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Abstract
Precise dynamic mathematical models of complex systems 
are important in control and diagnostic systems design and 
allow testing a complex system in virtual environment at a low 
cost. They can be also utilized in rapid prototyping using a 
concept of hardware in the loop. Ever improving methods of 
experimental identification and using approaches in non-lin-
ear approximation can considerably increase the precision of 
dynamic models of complex systems. The article deals with 
non-linear approximation of transfer gains of a complex sys-
tem and evaluates the influence of operational point selection 
on precision of the resulting model using methods of experi-
mental data driven identification. The object of control is rep-
resented by two similar small turbojet engines at the Depart-
ments of the authors, the iSTC-21v and TKT-1, both based on 
the same power section having two degrees of freedom: fuel 
mass flow rate and variable convergent nozzle position.

Keywords
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1 Introduction
Novel approaches for aviation are probably more demanding 

nowadays than ever before, the future efficient and sustainable 
air transport needs new, even radically new solutions (Rohács 
D. and Rohács J., 2016; Truman and Graaff, 2006; 2007). 
During research team activity in our laboratories we must solve 
very complex task, which demands a specially designed very 
precise dynamic model of the engine suitable for solution of this 
task according to Jaw and Mattingly (2009). There are many 
approaches, which can be taken in design of a dynamic model 
of a complex non-linear system in general as well as specialized 
methodologies for creation of dynamic models of turbo-com-
pressor engines as reported by Kulikov and Thompson (2004).

Andoga et al. (2013), highlighted in their work that a 
dynamic model, which can be very precise in a diagnostic sys-
tem and can be used to successfully compute virtual param-
eters of the engine in real-time does not necessarily have to 
be suitable for control system design. Such models were e.g. 
designed in Adamčík et al. (2014)., however these models 
failed in control system design as algorithms created using 
them didn’t work on the real-world objects of small turbojet 
engine iSTC-21v and TKT-1.

A small turbojet engine is a complex non-linear system with 
non-stationary characteristics and is representative of many 
other like-wise complex real-world systems as described in 
Zare and Veress (2013) or Bicsák and Veress (2015). One of 
the non-stationary characteristics of such engine is the gain 
of the transfer function of the engine, which can be some-
times handled with linear control approaches, as reported by 
Beneda (2015). But one has to understand that the gain of 
the transfer function is a non-linear function of many differ-
ent parameters, like speed of the engine, velocity of the air-
craft, airflow, temperature, pressure, etc. One of the dominant 
parameters influencing this gain constant is the actual speed of 
the engine (Jirgl and Jalovecky (2015)).

The article is aimed at research of methods for non-linear 
approximation of this gain and evaluate the precision of the 
resulting models. This approach is different from the classical 
approach of using a set of linear perturbed models using the 
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Taylor series method of dividing the full operating range. As 
found in Armstrong and Simon (2012) or Tóth-Laufer, Takács 
and Rudas (2015), the non-linear approximation of the gain 
should be more precise, can be better implemented in real-
time systems and can also utilize more advanced methods of 
approximation like neural networks or fuzzy inference systems, 
improving precision and flexibility of the resulting model.

The other question that needs to be solved in this approach, 
is the selection of initial operational point as it has influence on 
the complexity of the polynomial approximation. We will con-
sider two approaches here, zero initial operational point means 
that the engine and the corresponding model starts from its cold 
state and non-zero initial operational point will use different 
operational conditions starting from idle speed of the engine; 
this means the engine is already running hot.

In the present article the investigation is completed with 
the iSTC-21v, but the TKT-1 would have similar results due to 
their common power sections.

2 Deviation model of iSTC-21v and TKT-1 created by 
experimental identification

Several methods can be applied in creation of a mathematic 
model from experimental data using a transfer function of a 
system. The simplest possible approach in order to model a sin-
gle spool turbojet engine is to use a first order transfer function 
described as shown by Noskievic (1999):

F s K
Ts

( ) =
+1

where:
K – is the static gain coefficient of the system,
T – time constant of the system.

Gain is set as a ratio of stable values of input and output as 
follows:

K y
u

= ∞

∞

for the engine iSTC-21v:
• n – speed of the engine (the output parameter – y∞),
• Qpal – fuel flow supply (the input parameter – u∞).

According to Noskievic (1999), the time constant T can be 
simply computed by a tangent line to the transfer characteris-
tics at its beginning or from the value of 0.63·y∞ . Coefficient 
T is treated as a constant for the needs of this paper. This paper 
will deal mainly with non-linear approximation of the gain 
constant of the first order engine model in different operational 
regimes of the engine.

To compute the gain coefficient K as denoted in literature 
and the (2) is computed as a step response, which starts in 
the beginning of the coordinate system and ends in the stable 

regime of operation. The problem is that the particular system, 
the engines iSTC-21v or TKT-1 does not start at the beginning 
of the coordinate system but has to get to a stable idle regime 
of operation, see Fig. 1.

Fig. 1 Input signal – stable states of iSTC-21v engine

In order to build a model we can use several step signals 
from the stable fuel supply and because it is a non-linear sys-
tem its static gain coefficient K will be different in each oper-
ational point.

When the initial point does not origin from the beginning 
of a coordinate system a new formula for calculation of static 
gains can be defined as follows:
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where
i = 0, 1,..., n – is the chosen arbitrary stable operating point, 
it is usually idle or a regime higher than idle, which will be 
used to calculate differentiative K
j = 1,2,…, m – is the arbitrary chosen operational point for 
which the static gain will be computed, while i ≠ j.

We choose one operating point “i” and for all stable states 
we compute for actual (specifically) measurement “j” gains 
Ki,j. We choose next operating point “i” and for all stable states 
we again compute gains Ki, j . By that compute and by defining 
of gains K which are computed by solving (3), we receive so 
named deviation non-linear system models, we will mark them  
Ki (Ki model, given to i operating point), for selected i operat-
ing point. Deviation model because as (3) suggests, it’s reduced 
by chosen, in almost all cases it is idle. In special case, which 
is not deviation and we can name it non-deviation non-linear 
system model (K0 model) it is when we choose operating point 
“i = 0” (coordinate system origin) and for all stable states we 
compute gains K0, j , for which equation is:
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From above we know in only one case if  j = 1, i.e. for one 
engine operating point and for i = 0, i.e. coordinate system 
origin it is intended K  Eq. (2). If we compute them by that 
equation it will be fixed and we get non-deviation linear 
system model (in our case generally for aircraft engines or 
similar systems).

From above we learn to create deviation non-linear system 
models, i.e. ∆Ki models, where we compute deviation gain 
(∆Ki , i = 1,2,…,n) for various operating points related to var-
ious stable states or non-deviation non-linear system model, 
i.e. K0 model, computation of K0 from coordinate system ori-
gin to various engine stable states (Simple for various engine 
stable states).

For various stable states is gains Ki or K0 are different (var-
ious). For that reason, to achieve higher mathematical model 
accuracy, it is necessary to change gain K depending on Qpal 

change in real time. It may vary as in aircraft models by switch 
of models for various operating point, or as we propose for air-
craft engines we will change them by gain approximation Ki, j , 
(K0, j ) regarding the work of Pečinka and Jílek (2012).

In case of Ki models, we will approximate gain Ki, j by (3) for 
chosen operating point “i” from fuel flow Qpal , i.e. for various 
Qpal we will obtain various Ki,j . That process we try as simple as 
possible (lowest polynomial degree) in first pilot approach only 
by polynomial function approximation. Polynomial function is 
sum or subtraction of monomial. It is equation in form:

K Q aQ a a Q a Q a Qi
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pal i pal
i

pal pal n pal
n

i

n
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...

where an ≠ 0. Numbers a0, a1,..., an are called polynomial coef-
ficients. In our case we compute them for specific operating 
point “i” as approximation (least square method) from com-
puted Ki,j by (3) for chosen operating point “i” given to fuel 
flow Qpal. Results are displayed below in other subtopics.

Besides that system gain is changed given to stable state, 
operating point in which engine is, (until now we discussed K 
depending on Qpal , in future it will be revolutions n), gain even 
depends on altitude and airspeed of aircraft, which use engine 
as propulsion. By altitude and airspeed change is also changed 
input parameters into engine as atmospheric temperature, pres-
sure or air humidity and more. K is depending on following 
parameters:

K f n Q V H p T humiditypal= ( ), , , , , , ,...0 0

In (6), v and H denote the velocity and altitude of flight, p0 
and T0 those ambient pressure and temperature which arises 
at the operation. In our paper we focus only on change of K 
depending on change of engine operating state. Both investi-
gated engines are placed in the laboratories of the authors, in 
laboratory conditions, whereas temperature, pressure and other 
parameters we consider as constants.

3 Nonlinear deviation model iSTC-21v
3.1 Deviation and non-deviation gain K process of 
engine iSTC-21v

To compute deviation gain and create deviation model we 
need to choose operating point. Exactly by choosing operating 
point and impact to this choice given to resulting model accu-
racy we deal in this paper with three selected operating points, 
following:

• Qpal = 0.887 l/min, n = 40908 rpm,
• Qpal = 0.69 l/min, n = 36000 rpm,
• Qpal = 0.6993 l/min, n = 36000 rpm.

Fig. 2 Static gain K dependence (non-deviation) from engine iSTC-21v 
revolutions for various input signals

3.2 Approximation of deviation K depending on Qpal
In this subtopic we will deal with approximation of  

∆K = f(Qpal) for selected operating points. All that dependen-
cies we plotted in Fig. 3, where each area is gradually zoomed 
for better visibility. While range of ∆K values significantly 
changing exactly by impact of operating point selection. For 
approximation we used MATLAB software and its toolbox 
cftool, or directly polyfit and polyval function (see e.g. Horváth 
and Rudas (2013)). We tried to get polynomial function (see 
(5)) as simple as possible i.e. with lowest possible degree (sim-
plicity in aeronautics).

Fig. 3 Deviation K depending on Qpal for all 3 working points

(5)

(6)
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For first working point (1.WP) from value of deviation gain 
K1,j depending on fuel flow Qpal, i.e. for dependence of ∆K1 = 
f(Qpal) marked on Fig. 4 as 1.WPorig, we made three different 
approximations (see Fig. 4).

Fig. 4 Approximation of ∆K1 = f(Qpal) by polynomial function of various 
degrees

On Fig. 5 all three ∆Ki = f(Qpal) approximation are displayed for 
the original working points (WPorig), i.e. 1.WPorig, 2.WPorig 
and 3.WPorig and their approximations, which in next will be 
investigated directly in deviation engine models. For 1.WPorig 
we will analyze three various approximations (1.WPolyn2with-
out2point, 1.WPolyn2 and 1.WPolyn4), for 2.WPorig we selected 
and in following will work with approximation 2.WPolyn2 and 
for 3.WPorig we decided for approximation 3.WPower2 and in 
next we will compare results from engine revolutions model with 
real measured values in laboratory conditions LIRSLM.

Fig. 5 All ∆K depending on Qpal and their approximations

3.3 Simulation of created and obtained nonlinear 
iSTC-21v models

If we have created approximations for our obtained depen-
dencies of ∆Ki = f(Qpal) and added into (1) we get nonlinear 
deviation engine models. In following it is necessary, as men-
tioned above, to perform an analysis of those models and their 
outputs to be compared with the measured engine revolutions 
in real time. For that reason was created simulation scheme 
(see Fig. 6) in MATLAB/Simulink.

That scheme in first part displays deviation linear engine 
model (gain K is constant – it does not change) and in second 
part is deviation nonlinear engine model (gain K is changing 
depending on Qpal – with various computed approximations). 
Generally for deviation model is linear and nonlinear in sim-
ulation scheme we must subtract to input (in our case to Qpal) 
selected working point, for which we computed the deviation 
model, i.e. by (3) ui,∞ and on output add to output variable (in 
our case to n) value of revolutions corresponding for selected 
working point, i.e. yi,∞ . From that resulting simulation schemes 
will be same for all created and analyzed non-deviation non-
linear engine models, i.e. for various approximations accord-
ing to working point, except of the polynomial function which 
approximates dependency ∆Ki = f(Qpal) and values (ui,∞ , yi,∞), 
which defines a working point.

Fig. 6 Simulation scheme of deviation linear (above) and nonlinear (below) 
iSTC-21v model

Fig. 7 Dependency of revolutions on time, clamped figure (smaller) 
dependency of Qpal on time

By successive simulating for chosen input signal we get out-
put signals of revolutions in time for each obtained and created 
models and the real measured revolutions. These signals are 
displayed on following figures, in which measured values we 
will mark as measure and results from models by legend on 
Fig. 5 – marking of each approximations. Fig. 7 displays and 
compare measured revolutions with deviation model response 
of linear and nonlinear system (approximated 1.WPolyn2with-
out2point) for fuel flow. On the smaller figure in the center 
the independent input value fuel flow into the engine is shown 
(input into model). At time 70sec. a change of output nozzle 
diameter was performed and for that reason also revolution 
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decreased, while fuel flow was constant. Created models have 
not responded, what was due to the changing exhaust nozzle 
diameter, itemized in Főző et al. (2015) – it is not contained in 
this model yet. From Fig. 7 is clear that for lower engine thrust, 
i.e. for fuel flow Qpal = 0.7 l/min, revolutions of the nonlinear 
model (1.WPolyn2without2point) leaving measured values and 
rapidly fall. Reason of that behavior is that approximation does 
not match original values in this region (see Fig. 5 1.WPolyn-
2without2point).

In following simulation scheme see Fig. 6 was extended for 
another nonlinear deviation models (more approximations and 
more working points, see Fig. 5). Except approximation as on 
Fig. 5 1.WPolyn2, which is omitted – model revolutions at 
all leaving measured values. Simulation results we can see on 
Fig. 8, while input signal Qpal is same as on Fig. 7 clamped figure.

Fig. 8 Dependency in time, i.e. system response with other approximations of 
∆K depending on Qpal, see Fig. 5

By statistical indicators MAE, MAPE, MAAE a MAAPE 
we compared obtained results from Fig. 8 (see Table 1). From 
obtained results in table and from Fig. 8 we can state the 
best results reaches linear model and from nonlinear models 
(approximations 1.WPolyn4 and 2.WPolyn2). On Fig. 8 one 
can see area input signal fuel flow Qpal = 0.9…0.7 l/min, where 
model response is different from real revolution value, it is 
caused by inaccuracies and approximations see Fig. 5.

Table 1 Evaluation to Fig. 8

MAE [rpm] MAPE [%] MAAE [rpm] MAAPE [%]

linear 916.7 2.06 3085.2 6.46

1.WPolyn2 2694.2 7.1 18301 37.66

1.WPolyn4 878.34 2.1 5903.9 12.16

2.WPolyn2 921.62 2.13 5498.9 11.36

3.WPower2 2141.8 5.18 13247 26.4

To emphasize critical areas (lower engine modes – close to  
idle Qpal = 0.9…0.7 l/min and higher max modes up to   
Qpal = 1.2 l/min) of created models, we test them on different 
input signal (see Fig. 9).

To obtained plots displayed on Fig. 9 we computed statis-
tical-quantitative indicators collected in Table 2, which con-
firmed success of linear model and approximation (2.Wpolyn2). 
On other side approximation and model marked as 1.WPolyn4 
failed, critical areas are totally mishandled. Approximation 
Fig. 5 displays ∆K at higher modes rapidly fall.

It is important mention approximation 2.WPolyn2 do not 
follow max revolutions (at higher revolutions holds lower con-
stant value), what is caused by approximation – polynomial 
function (see Fig. 5 zoom) falling for higher max modes, up to  
Qpal = 1.2 l/min, what is obviously not right. Linear model (non-
linear) is better in that way, even if it has deviations, only it get 
close to max modes. Results are slightly distorted, the linear 
model shows better results as approximation 2.WPolyn2 for 
example when computing MAPE, it is caused by left of statis-
tical indicators and critical areas for clarity (big overshoots and 
undershoots), which in normal conditions are left or trimmed 
for computing.

Fig. 9 Dependency in time, for various approximations from Fig. 5 and 
different input signal Qpal into the engine (red line)

Table 2 Evaluation to Fig. 9

MAE [rpm] MAPE [%] MAAE [rpm] MAAPE [%]

linear 1138.7 2.62 2621.2 5.18

1.WPolyn2 2405.7 5.83 12634 22.59

1.WPolyn4 7976.1 17.03 57251 119.8

2.WPolyn2 1126.6 2.63 3678.2 7.56

3.WPower2 2877 7.21 15016 28.07

At the end we can state results from simulations, model output 
– how will revolutions follow real measured engine revolutions, 
will be very dependent from selected working point and approx-
imations of ∆Ki = f(Qpal). Of course we can aim on other appro- 
ximation methods and their accuracy as on other variables on 
which gain K depend (mainly on revolutions n), as showed by 
Lang and Kostrab (2015). In the conclusion of the present paper 
we highlight and compare with previously obtained results of 
nonlinear deviation engine model. Creation of that model is from 
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time consuming side less difficult and working point selection 
lacks and also approximation of complex dependencies.

4 Nonlinear non-deviation (absolute) iSTC-21v model
In this topic we create pilot nonlinear non-deviation engine 

model, we approximate dependencies, or one specifically 
from Fig. 2 and simulate them compared to measured data. 
On Fig. 10 is displayed simulation scheme of deviation and 
non-deviation engine model. Non-deviation model is placed in 
subsystem and contain nonlinear non-deviation engine iSTC-
21v mathematical model (assembled differential equation 
+ approximation K = f(Qpal). Important change compared to 
deviation model in simulation scheme is lack of comparators 
(we do not subtract ui,∞ and do not add yi,∞).

Fig. 10 Simulation scheme of iSTC-21v engine

Approximation K0 = f(Qpal) for non-deviation nonlinear 
engine model was the simplest, i.e. polynomial function of 
first degree rectilinear dependence. From simulations obtained 
results are displayed on Fig. 11. From plots we can see that 
non-deviation nonlinear K0 model follow also measured data 
at maximum revolution values and in other engine modes has 
same features as deviation nonlinear K2 engine model (we 
chose just one best from obtained models above).

Fig. 11 Comparison of deviation and non-deviation iSTC-21v engine model

From obtained plots we computed statistical indicators see 
Table 3.

Table 3 Evaluation of Fig. 11

MAE
[rpm]

MAPE
[%]

MAAE
[rpm]

MAAPE
[%]

K0model 730.26 1.75 3339.2 6.58

K2model2.WPolyn2 1126.6 2.63 3678.2 7.56

Obtained results confirm accuracy and creation process of 
non-deviation model and model simplicity.

5 Conclusions
Basic question, witch which this paper deal is if our jet 

engine and similar systems i.e. which running above certain 
border (idle). Hocko and Polansky (2014) created mathemat-
ical models using experimental identification (in paper pre-
sented approximation of step responses, i.e. approximation 
of proportional system with inertia of first degree) it may be 
deviation or non-deviation, linear or nonlinear. If we create 
deviation models another question arises (problematic circle) 
how to select working point, from which deviation model is 
created. If we create deviation nonlinear model next question is 
how to approximate ∆K = f(Qpal). Paper proves that for aircraft 
engines and similar systems have selection of working point 
big impact to model and approximation accuracy. And at the 
end of paper created non-deviation model with higher model 
accuracy arise into question if is necessary and if why, create 
deviation models. To future we need solve questions, how to 
model follow real revolutions in case if K or also ∆K will be 
dependent on revolution, not on Qpal, what may be better from 
control algorithm side. If it is necessary to approximate time 
constant and its impact on computation (and together ques-
tion) of deviation gain or non-deviation gain, more methods of 
experimental identification, for example successive integration 
method and more.
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