics. 

(1)
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Fig. 2 Examples for curves of function  gμ,ω(x)

Let  λ0 
, λ1 

,… , λn  be the complete historical failure rate time 
series of a product. As a model for time series  λ1 

, λ2 
,… , λn , 

we use the following  f (t)  function that is built upon appropri-
ate linear transformations of function  gμ,ω(x) . Function  f (t)  
consists of three main parts representing the three sections of a 
traditional bathtub-shaped failure rate curve: the declining left 
phase  l (t) , the constant mid phase  λc , and the increasing right 
phase  r (t) , and  λl  is the leftest value of the model function, 
that is,  f (0) = λl .
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l (t)  is defined in the  (0, te,l )  domain and has the  λl ,  λc ,  ta,l ,  
te,l  and  ωl  parameters with the following roles:

λc :  lowest value of  l (t)  as well as the value of constant   
 part of  f (t)

ta,l :  locus where  l (t) = (λl + λc )/2
te,l :  locus of the end of the left side curve
ωl :  slope of  l (t)  in locus  al  is proportional to  ωl

r (t)  is defined in the  (ts,r ,  te,r ] 
 domain and has the  λr ,  λc ,  ts,r ,  

ta,r ,  te,r  and  ωr  parameters with the following roles:

λr :  last value of  r (t), that is, it is the end value of the   
 third segment of the life-cycle curve

λc :  lowest value of  r (t)  as well as the value of constant   
 part of  f (t)

ts,r :  locus of the start of the right side curve, same as the   
 end locus of the constant middle segment of  f (t)

ta,r :  locus where  r (t) = (λr + λc )/2
te,r :  locus of the end of the right side curve,  te,r = n
ωr :  slope of  r (t)  in locus  ar  is proportional to ωr , ωr  is 

defined as  0 < ωr .

The unknown model parameters can be determined by min-
imizing the

f i i
i
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quantity. It can be done by using the Interior Point Algorithm 
(Bazaraa et al., 2006; Byrd et al., 1999). Function  f (t)  is the 
failure rate curve model (FCM) of the empirical failure rate 
time series  λ0 

, λ1 
,… , λn . Figure 3 shows how well function

f (t)  can be used to model an empirical failure rate time series.

Fig. 3 An empirical failure rate time series and its  f (t)  model

3.3 Standardizing the failure rate curve models
Once the parameters of  f (t)  for a particular failure rate 

times series  λ0 
, λ1 

,… , λn  have been identified, the  f (t)  model 
can be standardized to the  s : [0,1] → [0,1],  x ( )x g xµ ω, s (x)  function 
by applying the following transformation: 
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Applying the transformation given by (7) and the min-max 
standardization given by (8) to the model function  f (t)  result 
in the following parameters of the  s(x)  standardized failure 
rate curve model (SFCM) function. 
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It is worth noting that due to the min-max standardization 
applied to  f (nx), one of the  yl , yr  values is 1. Each standard-
ized failure rate curve model has eight parameters: 

y x x y x xl a l e l l r a r s r r, , , , , , , ,, , , ,ω ω

and each parameter has a geometric interpretation related to 
the shape of the model curve. These semantics of the model 
parameters are important properties of the standardized failure 
rate curve functions, namely, they render clustering them based 
on their parameters possible. 

3.4 Clustering the standardized failure rate curve 
models

Let   s   p  i  
   (x)  denote the standardized failure rate curve model 

for the empirical failure rate time series  λi,0 
, λi,1 

,… , λi,ni ,   (i = 
1, 2, ..., m) , where the parameter vector  pi  is 

pi l i a l i e l i l i r i a r i s r i r iy x x y x x= , , , , , , ,( ), , , , , , , , , , , ,ω ω .

In order to identify typical standardized failure rate curve 
models, we cluster the   s   p  i  

   (x)  models based on their parameter 
vectors pi by applying the fuzzy C-means clustering method 
(Bezdek, 1981; Chiu, 1994). 

Let us assume that the   C1 , C2 , … , CN  clusters  (N ≤ m)  of 
the standardized failure rate curve models are formed. Let  Ir  
be the index set of standardized failure rate curve models   s   p  i  

   (x)  
that belong to cluster  CN (r ∈ 1, 2, …, N), that is,

ℑ = : ∈ , ∈ , ,{ }{ }r i ri i mp C 1 2,

and let  cr  be the centroid of  pi  vectors in cluster  Cr . Vector  cr  
contains the parameters of the cluster characteristic standard-
ized failure rate curve model   s   c  r  

   (x) . 
The   s   c  1  

   (x ) ,  s   c  2  
   (x ) , …,  s   c  N     (x)  functions represent the typical 

standardized failure rate curve models, and as such can be 
taken as representative models of the empirical failure rate time 
series  λi,0 

, λi,1 
,… , λi,ni

  (i = 1, 2, ..., m) . The typical SFCMs are 
generated from complete historical failure rate time series of a 
consumer electronic commodity, that is, they represent histori-
cal knowledge on failure rate curves of the studied product cat-
egory. The knowledge represented by the typical standardized 
failure rate curve models can be used to predict the unknown 
failure rates of active products of which empirical failure rate 
time series are not complete yet. 

3.5 Predicting failure rate curves of active products
In our approach, active products of the studied product cat-

egory are defined as ones with empirical failure rate time series 
that are not complete, that is, only a fraction of their failure 
rate time series is known. We may assume that products in the 
same product category have similar reliability properties. This 
assumption, which is empirically justified, lays the foundation 
of using the identified typical standardized failure rate models 
to predict the unknown continuations of failure rate curves of 
active products. 

Let   λ  F,0  , …,  λ  F,M    be a fractional failure rate time series of 
an active product. For each typical SFCM   s   c  r  

   (x)  the  αr ≥ M
 
, 
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Solution for each fitting problem described by (15), (16) and 
(17) can be found by applying the same Interior Point Algo-
rithm referenced in Section 3.2. The  dr  distance measures the 
level of dissimilarity between   g  r   (t)  and the fractional failure 
rate time series   λ  F,0  , …,  λ  F,M     (r = 1, 2, ..., N) . The normalized 
dissimilarity   d  r  

∗   is derived from  dr  by applying the following 
transformation:
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as follows (Tan et al., 2006):
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well   s   c  r  

   (x)  can be used as a model of fractional failure rate 
time series   λ  F,0  , …,  λ  F,M   . Based on this, we define the prediction 
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Solution for the fitting problem given by (21), (22) and 
(23) can be found by applying the same Interior Point Algo-
rithm referenced in Section 3.2. As  α ≥ M , the  F (i)  values 
for α  ≥ >i M   can be taken as predictions of the unknown 
λ λ αF M F, + , 

, ,1   future values, that is, the λ λ αF M F, + , 
, ,1   series 

can be taken as a possible continuation of the 0F F M…λ λ, ,, ,  
fractional failure rate time series. 

4 A case study
The method discussed so far was applied to real-life empiri-

cal failure rate curves. 43 complete empirical failure rate curves 
of consumer electronic goods of the same commodity were 
used to generate typical standardized failure rate curve mod-
els. Each complete empirical failure rate time series represents 
weekly failure rates of a product. The standardized failure rate 
curve models of the studied 43 failure rate times series were 
clustered into 12 clusters, that is, 12 typical SFCMs were gener-
ated. Parameters of the typical SFCMs are collected in Table 2. 

Figure 4 depicts graphs of the individual standardized fail-
ure rate curve models in each cluster (grey colored curves) 
and the cluster characteristic (typical) standardized failure rate 
curve models (black colored curves).

An empirical failure rate time series containing 176 weekly 
failure rates of a product, which had not been involved into 
establishing the typical standardized failure rate curve models, 
was selected to demonstrate how the typical SFCMs can be 
used to forecast future failure rates. The cluster characteristic 
SFCM-based prediction was compared to four widely applied 
forecasting methods: the moving average, the exponential 
smoothing, the linear regression and the autoregressive inte-
grated moving average (ARIMA) method. The moving average 
was applied with span of 5, default weight for the exponential 

smoothing was computed by fitting an ARIMA (0,1,1) model 
to the data, and back-casting was used to calculate the initial 
smoothed value. The number of autoregressive terms  (p) , non-
seasonal differences needed for stationarity  (d) , and lagged 
forecast errors  (q)  were indicated for the best fitting ARIMA 
model for each time series.

Table 2 Parameters of the cluster characteristic failure rate curve models

cluster yl xa,l xe,l ωl yr xa,r xs,r ωr

1 0.7904 0.2232 0.3297 0.7426 0.9652 0.8311 0.3535 4.6672

2 0.9047 0.1898 0.3185 3.5168 1.0000 0.8631 0.3185 3.1601

3 1.0000 0.1965 0.4129 1.5842 0.7932 0.8959 0.6406 0.9354

4 1.0000 0.1167 0.3153 2.7837 0.7023 0.7501 0.7279 1.8343

5 1.0000 0.0973 0.1933 0.9909 0.5487 0.8503 0.6901 1.0315

6 0.4686 0.0616 0.4130 3.5978 1.0000 0.8363 0.6821 1.1576

7 0.4369 0.0840 0.1077 8.0754 1.0000 0.8993 0.7112 1.7103

8 0.7751 0.1210 0.2330 1.1132 1.0000 0.8193 0.6377 0.9918

9 0.4705 0.1053 0.2184 0.9736 1.0000 0.8595 0.7039 1.0257

10 0.9290 0.2258 0.9540 4.6764 1.0000 0.9809 0.9497 0.2577

11 0.6771 0.1342 0.2971 1.7623 1.0000 0.8448 0.6432 1.3206

12 0.9902 0.1223 0.2334 0.9709 0.9255 0.8417 0.6553 0.9751

Fig. 4 Clustered standardized failure rate curve models

In order to evaluate goodness of the methods, we created 
forecasts based on data of the first 30, 80 and 130 weeks for 
the next 50 weeks, that is, we carried out almost year ahead 
forecasts. When we used the first 130 data as a known fraction 
of the studied failure rate time series, we were able to generate 
forecast only for the next 31 periods, as parameter  α  of func-
tion  F (t)  in this case was 160.4382. Note that the starting index 
of periods (weeks) is zero, and so if  α =  160.4382 , then the 
last forecast period has the index of 160, that is, the last fore-
cast is for the 161st week. The mean squared error (MSE) of the 
fitted and predicted values were calculated for each forecast to 
characterize goodness of the applied forecasting methods. The 

(19)

(20)

(22)

(21)

(22)
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values of  α ,  β  and  γ  parameters of function  F (t)  for the three 
forecasts are summarized in Table 3. 

Table 3 Parameters of the cluster characteristic failure rate curve models

Parameters of F(t) A B C

α 161.8701 176.2402 160.4382

β 0.0278 0.0221 0.0227

γ 0.0374 0.0449 0.0442

A:  forecast based on data of the first 30 weeks for the next 50 weeks
B:  forecast based on data of the first 80 weeks for the next 50 weeks
C:  forecast based on data of the first 130 weeks for the next 31 weeks

The MSE values for fittings to the known fraction of the 
studied failure time series and the MSE values for the forecast 
failure rates are in Table 4. The abbreviations used in this table 
are as follows. MA(5) stands for the moving average with span 
of 5, Exp. S. is the exponential smoothing, and Lin. Reg. is the 
linear regression. 

Table 4 MSE values for fits and forecast

F(t) MA(5) Exp. S. Lin. Reg. ARIMA

Fits* 1.175E-05 1.936E-05 1.823E-05 1.174E-05 1.217E-05

Forecasts* 4.165E-05 2.434E-04 2.739E-04 1.074E-04 1.052E-04

Fits** 1.657E-05 2.334E-05 2.290E-05 3.339E-05 2.062E-05

Forecasts** 3.398E-05 4.486E-05 3.767E-05 7.382E-04 3.135E-04

Fits*** 1.626E-05 2.314E-05 2.226E-05 1.579E-05 2.716E-05

Forecasts*** 1.260E-05 2.608E-04 2.213E-04 2.803E-05 8.087E-05

*first 30 weeks  → next 50 weeks, best fitting ARIMA is ARIMA(1,1,1)
**first 80 weeks  → next 50 weeks, best fitting ARIMA is ARIMA(1,1,1)
***first 130 weeks  → next 31 weeks, best fitting ARIMA is ARIMA(0,2,3)

Figure 5 depicts the forecast results of the five studied meth-
ods. There are a couple of notable properties of the typical 
standardized failure rate curve model based forecasts, that is, 
the function  F (t)  based predictions.

In the first forecast case, when predictions for period from 
week 30 to week 79 are given based on data of period from 
week 0 to week 29, the known part of the failure rate time series 
is in the first declining phase of the bathtub curve. In this case 
the linear regression gives the best fitting for the known fraction 
of the failure rate time series, and function F(t) brings the fore-
cast with the least MSE. The moving average and exponential 
smoothing methods show similar fitting results for the known 
fraction of the failure rate time series as the linear regression. 
As the failure rate time series is decreasing in the first 30 weeks 
and the moving average and exponential smoothing methods 
give constant forecasts, the latter two methods result in rela-
tively weak forecast accuracy. The linear regression gives a 
decreasing forecast while the actual failure rates are getting 
quasi constant from week 50, that is why the accuracy of linear 

regression based forecast is far behind the accuracy of function  
F (t)  based one. It is important to highlight that even though 
the typical standardized failure rate curve model based forecast 
overestimates the actual values from week 40, it indicates that 
the failure rate curve turns from its decreasing phase to its quasi 
constant phase at around week 50. None of the other four meth-
ods is able to predict this turning point of the bathtub curve. 

Fig. 5 Results from different forecast methods

In the second forecast case, when predictions for period from 
week 80 to week 129 are given based on data of period from 
week 0 to week 79, approximately first half of the known part 
of the failure rate time series is in the first declining, while the 
other half is in the second, almost constant phase of the bathtub 
curve. The actual failure rate values start to increase at around 
week 115, and so the moving average, the exponential smooth-
ing and function  F (t)  give similarly good forecasting results 
for the period from week 80 to week 129. For this period, the 
linear regression and ARIMA result one order of magnitude 
worse forecast accuracy in terms of MSE than those of the 
moving average, exponential smoothing or function  F (t) . It 
is important to mention that the function  F (t)  based forecast 
is the only one among the studied five methods which is able 
to indicate that the failure rate curve will turn from its quasi 
constant second phase to its increasing third phase. Function  
F(t) suggests that the failure rate will take an increasing trend 
from approximately week 120, the actual figures show that in 
reality it happened a bit earlier, from approximately week 115. 

In the third forecast case, predictions for period from week 
130 to week 160 are given based on the first 130 weekly failure 
rates of the studied product. We know that from approximately 
week 115 to week 130 the failure rate curve is in its increas-
ing third phase, thus, the linear regression was applied for the 
period from week 115 to week 130 instead of using the first 
130 data. As the moving average and exponential smoothing 
methods give constant forecasts, while the actual failure rate 
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is increasing, these two methods are not suitable to predict 
well the failure rates in this phase of the failure rate curve. The 
ARIMA, the linear regression and the function  F (t)  based 
forecasts follow well the increasing trend of failure rate time 
series. A shortcoming of the typical standardized failure rate 
curve model based forecast is that the end of the forecast period 
is determined by parameter  α  of function  F (t) . In our case, 
α  =160 , and so our method cannot give any prediction for 

weeks that have index greater than 160. 
The case study demonstrates the main advantages of our 

forecast method well. Namely, the typical standardized failure 
rate curve model based forecast is able to indicate the turn-
ing points of the bathtub-shaped failure rate curve in advance, 
while the traditional statistical forecasting techniques do not 
have such a capability. In general, machine learning, fuzzy, 
neural, and fuzzy-neural hybrid techniques have similar capa-
bilities. Our method can be taken as a hybrid one founded on an 
analytic model of the failure rate time series and complemented 
with fuzzy clustering to discover typical standard models. 

5 Conclusions and managerial implications
In this paper we presented a hybrid technique for modeling 

and forecasting bathtub-shaped failure rate curves of consumer 
electronics. Empirical failure rate curves describing the whole 
life-cycles of on-the-market electronic products considered as 
time series were considered as inputs for typifying SFCMs. 
These typical SFCMs are applied for predicting unknown con-
tinuations of failure rates of active products of which complete 
empirical failure rate time series are unknown, that is, only a 
fraction of their failure rate time series is known. 

Similarities among historical SFCMs are characterized by 
eight model parameters having geometric interpretations and 
cognitive aspects relating to the shape of the model curve and 
so clustering the SFCMs results in typical SFCMs that can be 
applied for predicting the future values of failure rate curves. 
In this sense, the cluster characteristic SFCMs represent the 
knowledge of failure rate curves gained from historical data. 
From a managerial perspective, discovering similarities among 
empirical failure rate curves generates added information both 
for the repair service providers and for the original equipment 
manufacturers. Electronic repair service provider companies 
can utilize it to predict resource needs for particular repair ser-
vices, the latter ones can conclude on typical reliability charac-
teristics of their products. 

The case study for illustrating the practical application of 
the introduced methodology underlines that the SFCMs can 
be used to discover similarities of the studied failure rate 
curves. The introduced method is founded on a model that is 
mathematically simple, but suites well the needs of industrial 
applications. The accuracy of our methodology was compared 
to moving average, exponential smoothing, linear regression 
and ARIMA methods. In contrary to the traditional statistical 

forecasting methods, the presented forecasting methodology 
can indicate the turning points of the traditional bathtub-shaped 
failure rate curve in advance. Based on the results we can con-
clude that our modeling results are encouraging and it has the 
potential to be a suitable alternative predicting technique. 

Conclusions concerning model flexibility should be added. 
Taking an active electronic product with an incomplete fail-
ure rate curve into consideration, management can get fur-
ther information about the continuation of actual failure rates 
in the course of time. From time to time we can reconsider 
which typical SFCM fits the actual curve of the failure rate 
the best. This kind of fitting by moving forward in the active 
product life-cycle can change and can be revised according to 
new information. On the other hand, with the production of 
new products due to shortening life-cycles in the electronic 
industry the database of curves can be complemented and his-
torical failure rate curves can be clustered again resulting in 
the re-identification of typical curves as time goes on. One of 
the restrictions of the introduced methodology is that it goes 
along with the condition of presuming bathtub-shaped failure 
rate curves. As a future research plan the methodology should 
be tested on other types of products as well. Another possible 
future research direction is the consideration of functional and 
technological features of the studied products; however, one 
can say that products with similar functional and technologi-
cal parameters presumably have similar failure rate curves. It 
is worth studying whether products that are functionally and 
technologically similar also show similarities in their SFCM 
parameters. For this purpose, self-organizing feature maps 
could be applied to study how effectively the product SFCMs 
could be typified according to clustering criteria learnt from 
their functional and technological attributes. 
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